用户名: 密码: 验证码:
富水花岗岩蚀变带隧道大变形机理及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富水花岗岩蚀变带是岭南地区较为常见的一类特殊地质体,因其分布复杂,富含地下水,力学性质特殊,隧道工程通过其分布区时,往往会发生难以控制的围岩大变形以及涌水突泥等工程病害。论文以新建洛湛铁路两处典型工点为例,综合运用现场调查、室内试验、理论分析、数值计算和模型试验等手段,对富水花岗岩蚀变带隧道大变形机理及其施工控制等相关问题进行了全面深入的探讨。
     (1)通过调查分析,总结了花岗岩蚀变带的时空分布特征和典型工点工程地质条件;开展了相关试验,分析了蚀变岩的矿物成分、物理力学性质,得到了蚀变岩的应力应变关系,掌握了蚀变岩的变形特征;最终得到富水花岗岩蚀变带隧道围岩工程地质特征,为进一步变形机理分析奠定了基础。
     (2)通过施工变形反演和力学参数反演,得到了符合蚀变岩变形特征的本构模型,即损伤本构模型或SS软化本构模型,从而得到围岩大变形机理的合理解释。建立了概化复杂岩体结构特征的计算模型并进行了数值模拟,分析了隧道与蚀变岩、沉积岩三者间不同的位置关系时隧道的变形收敛特征。
     (3)提出两种开挖大变形施工控制技术并进行了应用示例。一是考虑围岩内各点不同的稳定性状态,采用基于点安全系数场的开挖松动区分析方法;二是采用动态设计的观点,根据经验并监测分析围岩收敛位移发展规律,判断围岩的变形发展特征,及时一步强支到位。
     (4)基于流固耦合理论,将广泛应用于边坡稳定性计算的有限元强度折减法引入到开挖面的稳定性分析中,基于安全系数来定量评价开挖面的稳定性,对渗流条件下蚀变带隧道的变形机理和控制措施进行了研究。.得到隧道开挖导致开挖面前方的松动区范围、开挖过程中应贯彻的治水原则以及隧道周边及超前注浆预加固的范围。
     (5)通过大小比例模型试验,均很好地验证了前面各章节相关理论分析的正确性以及施工现场的实际情况。
Alteration rock is a familiar special rock mass at the district of Lingnan, the difficultly controlled large deformation of surrounding rock and water gushing and sudden mud usually occur when a tunnel passes the distribution area of alteration rock due to its complex distribution, water-riched and special mechanical property. Taking the two typical construction sites of the newly constructed Luo-zhan railway as examples, in this paper the research means of field survey, the experiments in the laboratory, theory analysis numerical computation and model test are comprehensive used. The mechanism of the tunnel's large deformation and the control measurements for the construction in the alteration strip of granite containing rich water are deeply studied.
     (1)On the basis of survey and analysis, the space-time distribution rule of alteration rock and the engineering geological condition at the typical work site are concluded; the indoor and outdoor experiment are carried out, the mineral ingredient and physical and mechanical property are analyzed, stress-strain relation is also discussed, the deformation characteristic of alteration rock is established. Engineering geological characteristic of the surrounding rock alteration rock is concluded which becomes the test basis for further deformation mechanism analysis.
     (2)By construction deformation inversion, constitutive model according with altered rock's deformation features is put forward. That's damage model or ss softening constitutive model.So reasonable explanation for large deformations of surrounding rocks mechanism is obtained. The calculation model of generalized complex rock mass structure is built up and numerical computation is carried out, tunnel's deformation convergence characteristic is analysed at different positions relation among tunnel, altered rock and sedimentary rock.
     (3)Two kinds of control measurements for the construction of the large deformation are put forward as well as be taken into practice.First, the point safety statement of surrounding rock different positions are considered, excavation loose region of zone analysis method based on point safety factor field is employed. Second the dynamic design method is adopted, through the experience and monitoring and analysis of surrounding rock convergence displacement development rule, the surrounding rock deformation characteristics are determined as well as the single-time strong support method to control the latent large deformation of surrounding rock.
     (4) Based on fluid-solid coupling theory, strength reduction FEM widely used in the calculation of slope stability is introduced into the excavation face stability analysis, based on the safety coefficient to quantitative evaluation of the excavation face stability, deformation mechanism and control measures of the alteration rock's tunnel under the seepage condition are studied. The range of loose region in front of the excavation face is obtained as well as the principle of water control methods which should be carried out in the process of excavation, the reinforcement scope of tunnel perimeter and advanced pre-grouting is also determined.
     (5) By the size ratio model test, the correctness of the preceding chapters related theoretical analysis and actual conditions of construction field are well corroborated
引文
1. 高浩中,蔡新平,张宝林,秦大军.找出最主要的控矿因素,建立三因控矿分析思路[J].地质与勘探,1998,(5).
    2. 曾文乐,何育华,张柳贵,陈育林,邵维江,桃山矿田铀矿化围岩蚀变研究[J].地质与勘探,2010,(1).
    3. 毛景文,谢桂青,郭春丽,袁顺达,程彦博,陈毓川,.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,2008,(4).
    4. 梅友松.成矿规律若干问题研究[J].地质与勘探,2005,(6).
    5. 孙国胜,李绪俊,姚凤良,胡瑞忠.玲珑金矿田矿物组合与地球化学分带及矿体定位预测意义[J].地质与勘探,2002,(4).
    6. 华仁民,.南岭中生代陆壳重熔型花岗岩类成岩—成矿的时间差及其地质意义[J].地质论评,2005,(6).
    7. 涂光炽.过去20年矿床事业发展的概略回顾[J].矿床地质,2001,(1).
    8. 涂光炽,李朝阳,.浅谈比较矿床学[J].地球化学,2006,(1).
    9. 徐国庆,.6210铀矿田的花岗岩和矿化成因[J].铀矿地质,1987,(1).
    10.谢学锦.勘查地球化学:发展史·现状·展望[J].地质与勘探,2002,(6).
    11.翟裕生.论成矿系统[J].地学前缘,1999,(1).
    12.张江.紫金山铜金矿床地质地球化学特征[J].地质与勘探,2001,(2).
    13.张连昌,赵伦山.成矿流体研究的若干进展与动态[J].地质与勘探,2001,(1).
    14.张元厚,毛景文,李宗彦,乔翠杰,张孝民,张向卫,.岩浆热液系统中矿床类型、特征及其在勘探中的应用[J].地质学报,2009,(3).
    15.刘继顺,章邦桐,.华南陆壳铀地球化学演化与成矿[J].华东地质学院学报,1992,(2).
    16.郑永飞,张祖还,沈渭洲,.六二一七铀矿床地质特征及围岩铀地球化学性状研究[J].矿物岩石,1989,(1).
    17.杨根兰.蚀变岩特性及其工程响应研究[D].成都理工大学:成都理工大学,2007.
    18.]邵宗平.二滩水电站坝址区纤闪石化玄武岩软弱岩带的工程地质究研[J].水电站设计,1986,(1).
    19.酆文清.二滩水电站坝区岩石学研究[J].水电站设计,1988,(1).
    20.刘克远,邵宗平.二滩水电站岩体力学特性研究[J].水电站设计,1989,(1).
    21.石豫川,张倬元.二滩水电站右坝肩纤闪石化玄武岩软弱岩带流变特性的研究[J].成都地质学院学报,1991,(2).
    22.陈昌平,陈卫东.二滩水电站工程勘察综述[J].水电站设计,2006,(2).
    23.朱允中,卢旭初,刘学山.广州抽水蓄能电站地下工程布置及地下厂房喷锚支护[J].水力发电, 1990,(10).
    24.罗绍基.广州抽水蓄能电站介绍[J].水力发电,1990,(10).
    25.孙世宗,高建理,丁健民,郭启良,梁国平.广州抽水蓄能电站水压致裂应力测量[J].岩石力学与工程学报,1991,(4).
    26.罗绍基,叶冀升.广蓄电站建设中若干重大技术问题的决策[J].水力发电,1993,(7).
    27.廖建强,尹健民.广州抽水蓄能电站地下厂房喷锚支护[J].水利水电快报,2002,(17).
    28.龚壁新,刘允芳,肖本职,罗超文.广州抽水蓄能电站地下厂房开挖的有限元分析[J].长江科学院院报,1990,(3).
    29.刘允芳,龚壁新,肖本职,罗超文.广州抽水蓄能电站地下厂房区地应力场分析[J].长江科学院院报,1990,(4).
    30.赵敏,刘茂祥,孙凤宇.青石岭水库上游护坡破坏成因分析[J].水利科技与经济,2009,(2).
    31.刘茂祥,刘民,张宏伟.高压摆喷灌浆在青石岭水库加固工程中的应用[J].水利与建筑工程学报,2006,(4).
    32.谭文农,高超英.电阻率法探测青石岭库区岩溶的地质效果[J].东北水利水电,1994,(2).
    33.沈维.小湾水电站坝肩蚀变岩高压渗流条件下的力学特性及工程响应研究[D].成都理工大学:成都理工大学,2008.
    34.王旭东.小湾水电站蚀变岩蠕变力学特性及本构模型研究[D].成都理工大学:成都理工大学,2008.
    35.刘林广.小湾拱坝坝肩稳定及加固处理措施研究[D].四川大学:四川大学,2005.
    36.李天斌.拱坝坝肩稳定性的地质力学模拟研究[J].岩石力学与工程学报,2004,(10).
    37.黄润秋,王士天,胡卸文,等.澜沧江小湾水电站-高拱坝坝基重大工程地质问题研究[M].成都:西南交通大学出版社,1996.
    38.喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1998,(1).
    39.翁汉民.高地应力条件下隧道大变形破坏机理的研究及其在二郎山隧道工程中的应用.研究报告.1999.10.
    40. Von Terzaghi K, Peck R.B. and Mesri G, Soil mechanics in engineering practice [M].3rd Ed. New York:John Wiley & Sons Inc.1996.
    41. R.Bhasin, N. Barton, E.Grimstad, P. Chryssanthakis, Strength Anisotropic Rocks in the Himalayan Region Geology.1995,40.
    42. Aydan O., Akagi T.& Kawamoto T. The Squeezing potential of rocks around tunnels:Theory and Prediction. Rock Mechnics and RockEngineering 26,1993.
    43. Muirwood, A.M. Tunnels for roads and motorways. Quarterly Journal of Engineering Geology. 1972,5.
    44. Anagnostou A, Lee ES, Kessimian N, et al. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells[J]. Proc Natl Acad Sci,1990,87(15).
    45.陈宗基,康文法.岩石的封闭应力、蠕变和扩容以及本构方程[A].见:第四届国际岩石力学会议文集[C].北京:冶金工业出版社,1985.
    46.何满潮.煤矿软岩变形力学机制与支护对策[J].水文地质工程地质,1997,(2).
    47.W.Wittke,B.Pieran.膨胀岩石中隧道的修建和设计原理[A].见:第四届国际岩石力学会议文集[C].北京:冶金工业出版社,1985.
    48. R.Nuech, F.T.Madsen, W.Steiner. Long time swelling of an hydritic rocks:Mineralogical microstructure evaluation. In:Proc. Of 8th ISRM Congress. A. A. Balkema,1995.
    49.陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1).
    50. A.J.Hendron, Jr.A.K.Aiyer.考虑膨胀性弹塑性介质中圆形隧道周围的应力和应变[J].地下工程,1989.
    51.孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    52.周维恒主编,高等岩石力学,北京:水利电力出版社,1990.
    53.胡玉银,深埋软岩巷道变形围岩几力计算[A],中国青年学者岩土工程力学及应用讨论会论文集[C],1994.
    54.康红普,陆士良.巷道底鼓机理分析[J].岩石力学与工程学报,1991,10(4).
    55.冯紫良,杨林德,李成江.初始地应力的反推原理[J].隧道工程,1983(4).
    56.何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    57. Y. Jiang, H. Yoneda, Y. Tanabashi. Theoretical Estimation of Loosening Pressure on Tunnels in Soft Rocks [J]. Tunneling and Underground Space Technology,2001, Vol.16.
    58. C.Wang, Y.Wang, S. Lu. Deformation Behaviour of Roadway in Soft Rocks in Underground Coal Mine and Principle for Stability Control [J]. Int. J. Rock Mech.& Min. Sci.,2000, Vol.37.
    59.孙钧,汪炳蕴.地下结构有限元法解析[M].上海:同济大学出版社,1986.
    60.孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    61.于学馥,郑颖人,刘怀恒,方正昌.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983.
    62.董方庭,宋宏伟,郭志宏,鹿守敏,梁士杰.巷道围岩松动圈支护理论[J].煤炭学报,1994,(1).
    63.方祖烈.深部围岩力学形态——拉压域特征[A].冯长根.中国科学技术出版社[C].:中国科学技术出版社,2008.
    64.范秋雁.软岩流变地压控制原理[J].中国矿业,1996,(4).
    65.范秋雁.试论软岩支护的理论基础[J].地下空间,1999,(4).
    66.范秋雁,朱维申.软岩最优支护计算方法[J].岩土工程学报,1997,(2).
    67.陆士良,姜耀东.支护阻力对软岩巷道围岩的控制作用[J].岩土力学,1998,(1).
    68.陆士良,汤雷.软岩动压巷道锚杆支护阻力和工作状态的研究[J].煤碳学报,1998,(2).
    69.杜炜平.隧道开挖地质灾害规律及防治对策研究[D].中南大学,2001.
    70.铁路工程地质及路基[M].《成昆铁路》二册.人民出版社.1980.
    71.铁道第二勘察设计院.TB 10003-2005铁路隧道设计规范[S].2005
    72.李晓红,康勇,靳晓光,唐伯明等.浅议复杂条件下深埋长隧涌突水的防治[J].西部探矿,2004,(2)
    73.杨保安,张红军,谢万瑜等.华蓥山隧道西段泄水洞工程及其对治理隧道暴雨涌突水的作用[J].世界隧道,1999(5).
    74.熊学军.大瑶山隧道病害研究及治理[J].中国铁路,1997(10)
    75.莫文卿.成渝高速公路中梁山隧道和缙云山隧道的设计[J].世界隧道,1999,(5).
    76.吴明显.缙云山隧道的施工方法与工程质量控制[J].公路,1994,(9).
    77.万姜林.大瑶山隧道堵水及加固的注浆技术[A].梁炯鋆.科学出版社[C].:科学出版社,1995.
    78.孙立功.花果山隧道断层带施工技术[J].路基工程,2006,(5).
    79.向隆茂.花果山隧道注浆堵水浅析[J].铁道工程学报,1993,(3).
    80.董红元,陈卫东.长梁山隧道的帷幕注浆及衬砌渗漏水的整治[A].崔京浩.《工程力学》期刊社[C].:《工程力学》期刊社,2000:816-817-818.
    81.张旭东.深部岩溶隧道溃水成灾机理及其工程处治技术研究[D].重庆大学:重庆大学,2010.
    82.蒋良文,易勇进,杨翔,陶伟明.渝怀铁路圆梁山隧道桐麻岭背斜东翼岩溶涌水突泥灾害与整治方案比选[J]地球科学进展,2004,19(增).
    83.邢景棠,周盛,崔尔杰.流固藕合力学概述.力学进展,1997,27(1):19-38.
    84.仵彦卿.岩体结构类型与水力学模型.岩石力学与工程学报,2000,19(6):687-691.
    85.刘仲秋,章青.岩体中饱和渗流应力藕合模型研究进展.力学进展,2008,38(5):585-600.
    86.雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989:1-11
    87. Snow D T.Anisotropic permeability of fractured media. Water resources research,1969, 5(6):1273-1289.
    88.荣冠,周创兵,王恩志.裂隙岩体渗流张量计算及其表征单元体积初步研究.岩石力学与工程学报,2(X)7,26(4):741-746
    89.江涛.基于细观力学的脆性岩体损伤-渗流藕合本构模型研究[D].南京:河海大学,2006.
    90. Noorishad J., Ayatollahi M S, WithersPoon P.A.ete. Afinite-element method for coupled stress and fluid flow analysis in fractures rock masses. Int J Roek Mech Sci Geomech Abstrs,1982, 19(4):185-193.
    91.杨根兰.蚀变岩特性及其工程响应研究-以澜沧江小湾水电站为例[D].导师:黄润秋.:成都理工大学,2007.
    92.地质部南岭项目花岗岩专题组编.中华人民共和国地质矿产部地质专报3岩石、矿物、地球化学第10号南岭花岗岩地质及其成因和成矿作用.北京市:地质出版社,1989.02.
    93.莫柱孙著.南岭花岗岩地质学.北京市:地质出版社,1980.
    94. ltasca Consulting Group, Inc.USA.FLAC-3D. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0, User's Manual,1987.
    95.谢和平,陈忠辉.岩石力学.北京:科学出版社,2004.
    96. Dougill J W. Lau J C and Burt N J. Mechanics in Eng. ASCE. EMD.1976:222-355.
    97. Dragon A and Mroz Z. A continuum model for plastical behave of rock and concrete. Int. J. Engineering science,1979,17:121-137.
    98. Krajeinovic D, Silva M A G. Statistical aspects of the continuous damage theory. Int. J. Solids Structures,1982,18 (7):551-562.
    99. #12
    100. #12
    101. Lemaitre J.1984. How to use damage mechanics. Nuclear Engineering and Design Journal. Vol.80.
    102. Janson J and Hult J. Fracture mechanics and damage mechanics, a combined approach. J. de Mech. Appl.,1977,1(1),59-64.
    103. Leckie F A, Onat E T.1980. Tensorial nature of damage measuring internal variables. In:Hult J, Lemaitre J. ed. Proc. IUTAM Symp. On Physical Non-linearties in Structural Analysis.Springer-Verlag.
    104. Chaboche J. L, Continuum Damage Mechanics Part I-General Concepts, J. of Applied Mechanics, 55(1988)59-63.
    105. Murakami S.1986, Anisotropic damage in metals, Failure Criteria of Structured Media, Ed. Boehler, J.-P., Rotterdam.
    106. Murakami S, Ohno N.1981. A Continuum theory of creep and creep damage. In:Ponter A R S, Hayhurst D R, ect. Creep in Structures, Berlin:Springer,422-444.
    107. Murakarni S, Sanomura Y.1986. Analysis of the coupled effect of plastic damage and creep damage in Nimonic 80A at finite deformation. Engng fracture Mech.,17.
    108. Krajcinovic D., Creep of Structures-A Continuous Damage Mechanics Approach, J. of Structure Mechanics,11(1),1983,1-11.
    109. Krajcinovic D., Fonseka G. U., The Continuous Damage Theory of Brittle Materials, PartⅠ、Ⅱ, J. Applied Mechanics Trans. Of ASME,48(1981)809-824.
    110. Krajcinovic D., Constitutive Equations for Damage Materials, J. of Applied Mechanics,50(1983), 355.
    111.曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究.岩石力学与工程学报,1998,17(6):628-633.
    112.刘齐建,杨林德,曹文贵.岩石统计损伤本构模型及其参数反演.岩石力学与工程学报,2005, 24(4):616-621.
    113.谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    114.曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187.
    115.韦立德.岩石力学损伤和流变本构模型研究.南京:河海大学博士论文,2003.
    116.曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修正方法之研究.岩石力学与工程学报,2005,24(14):2403-2408.
    117.曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究.湖南大学学报(自然科学版),2005,32(1):43-47.
    118.徐志英.岩石力学[M].水利电力出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700