用户名: 密码: 验证码:
活性炭纤维负载二氧化钛光催化剂的制备及性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空气质量对人们的生活和工作质量有着重要影响,有机污染物是室内空气中重要的污染源,因为甲醛、甲苯、二甲苯和VOC等是致癌物质,室内空气中有机污染物的超标将严重危害室内人员的健康,研究室内空气的有效净化与控制技术十分必要。
     目前,纳米TiO_2光催化技术和活性炭吸附净化技术作为净化手段,由于各自的优缺点,将两者结合起来将是室内空气净化中最具前景的技术之一。本研究采用结合理论分析和实验验证方法,对纳米TiO_2协同活性炭纤维降解室内空气中的有机污染物的效果进行了评价。采用溶胶-凝胶法和超临界流体干燥技术制成了TiO_2/ACF复合材料,在自行设计的光催化反应仓中,以甲醛为目标污染物,系统地研究和评价了各参数对TiO_2/ACF复合材料去除有机污染物性能的影响,并结合SEM和XRD技术,分析复合材料表面相貌和晶相结构,确定了TiO_2/ACF制备的最佳条件。以GC-MS联用技术检测了鉴定了复合材料对甲苯和二甲苯去除过程中所产生的中间产物的存在和种类。其研究结果和创新的学术思想如下:
     (1)在溶胶-凝胶制备过程中,采用超临界干燥技术,制得了具有典型气凝胶特点的二氧化钛。从而强化了TiO_2/ACF复合材料的功能。通过扫描电镜(SEM)观察,其粒径大小均匀,尺寸均在40-50nm范围内,空隙率大,具有网络结构。在自然光下为乳白色半透明块状固体,比表面积在500 m~2/g以上。
     (2)TiO_2醇凝胶被浸渍到活性炭纤维毡(ACF)内,使ACF的每根纤维上均匀负载TiO_2醇凝胶,将负载TiO_2凝胶的ACF放入低温环境下陈化,然后置于超临界干燥器中进行干燥。通过SEM观察,活性炭纤维毡的每根纤维表面上都载有TiO_2,且呈“蛋壳”型分布,其厚度可通过浸渍后的离心时间来控制,同时在相邻纤维之间留有一定的空隙,有利于紫外光的透射。该“蛋壳”型分布,活性组分主要分布在载体的外表面上。这种分布对快速反应较为有利,能提高反应的选择性。这种技术路线设计新颖,具有创新性。
     (3)将TiO_2/ACF置于真空下煅烧,使处于无定形态的TiO_2向锐钛矿相和金红石相转变ACF,在450℃时保温2小时。XRD图谱表明,此时TiO_2处于混晶形态,即锐钛矿型TiO_2和金红石型相混合的形态。金红石与锐钛矿晶型的比例基本与P25相一致。
     (4)模拟试验结果表明,以甲醛为为目标污染物,在波长为245nm的紫外光照射下,经超临界干燥的TiO_2/ACFsd的光催化降解效果好于普通干燥方法制得的TiO_2/ACFnd的效果,当然也好于ACF的单独使用。这是由于负载了具有三维多孔的网络结构的块体材料的光催化剂(TiO_2/ACF sd),还具有较大的孔径和空隙率,有利于有机物分子的内扩散和紫外光能的透射,当紫外光照射时激发的空穴量高,参与氧化反应的活性点位增多,提高了光催化效率。
     (5)试验结果表明,当甲醛浓度较高时,负载量越大,降解速度越快;而当污染物甲醛浓度较低时,负载量对污染物的降解率影响不明显。适当的负载量可以加大比表面积,光催化剂的比表面积(BET)大小顺序为:TiO_2/ACF-388>TiO_2/ACF-88>ACF>TiO_2/ACF-254>TiO_2/ACF-546>TiO_/ACF-788。同时仅一次负载即可达到较大的负载量,简化了操作工艺。
     (6)在光催化剂使用寿命的试验结果表明:可以重复使用而不降低使用效果。经过5次充分使用后,其光催化效果好于市售(BUY)。
     (7)由于优化了光催化剂的分布及其与载体的接合关系,成功的实现了ACF的吸附作用与TiO_2的光催化作用的协同效应。在控制其他污染物方面,TiO_2/ACF光催化剂的降解效果也非常显著。以VOCs为目标污染物,TiO_2/ACF在紫外光的作用下,对VOCs的降解率远远高于ACF的单独作用。以甲苯和二甲苯为目标污染物时,TiO_2/ACF光催化剂对甲苯和二甲苯的降解效果非常好,并且甲苯好于二甲苯。
     (8)经过色谱一质谱分析,光催化甲苯与二甲苯过程产生的中间产物可能是:
     (9)制备的TiO_2/ACF复合材料,除具有优越的吸附和降解室内有机污染物的功能以外,还兼有显著的消毒灭菌作用。
     本课题旨在研究TiO_2/ACF的制备及其光催化性能,其研究结果为净化室内空气污染物提供了新的有效途径,对提升人类生活质量和保证环境安全有着重要意义。
Anatase-type Titanium dioxide (TiO_2)has attracted much attention for its potential application in decomposition of various environmental pollutants in both gaseous and liquid phases. The photocatalytic degradation systems using fine TiO_2 powder under UV irradiation have been widely investigated . However, separation of the fine TiO_2 powder from the solution after degradation is time consuming and costly . Development of TiO_2 photocatalysts anchored on supporting materials with large surface areas, by which dilute polluted substances could be condensed, would be of great significance, not only to avoid the disadvantages of filtration and suspension of fine photocatalyst particles, but to lead to high photodecomposition efficiency . Recently, supported TiO_2 photocatalysts on various porous materials were prepared by a pasting treatment,a sol-gel method,or an ionized cluster beam (ICB) method.
     Activated carbon fibers (ACFs) are one kind of highly microporous carbon materials, having a larger pore volume and a more uniform micropore size distribution than granular activated carbons. Generally, activated carbon fibers are considered to have larger adsorption capacity and greater rates of adsorption and desorption process than granular activated carbons. However, so far there have been only a few reports to study preparation methods and applications of activated carbon fibers supported TiO_2 photocatalysts. Reported methods of depositing TiO_2 photocatalysts on ACFs include an ionized cluster beam , an impregnation method , and a coating treatment by loading commercial TiO_2 powder on ACFs with polymer binders. Precipitation of titania coating on microporous carbon surface by a molecular adsorption-deposition method was once studied by Matsumoto et al.to modify carbon surface to improve its adsorptive properties for gases. In this paper, this method will be introduced as a new way to prepare ACFs supported TiO_2 photocatalyst with the expectation of combining the effects of high adsorption capacity of ACFs and photocatalytic reactivity of anatase-type TiO_2.
     In the present study, the preparation of activated carbon fibers supported TiO_2 photocatalyst and its characterization are addressed in detail. The effective photocatalytic reactivity of the photocatalyst produced has been demonstrated by its photocatalytic degradation of volatile organic compounds in air.
     Activated carbon fibers (ACFs) supported TiO_2 photocatalyst was successfully prepared by an sol-gel , soakage-adsorption and supercritical fluid dry method followed by calcination in vaccum.The amount of deposited TiO_2 could be adjusted by controlling the centrifugal time. Titanium dioxide was found to be loaded on almost all carbon fibers. And a combination( TiO_2/ACFsd) had aerogel properties be obtained.
     The photocatalyst developed was characterized by SEM, XRD, BET surface area. SEM observation showed the particles of TiO_2 are uniform with an average size of about 40nm ,and TiO_2 was deposited on almost each carbon fiber ,and the space between adjacent fibers was remained unfilled after coating , to allow UV light to penetrate into the felt-form photocatalyst to a certain depth, to form a three-dimensional environment for photocatalytic degradation. BET surface area of TiO_2 aerogol was above 500m~2/g,however , BET surface area of TiO_2 xerogel was only 0.1828 m~2/g.And after the supercritical fluid CO_2 dry and calcination process, TiO_2/ACFsd could have large BET surface area, BET surface area of TiO_2/ACF-388 could be up to 1604.2 m~2/g,was higher than ACF's. As confirmed by XRD examinations, after TiCVACFsd was calcined at temperature 450℃in vaccum stove,Tight contact of thin TiO_2 coating to carbon fibers surfaces was supposed to transformation from anatase to rutile-form, and to keep high crystallinity and rate of anatase. All those exhibited the very good photocatalytic actvity of TiO_2/ACFsd, and make it very suitable for configurating an efficient photoreactor for purification of polluted water and air.
     The comparative experiments indicated the photocatalyst prepared had a combined effect of photocatalytic reactivity of TiO_2 with adsorptive property of activated carbon fibers. After the supercritical fluid CO_2 dry and calcination process, ,the photocatalytic activity of TiO_2/ACFsd was higher than TiO_2/ACFnd that was prepared on normal dry condition. Moreover, it can be used repeatedly without any deline as confirmed by photodegradation of formaldehyde indoor air. In addition, For the photocatalytic degradation of other organic pollutants , toluene, dimethylbenzene and VOCs , the photocatalytic activity of TiO_2/ACFsd was also effective.
     Therefore, the combination of photocatalytic activity of TiO_2 and ACF was effective for degration organic pollutants in air.
引文
[1] 李坚,邱坚.新型木材.无机纳米复合材.科学出版社.2005.
    [2] 徐丹,钱敏,袁惠新.室内空气污染及净化[J].化工装备技术.2002,23(5):52-56.
    [3] 李连山,马春莲,陈寒玉.室内甲醛污染的分析调查[J].环境科学与技术,2002,25(3):45
    [4] 封跃鹏,张太生.室内空气污染概述[J]环境监测管理与技术,2002,14(3):17-20.
    [5] 宋广生编,室内空气质量标准解读,北京,机械工业出版社,2003.
    [6] 李肩东,袁顺庆,庞亚芳等.挥发性有毒化学品的催化燃烧法处理[J].环境化学,1991,10(4):6-11.
    [7] 李琳,刘俊新.挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J].环境污染治理技术与设备,2001,2(5):41-47
    [8] 程琰,尹华强等.多孔碳材料在室内空气污染控制中的应用[J].林产化学与丁业,2004,24(2):92-96
    [9] 李守信,金平,张文智等.采用活性炭纤维吸附装置回收VOC的优点分析[J].化工环保,2004,24:274-276
    [10] 李泽清.含VOC废气的回收净化工艺[J].环境工程,2003,21(5):38-39
    [11] 黄正宏,康飞宇,杨骏兵等.活性炭纤维对挥发性有机物的吸附及其等温线的拟合[J].离子交换与吸附,2001,17(6):487-493
    [12] 高立新,陆亚俊.室内空气净化器的现状及改进措施[J].哈尔滨工业大学学报,2004,36(2):199-201
    [13] URASHIMA K,CHANG J S. Removal of Volatile Organic compounds from air streams and industrial flue gases by non-thermal plasma technology [J]. IEEE Transaction on Industry Applications, 1992,28(3):528-534.
    [14] 朱天乐.室内空气污染控制[M].化学工业出版社,2003.
    [15] 李佑稷,李效东等.纳米Ti02复合材料的研究进展[J].材料科学与工艺,2006,14(3):282-286
    [16] Fujishima A, Honda K.Electrochemical Photolysis of Water at a Semiconductor Electode[J]. Nature, 1972,238(1):37-38
    [17] Fank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phy. Chera, 1977,81:1484-1488
    [18] Carey J H,Lawrence J, Tosine H M. Photodechlorination of PCBps in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam,Toxicol., 16 (6): 697-701
    [19] Fox MA, Dulay M T. Heterogeneous photocatalysis. Chem.Rev., 1993,93:341-357
    [20] Chatterjee Debabrata,Dasgupta Shimanti. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem.Photobiol. C: Photochera Re.,2005,6(2-3):186-205
    [21] 韩兆慧,赵华侨.半导体多相光催化应用研究进展.化学进展,1999,11:1-10
    [22] Robert D, Malato S. Solar photocatalysis: A clean process for water detoxification. Science of the Total Environment, 2002,291:85-97
    [23]韩世同,习海玲等.半导体光催化研究进展与展望.化学物理学报.2003,16,339-349
    [24] Mills A, Hunte S L,J. Photochem.Photobiol.: A: Chem., 1997,108,1
    [25] Kayano S, Kikuchi Y, Hashzmoto K,Fujishima A,Environ. Sci. Tech.,1998,32(5),726-728
    [26]藤屿昭,机能材料,1998,18(9),29
    [27] Harada K,Hisanaga T,Tanaka K,Water Res.,1990,24(11),1415-1417
    [28]方明豹,徐劲锋,俞建群.杀菌功能陶瓷[J].上海建材,,2000,(1):14-15
    [29]#12
    [30] Wang R, Hashimoto K,Fujishima A, et al,Nature, 2000,388,431
    [31] Subramanjan V, Wolf E, Kamat PV, J. Phys. Chem. B, 2001,104(46), 11439-11446
    [32]方世杰,徐明霞,黄卫友等.纳米TiO_2光催化降解甲基橙.硅酸盐学报,2001,29(5):439-442.
    [33]高镰,郑珊,张青红.纳米耳氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [34] Miyauchi M, Nakajima A, Fujishima A. Photoinduced Surface Reactions on TiO_2 Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity, Chemistry of materials,2000,12(1):3-5.
    [35] Schwitzgebel J, Ekerdt J q Gerischer H, Heller A, J. Phys. Chem., 1995,99(15): 5633-5638.
    [36] Onishi H, Aruga T, Egawa C, Iwasawa Y, Surf. Sci., 1988,193:33
    [37] Rothenberger G,Moser J,Gratzel M, Serpone N, Sharma D K, J.Am.Chem.Soc.,1985, 107:8054
    [38] Gerischer H.Electrochim Acta.,1993,38:3
    [39] Wang C M, Heller A, Gerischer H.J.Am.Chem. Soc., 1992,114:5230
    [40] Linsebigler A L,Lu G,Yates J T, Chem.Rev.,1995,95(3): 735
    [41] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Phatochem.Rev., 2000(1),1:1-21
    [42]Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes[J]Journal of SotarEngineering,I997,119(3):101-107
    [43] R. S. Sonawane S. G Hegde, M. K.Dongare. Preparation of titanium (Ⅳ) oxide thin film photocatalyst by solgel dip coating. Materials Chemistry and Physics, 2002,77:744-750
    [44] M. Langlet,A. Kim,M. Audier, J. M. Herrmann. Sol-Gel Preparation of Photocatalytic TiOz Films on PolymerSubstrates. J. Sol-Gel Scie.&Tech., 2002,25:223-234.
    [45] 陈士夫,赵梦月,陶跃武,梁新,环境科学,1996,17(4)}33-35
    [46] Mattews R W. Water Res,1990,24(5):653
    [47] 赵进才,张丰雷.二氧化钦微粒存在下表面活性剂光催化分解机理的研究,感光科学与光化学,1996,14(3):269-273
    [48] 周晓谦,周文淮.纳米二氧化钛的光催化特性及应用进展,辽宁化工,2002,30(10):448-451.
    [49] Tanaka K,Capule M F V, H isanaga T. Effect of crystallinity of TiO_2 on its photocatalytic action.Chem.phys.Lett.,1991,187 (i-2):73-76
    [50] Linsebigler A L,Lu G Q, Yates J T. Photocatalysis on TiO_2Surfaces: Principles, Mechanisms,and Selected Results. Chem.Rev,1995,95:735-758
    [51] 沈伟韧,赵文宽,贺飞等。TiO_2光催化反应及其在废水处理中的应用.化学进展,1998,10(4):349-361
    [52] Bickley I B,Gonzalez-Carreno T, Lees J S, et al.A structural investigation of titanium dioxide photocatalysts. J,Solid. State. Chem.,1991, 92:178-190
    [53] Bacsa R R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid.Appl.Catal.B: Environ.,1998,16:19-29
    [54] Zhang Z, W ang C C, Zakaria Ret al. Role of particle size in nanocrystalline TiO_2-based photocatalysts. J. Phys.Chem: B,1998,102:10871-10878
    [55] Zhang Q H, Gao L,Guo J K.Effects of calcination on the photocatalytic properties of nano sized TiO_2 powders prepared by TiCl_4 hydrolysis. Appl. Catal. B: Environ., 2000,26:207-215
    [56] Maira A J, Yeung K L, Soria J, Coronado J M, Belver C, Lee C Y, Augugliaro V. Gas-phase photo-oxidation of toluene using nanometer-size Ti02 catalysts. Appl. Catal. B: Environ., 2001,29:327-336
    [57] 王琨,李文朴等.室内空气污染及其控制措施的比较研究[J].哈尔滨工业大学学报,2004,36(4):493-196.
    [58] Bickley R, Gonzalea-Carreno T ,Lees J, J. Solid State Chem.,1991,92:178
    [59] Serpone N, Law less D, Khairutdinov R, Eizo P. Subnanosecond relaxation dynamics in TiO_2 colloidal sols (particle sizes Rp=1.0-13.4 nm).Relevance to heterogeneous photocatalysis. J. Phys. Chem., 1995, 99:16655-16661
    [60] Furube A, A sah i T, M asuhara H, et al. Charge carrier dynamics of standard TiO_2 catalysts revealed by Femtosecond Diffuse Reflectance Spectroscopy. J. Phys. Chem: B, 1999,103:3120-3127
    [61] Chang H.T., Wu N.M., Zhu F.Q., A kinetic model for photocatalytic degradation of organic contaminants in a thin-film Ti02 catalyst [J]. Wat Res, 2000,34:407-416.
    [62] Ding Z., Hu X.J., Yue P.L., Lu COQ., Greenfield PR, Synthesis of anatase TiO_2 supported on porous solids by chemical vapor deposition [J]. Catal Today, 2001,68:173-181.
    [63] 张立德,牟季美.纳米材料和纳米结构[M],科学出版社,北京,2001
    [64] 古尾谷逸生.表面(日),1977,5(4):32
    [65] 贺飞,唐怀军,赵文宽等.纳米Ti02比催化剂负载技术研究[J].坏境污染治理技术与设备,2001,2(2):47-58
    [66] Yuan R S,Guan R B,Shen W Z, et al.Photocatalytic degradation of methylene blue by a combination of TiO_2 and activated carbon fibers[J].J.Colloid.Interf.Sci.,2005, 282: 87-91
    [67] 李发堂,赵地顺.溶胶-凝胶法合成纳米TiO_2粉体的研究进展[J].材料导报,2006,20:64-66
    [68] Waldner G, Pourmodji M, M. Bauer M, et al.Photoelectrocatalytic degradtion of 4-chlorophenol and oxalicacid on titanium dioxide electrodes[J]. Chemosphere, 2003, 50(8):989-998
    [69] 赵文宽,周磊,刘昌等.液相沉积法制备光催化活性TiO_2薄膜和纳米粉体[J].化学学报,2003,61(5):699-704
    [70] 张万忠,乔学亮,陈建国.光催化纳米材料的制备与光催化活性[J].化学通报,2005,11: 839.844
    [71] 胡昌义,李靖华.化学气相沉积技术与材料制备[J].稀有金属,2001,25(5):364-367
    [72] Kim Y Yoon M.Ti02/y-Zeolite encapsulating intramolecular charge transfer molecules:a new photocatalyst for photoreduction of methyl orange in aqueous medium[J]. Journal of Molecular Catalysis A:Chemical, 2001, 168: 257-263
    [73] 徐纯芳,黄妙良,程应汉.沸石分子筛负载纳米TiO_2的研究进展[J].矿产保护与利用,2004.5:21-25
    [74] Lei L, Patricia A Q, Detlef R U K. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J]. Carbon, 2002,40:2085-2100
    [75] Monneyron P, Manero M H, Foussard J N, et al.Heterogeneous photocatalysis of butanol and methyl ethyketone characterization of catalyst and dynamic study[J].Chem. Engin. Scien., 2003, 58:971-9780
    [76] Hisanaga T,Tanaka K.Photocatalytic degradation of benzene on zeolite incorporated TiO_2 film[J].J.Hazard. Mater.,2002. 93: 331-337
    [77] Ichiura H, Kitaoka L Tanaka H. Removal of indoor pollutants under UV irradiation by a composite TiO_2 zeolite sheet prepared using a papermaking technique[J]. Chemosphere, 2003,50:79-83
    [78] 吴平霄,明彩兵.丝光沸石/TiO_2复合体的特征及对甲苯光催化降解研究[J].矿物岩石,2005,25(1):1-5
    [79] 蒋引珊,金为群,张军,等.TiO_2/沸石复合物结构与光催化性能[J].无机材料学报,2002,17(6):1301-1305
    [80] 郊珊,高濂,郭景坤.TiO_2在MCM-41内表面单层及双层分散的结构表征[J].无机材料学报.2001,16(1):9-102
    [81] 戴清,路青娥,翁葵平,等.载钛中孔二氧化硅分子筛的光催化性能[J].催化学报,1999,20(3):313-316
    [82] 邱坚,李坚.超临界制备木材-SiO_2气凝胶复合材料及其纳米结构.东北林业大学学报,2005,33(3):3-4.
    [83] Arafia J, Dofia-Rodr, Iguez J M, Cabo C Q et al.FTIR study of gas. phase alcohols photocatalytic degradation with TiO_2 and AC/TiO_2[J].Appl. Catal. B: Environ., 2004, 53: 221-232
    [84] Tao Y,Wu C Y, Ma D W. Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration[J].Chemosphere, 2006,65:35-42
    [85] 员汝胜,郑经常,关蓉波.活性炭纤维负载TiO_2薄膜的制备及对亚甲基蓝的光催化降解[J].精细化工,2005,22(10):748-751
    [86] Yuan R S, Guan R B,. Zheng J Y Effect of the pore size of TiO_2 loaded activated carbon fiber on its photocatalytic activity[J]. Scripta Materialia, 2005, 52(12):1329-1334
    [87] 胡春,王怡中,汤鸿霄.表面键联型TiO_2-SiO_2固定化催化剂的结构及催化性能[J].催化学报,2001,22(2):185-188
    [88] 杨骏,游卓亚,唐渝,张渊明.低温水热法制备硅胶负载型二氧化钛催化剂[J].化学研究与应用, 2007,19191:1041-1044
    [89] 钟俊波,沈呈,徐锁洪.硅胶负载TiO_2光催化降解吡啶[J].重庆坏境科学,2003,25(12):20-21
    [90] 张庆轩,张龙力,杨普江等.负载型纳米TiO_2的制备及其催化活性研究[J].化工新型材料,2006,34(1):54-56
    [91] Zou L D, Luo Y G M. Hooper M, et al.Removal of VOCs by photocatalysis process using adsorption enhanced TiO_2-SiO_2 cata]yst[J].Chem. Engin. Proce., 2006, 45: 959-964
    [92] E Obuchi, T Sakamoto, K Nakano,et al.Photocatalytic decomposition of acetaldehyde over TiO_2/SiO_2 catalyst[J]. Chem. Engin. Sci..1999,54:1525-1530
    [93] 陈金嫒,彭图治,肖燕风.高效二氧化钛/膨润土复合材料的制备及光催化性能研究[J].化学学报,2003,61(8):1311-1315
    [94] 刘勋,栾亚兰,刘恒等.纳米TiO_2/天然矿物复合光催化材料的制备[J].矿产综合利用,2004.1:10-14
    [95] 西方聪,西村智明,北野功.污染物质除去用。光触媒.日本:公开特许公报,平9257096 1997203204.
    [96] 黄正宏,许德平,康飞宇,郝吉明.炭与TiO_2光催化剂的复合及协同作用研究进展.新型碳材料.2004,19:229-238
    [97] Herrmann J M,Tahiri H, Guillard C, et al. Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water. Cata.l Today ,1999,54:131-141
    [98] TSLTKASA T, NORIHIKO T,YONEYAMA H.Effiet of activited carbon cintention TiO_2 loaded actibited carbon on photodegradation behaviors of dichloroimethane[J].J Photobio Photochem A Chem,1997,103(3):153-157
    [99] 古政荣,陈爱平,戴智铭等.活性炭-纳米二氧化钛复合光催化空气净化网的研制[J].华东理工大学学报,2000,26(4):367371
    [100] 侯一宁,王安,王燕.二氧化钛-活性炭纤维混合材料净化室内甲醛污染[J].四川大学报(工程科学版).2004,36(4):41-44
    [101] 胡将军,李英柳,彭卫华.吸附-光催化氧化净化甲醛废气的实验研究[J].化学与工程,2004,(1):39-41
    [102] Takeda N, Ohtani M, Torimoto T, Kuwabata S, Yoneeyama H. Evaluation of Diffusibility of Adsorbed Propionaldehyde on Titanium Dioxide-Loaded Adsorbent Photocatalyst Films from Its Photodecomposition Rate. J. Phys. Chem. B,1997,101:2644-2649.
    [103] Ooka C, Yoshida H, Suzuk K, Hattori T. Effect of surface hydrophobicity of TiO_2-pillared clay on adsorption and photocatalysis of gaseous molecules in air. Appl.Catal. A Gen., 2004,260:47-53
    [104] Ooka C, Yoshida H, Horio M, Suzuk K, Hattori T. Adsorptive and photocatalytic performance of TiO_2 pillared montmorillonite in degradation of endocrine disrupters having different hydrophobicity. Appl. Catal. B:Environ., 2003,41:313-321
    [105] Tatsuda N, Fukushima Y, Wakayama H. Penetration of titanium tetraisopropoxide into mesoporous silica using supercritical carbon dioxide. Chem.Mater., 2004,16:1799-1805
    [106] Tatsuda N, Itahara H, Setoyama N, Fukushima Y Preparation of titanium dioxide/activated carbon composites using supercritical carbon dioxide. Carbon, 2005,43:2358-2365
    [107] Sonawane, R.S.; Hegde, S.G; Dongare, M.K.Preparation of titanium(Ⅳ) oxide thin film photocatalyst by sol-gel dip coating [J].Materials Chemistry and Physics 2003,77(3):744-750
    [108] Takeda N, Torimoto T, Sampath S. Effect of inert supports for titanium iioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J. Phys. Chem.,1995,99:9986-9991
    [109] 张彭义,余刚,蒋展鹏.固定化二氧化钛膜的制备及其光催化性能.中国环境科学,2000,20(5):436-440
    [110] Negishi N, Takeuchi K,Ibusuki T. The surface structure of titanium dioxide thin film photocatalyst. Appl.Surf. Sci.,1997,121/122:417420
    [111] Byrne J A, Eggins B R, Brown N M D, et al.Immobilisation of TiO_2 powder for the treatment of polluted water. Appl. Catal.B:Environm.,1998,17:25-36
    [112] 古政荣,陈爱平,戴智铭等.空气净化网上光催化剂和活性炭相互增强净化能力的作用机理[J],林产化学与工业2000,20(1):6-10
    [113] Yamashita H, Harada M, Tanii A, et al. Preparation of efificient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purification of water. Catal. Today,2000,63:63-69
    [114] Zhe D, Hu X J, Po L Yue, et al. Synthesis of anatase Ti02 supported on porous solids by chemical vapor deposition. Catal. Today, 2001,68:173-182
    [115] Kang M, Lee J H, Lee S H. Preparation of TiOZ film by the MOCVD method and analysis for decomposition of trichloroethylene using in situ FT IR spectroscopy. J. Mol.Catal. A: Chem,2003,193:273-283
    [116] 陈孝云,刘守新,陈曦.活性炭修饰对TiO_2形念结构及光催化活性的影响[J].应用化学,2006,23(11):1218-1222
    [117] 王金鹤,黄丽华,薛华欣等.TiO_2薄膜光催化氧化降解苯的研究[J].复旦大学(自然科学版),2004,43(6):628-631
    [118]Yuan R S,Guan R B,Zheng J Y.Effect of the pore size of TiO_2 loaded activated carbon fiber on its photocatalytic activity[J]. Scripta Materialia, 2005, 52(12): 1329-1334
    [119] 张建臣,郭坤敏,马兰,等.Ti02/AC复合光催化剂对苯和丁醛的气相光催化降解机理[J].催化学报,2006,27(10):853-856
    [120] J. Matos, J. Laine, J. M. Herrmann. Synergy effect in the photocatalytic degradation of phenol on suspended mixture of titania and activated carbon[J].Appl.Catal.B:Environ..1998.18:281-291
    [121] Matos J, Laine J,Herrmann J M.Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV irradiated titania[J]. Catal.,2001,200:10-20
    [122] 崔鹏,范益群,徐南甲,等.TiO_2负载膜的制备、表征及光催化性能[J].催化学报, 2000,21(5):494496
    [123] LiuXue Zhang, Peng Liu, ZhiXing Su. Photocatalysis anatase thin film coated PAN fibers prepared at low temperature. Materials Chemistry and Physics. 2006,98(1):111-115
    [124] 唐玉朝等.TiO_2光催化剂反应机理及动学研究[J].化学进展,2002.14(3):192-199
    [125] 贺集诚一郎.超微粒子[[J].表面,1998,26:27-29
    [126] 陆银兰,杨建.ACF负载纳米TiO_2化室内甲醛的应用研究[J].广西纺织科技.2004,33(4):35-37
    [127] 许德平,黄正宏等.活性炭纤维布担载纳米TiO_2的三种方法团.炭素技术.2004,2(23):
    [128] 徐昌曦,曾凡龙,黄永秋等.光催化再生粘胶基活性炭纤维研究[[J].合成纤维工业.2003,26(6):24-26
    [129] Chatterj ee M, Hayashi H, Saito N. Role and effect of supercritical fluid extraction of template on the Ti(Ⅳ) activesites of Ti-MCM-41[J]. Microporous and Mesoporous Materials, 2003, 57(2):143-155
    [130]Li Y J,LiX D,.Li J M et al.Photocatalytic degradation of methyl orange in a sparged tube reactor withTi02 corned activated carbon composites[J]. Catalysis Communications, 2005, 6(10):650-655
    [131] Lu M C, Chen J N, Chang K T. Effect of adsorbents coated with titanium dioxide on the photocatalytic degradation ofpropoxur[J]. Chemosphere,1999, 38(3): 617-627
    [132]Matosa J, Laine J, J-M Herrmann. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture oftitania and activated carbon[J]. Appl.Catal.B: Environ., 1998,18:281-291.
    [133]刘守新,陈曦,陈孝云等.Ti02/活性炭的协同作用机理[J].化学通报,2006,69(2):15-23
    [134] Ingaki M.,Hirose Y, Matsunaga T et al. Carbon coating of anatase type Ti02 through their precipitation in PVA aqueous solution[J]. Carbon, 2003,41:2619-2624
    [135] Tyrab T. Morawski A W, Inagaki M. A new route for preparation of TiO_2 mounted activated carbon[J]. Appl. Catal. B: Environ., 2003, 46: 203. 208
    [136]高伟,吴风清,罗臻等.TiO_2晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22(4):660-662.
    [137]Crepaldi BL, Soler-Illia GJdeAA, Grosso D, Cagnol F, Ribot F, Sanchez C, Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO_2,Journal of the American Chemical Society, 2003,125(32): 9770-9786.
    [138]He X, Antonelli D; Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves, Chemie-International Edition, 2002,41(2):214-229.
    [139]Li DL, HZ, Honma I, Design and synthesis of self-ordered mesoporous nanocomposite through controlled insitu crystallization, Nature Materials, 2004,3:65-72.
    [140]Soler-Illia GJdeAA, Sanchez C, Ixbeau B, Patarin J, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and nierarchical structures, Chemical Reviews,2002,102 (Ⅱ); 4093-4138.
    [141]Yang PD, Zhao DY, Margolese DI,Chmelka BF, Stocky GD, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature,1998,396:152-155.
    [142]Galinda C, Jacques P, Kalt A, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H_2O_2,UV/TiO_2 and VIS/TiO_2,Journal of Photochemistry and Photobiology A:Chemistry, 2000,130:35-47.
    [143]郑旭煦等,活性炭负载纳米TiO_2光催化降解性能研究,化学研究与应用,2006(18)284-287
    [144] Army L L,Guangquan Lu, John T Y, Chem.Rev.,1995,95,735-758
    [145] SauerM L,Ollis D Fet al.,J.Catal.,1996,163:215
    [146]朱炳辰,翁惠新等,催化反应工程IM],北京:中国石化出版社,200l,125—128
    [147] Cao L,Gao Z et al.,J.Catal., 2000,196(2): 253
    [148] Ameem M M,Raupp G B et al.,J.Catal.,1999,184(1):112
    [149] Martra q Coluccia S et al., Catal. Today, 1999,53(4):695
    [150] Darrin S, Muggli J et al., J. Catal., 2000,191:318
    [151] Philips L A,Raupp G H et al., J. Mol.Catal., 1992, 77:297
    [152] Anpo M et al.Bull. Chem.Soc.,1994,64:54
    [153] Paz Y, Luo Z et al., J. Mater. Res., 1995,10(11):2842
    [154] Paz Y, Heller A et al.,J. Mater. Sci., 1989,24(1):243
    [155] Kim J S, Joo H K et al., J. Catal., 2000,194(2): 484
    [156]曾庆冰,李效东,陆逸.溶胶-凝胶法基本原理及其在陶瓷材料中的应用.高分子材料科学与工程,1998,14(2):138-143.
    [157]黄剑锋.溶胶-凝胶原理和技术.北京:化学工业出版社,2005.
    [158] Nobuaki Negishi, Koji Takeuchi. Preparation of TiOz Thin Film Photocatalysts by Dip Coating Using a Highly Viscous Solvent, J. Sol-Gel Sci. Tech., 2001,22:23-31.
    [159] Xue Ping Li, Jing Bo Zhang, Fen Yin, Yuan Lin, Xu Rui Xiao, Preparation and Photocatalytic Characterization of Nanoporous TiOz, Chinese Chemical Letters, 2002,13(9): 891-892.
    [161]朱洪法编,催化剂载体制备及应用技术,石油工业出版社,2002,北京
    [162]Delmon.Prep.Of Catal.(Ⅲ),Amsterdam,1978
    [163]Ferelonov V B.Prep.Of Catal.(Ⅱ),Amsterdam,1979
    [164]朱天乐,郝吉明.室内空气污染控制[M].北京:化学工业出版社.2002年
    [165]郝吉明,马广大等编著.大气污染控制工程[M].北京:高等教育出版社.2002年
    [166]于向阳,梁文,程继建,提高二氧化钛光催化性能的途径,硅酸盐通报,2000,19(1):53-57
    [167]何建波,张鑫,魏风玉等,TiO_2薄膜晶相组成对苯胺光催化降解的影响,应用化学,1999,16(5):1437-1440
    [168] Fu X, Walter A Z, Marc A A. The Gas. phase photocatalytic mineralization of benzene on porous titania.based catalysts[J]Appl Catal B: Environmental, 1995,6:209-224
    [169] L.Chen,J.Zhu,Y.M.Liu,Y.Cao,H.X.Li,H.Y.He,W.L.Dai,K.N.Fan, J. Catal.A255 (2006)260
    [170] Einaga H, Futamura S I, busuki T. Heterogeneous photocatalytic oxidation of benzene, toluene.cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 comparison of decomposition behavior on photoirradiated TiO2 catalyst[J].Appl Catal B:Environmental, 2002, 38(3):215-225
    [171] Martra G Coluccia S, Marchese L. The role of H20 in the photocatalytic oxidation of toluene in vapour phase on anataseTi02 catalyst: AFTIR study[J].Catalysis Today Volume: 1999, 53(4):695-702
    [172] Sun Y Pignatello J J. Evidence for a surlhce dual hole-radical mechanism in the TiO2 photocatalytic oxidation of 2, 4-dichlorophenoxyacetic acid[J]. Environmental Science and Technology 1995,29(8): 2065-2072
    [173] 成庆堂,顾立新,徐海斌.GC-100光触媒的性能及应用[J].广西化工,2000,5:13-15
    [174] 左国民,徐敏.挥发性有机物的气相光解及光催化降解研究[J].分子催化,2001,15(6):463-466
    [175] Wang W Ku Y. Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor[J].J. photochem.and photobio. A: 2003.159(1):47-59
    [176] Fu X., Zeltner W A.,Anderson MA. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts[J]. Appl Catal B:1995,6(3):209-224
    [177] Pingfeng Fu,yong luan,Xuegang Dai. Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity[J]. Journal of Molecular Catalysis A: Chemical 221 (2004) 81-88
    [178] Rusheng Yuan, Wenzhong Shen,Jingtang Zheng. Photocatalytic degradation of methylene blue by a combination of TiO_2 and activated carbon fibers. Journal of Colloid and Interface Science 282 (2005) 87-91.
    [179] Rusheng Yuan, Jingtang Zheng,Rongbo Guan. Surface characteristics and photocatalytic activity of TiO_2 loaded on activated carbon fibers. Colloids and Surfaces A: Physicochem.Eng. Aspects 254 (2005) 131-136.
    [180] Rusheng Yuan, Rongbo Guan, Jingtang Zheng. Effect of the pore size of TiO2-loaded activated carbon fiber on its photocatalytic activity. Scripta Materialia 52 (2005) 1329-1334
    [181] D.F. Ollis, H. Al-Ekabi (Eds.), Photocatalytic Purification and Treatment of Water and Air, Elsevier,Amsterdam,1993.
    [182] N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals Applications, Wiley, New York, 1989.
    [183] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann,Chem.Rev. 95 (1995) 69.
    [184] H. Hidaka, J. Zhao, E. Pelizzetti, N. Serpone, J. Phys. Chem. 96 (1992) 2226.
    [185] A.K.Ray, Chem. Eng. Sci. 54 (1999) 3113.
    [186] H. Yamashita, M. Harada,A.Tanii, M. Honda, M. Takeuchi, Y.Ichihashi, M. Anpo, N. Iwanoto, N. Itoh, T.Hirao, Catal. Today 63(2000) 63.
    [187] H. Hidaka,Y.Asai,J. Zhao, K.Nohara,N.Serpone, E. Pelizzetti, J. Phys. Chem. 99 (1995) 8244.
    [188] D.H. Kim,M.A. Anderson, Environ. Sci. Technol. 28 (1994) 497.
    [189] J.J. Freeman, F.G.R.Gimblett, R.A. Roberts, K.S.W. Sing, Carbon 25 (1987) 559.
    [190] K.Kaneko, Y. Nakahigashi, K. Nagata, Carbon 26 (1988) 327.
    [191] M. Anpo, Y. Ichihashi, M. Takeuchi, H. Yamashita, Res. Chem. Intermed. 24 (1998) 151.
    [192] M. Nozawa, K Tanigawa, M. Hosomi, T. Chikusa, E Kawada, Water Sci. Technol. 44 (2001) 127.
    [193] A. Matsumoto, K. Tsutsumi, K. Kaneko, Langmiur 8 (1992) 2515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700