用户名: 密码: 验证码:
光化学条件下简单化学反应的理论计算模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入二十一世纪之后,人们开始逐渐关注能源问题,并付出很大的努力去寻找一种能够替代石油的新能源技术。在这样的现实背景之下,各国纷纷开展了自己的新能源计划。新能源一般包括三大类,即太阳能,风能,生物质能。其中太阳能是其中最被看好,并且最有潜力的新能源技术。太阳能的利用方法一般有以下几种:第一种是直接将光能转化成电能,即光伏电池(Photovoltaics)。光伏电池的发展历史十分悠久,已经超过100年。在这漫长的发展过程中,太阳能电池的基本结构和原理并没有发生显著的改变。单层太阳能电池制作工艺相对简单,性质比较稳定,但是光转化效率较低。理论上单层太阳能电池的极限转化效率为33%,而实验上得到的最高光转化效率为27.6%,是薄膜GaAs。多层太阳能电池则能够达到更高的光转化效率,理论上的极限转化率为66%。根据美国可再生能源国家实验室的数据显示,目前实验上多层太阳能光伏电池能够达到的最高光转化效率是43.5%。上述传统太阳能光电池的一个共同点就是在电池工作时没有发生净的化学反应。
     除了上述传统的太阳能光电池之外,另外一种利用太阳能的方法则是利用光能引发化学反应,称为光电化学池(photoelectrochemical cell).对于这类光电池的研究起源于1972年Fujishima和Honda两人所进行的开创性工作。他们发现,通过光照射TiO2阳极,可以在远低于理论电压的条件下面将水分解成氢气和氧气。这类反应往往具有很重大的意义,因此光电化学池一经发现便得到了广泛的关注。综上所述,太阳能的利用方式多种多样,各具特色。太阳能电池和太阳能电化学池的工作原理十分相似。本论文将介绍本人在光催化方面的理论研究,主要分为三个部分,第一方面是关于TiO2光催化水裂解(OER)机理的理论研究;第二部分是关于TiO2形貌对于OER反应活性的影响;第三部分是关于光催化醇氧化机理的研究。
     TiO2光催化水裂解机理的理论研究光催化水裂解是最早发现的一个光催化反应,也是具有很大实用价值的一个反应。在该过程中,阳极(氧化)反应,即光催化氧化水,往往具有较高的能量损失,因此一直是光催化水裂解的一个瓶颈。为了克服这个瓶颈,需要我们从微观层面上去理解这个反应。本论文就通过DFT理论计算,系统地研究了OER反应在TiO2表面上的反应机理。我们假设该反应的基元步骤都是单电子反应。那么OER反应就是表面吸附的水逐步失去质子的过程。在这个过程中,在表面会形成表面过氧物种和超氧物种。我们计算了OER在TiO2三个主要表面上的反应机理,即(101),(001)和(102)。我们的计算结果表明,第一个质子解离,即表面吸附的水生成表面吸附的羟基的过程是OER反应的决速步骤,具有最高的过电位。这个步骤在三个表面上的反应能依次是0.69,0.63和0.61eV。因此,TiO2裂解水至少需要0.7V的过电位才能在常温下发生。这个结果说明,虽然我们可以通过掺杂来调控TiO2的带隙,但是要裂解水的话,它的带隙需要保证有2eV。此外,我们的计算结果还说明,OER反应对晶面并不敏感,因为三个晶面上的反应能均相差不多。此外,我们还研究了共掺杂对于决速步骤的影响,并发现共掺杂可以显著的降低决速步骤的反应能。通过分析掺杂之后的电子结构,我们认为这种效果是由于带隙之间出现了一个新的占据态的杂质态,进一步稳定了表面吸附的羟基自由基。
     TiO2形貌对光催化活性的影响通过前面一篇论文的工作,我们已经知道在TiO2光催化裂解水的过程中,第一个质子解离的过程是决速步骤。此外,已经有实验证据显示TiO2纳米颗粒的形貌对光催化的活性有影响。因此,在我们上一个研究的基础上,我们进一步研究了不同TiO2的形貌对OER反应活性的影响。我们发现,TiO2纳米晶体的平衡构型与晶体的尺寸有密切的关系,并且我们还发现,尖的Ti02纳米晶体相对于扁的具有更高的OER活性。为了找到这个现象的原因,我们做了多种探讨。首先,我们研究了量子尺寸效应,发现只有在纳米晶体直径小于2nm的时候才会有显著的量子尺寸效应,但是实验上在更大的尺度上都观察到了形貌对活性的影响。因此,我们不认为量子尺寸效应是造成这种现象的原因。我们进一步分析了纳米晶体的电子结构,发现对于不同形状的纳米晶体,前线轨道的分布会有显著不同。我们认为正是这种不同的电子结构才是造成形貌对光催化活性影响的原因。
     TiO2光催化醇氧化机理的理论研究前面的工作我们已经系统地研究了OER反应的机理以及形貌对其反应活性的影响。但是上述的研究都是基于热力学,而关键的动力学的因素由于所采用的计算方法的缘故,都被乎略掉了。因此,我们的下一步研究自然是更进一步对光催化动力学进行研究。为此,我们选择了光催化醇氧化这个反应。选择这个反应不仅仅因为这是一个典型的多相催化反应,而且有实验证据表明光催化醇氧化具有很独特的反应机理。其中一个很重要的现象就是氧原子交换现象,即产物醛中的氧不再是醇里的氧,而来自于氧气。这个现象说明在反应过程中发生了C-O键的断裂,这在一般的贵金属催化体系,比如Pt、Au中是没有的。通过直接加电荷的方法,我们系统地研究了这个反应的反应路径,发现空穴能够完全改变反应过程中断键的选择性。并对这一现象做了理论上的解释。我们相信,这一现象对于理解光催化反应是非常重要的。
In the21th century, energy issues are very important. In such a background, a series of new energy plans have been launched. New energy is generally devided into three categories, namely solar, wind and biomass. Solar energy is one of the most promising new energy technologies. The solar energy can be directly converted into electrical energy, namely, photovoltaics. Photovoltaics have very long history, but the basic structure and principles are maintained. Single-layer photovoltaics is simple and stable, but the light conversion efficiency is low. Theoretically limit conversion efficiency of single-layer photovoltaics is33%, while multi-layer photovoltaics is66%. According to the National Renewable Energy Laboratory, the experimental highest conversion efficiency is43.5%. In addition to the traditional photovoltaics, there is another solar cell, called photoelectrochemical cell, which is converting solar energy into chemical energy. Summarily, the basic principles of photovoltaics and photoelectrochemical cell is quite similar. This paper introduces you my theoretical study of photocatalysis. This paper is divided into three parts, the first part is focus on TiO2photocatalytic water splitting (OER); the second one is focus on the morphology and its relationship to OER activity; the third part is the photocatalytic mechanism of the oxidation of alcohols.
     Mechanism and Activity of Photocatalytic Oxygen Evolution on Titania Anatase in Aqueous Surroundings:
     Due to its high overpotential and low efficiency, the conversion of water to O2using solar energy remains a bottleneck for photocatalytic water splitting. Here the microscopic mechanisms of the oxygen evolution reaction (OER) on differently structured anatase surfaces in aqueous surroundings, namely,(101),(001), and (102), are determined and compared systematically by combining first-principles density functional theory calculations and a parallel periodic continuum solvation model. We show that OER involves the sequential removal of protons from surface oxidative species, forming surface peroxo and superoxo intermediates. The initiating step, the first proton removal, dictates the high overpotential. Only at an overpotential of0.7V (1.93V vs SHE) does this rate-controlling step become surmountable at room temperature:the free energy change of the step is0.69,0.63, and0.61eV for (101),(102), and (001) surfaces, respectively. We therefore conclude that (i) OER is not sensitive to the local surface structure of anatase and (ii) visible light (<~590nm) is, in principle, capable of driving the photocatatlytic OER on anatase kinetically. By co-doping high-valent elements into the anatase subsurface, we demonstrate that the high overpotential of the OER can be significantly reduced, with extra occupied levels above the valence band.
     Particle Size, Shape and Activity for Photocatalysis on Titania Anatase Nanoparticles in Aqueous Surroundings
     TiO2nanoparticles have been widely utilized in photocatalysis, but the atomic level understanding on their working mechanism falls much short of expectations. In particular, the correlation between the particle structure and the photocatalytic activity is not established yet, although it was observed that the activity is sensitive to the particle size and shape. This work, by investigating a series of TiO2anatase nanoparticles with different size and shape as the photocatalyst for water oxidation, correlates quantitatively the particle size and shape with the photocatalytic activity of the oxygen evolution reaction (OER). Extensive density functional theory (DFT) calculations combined with the periodic continuum solvation model have been utilized to compute the electronic structure of nanoparticles in aqueous solution and provide the reaction energetics for the key elementary reaction. We demonstrate that the equilibriumshape of nanoparticle is sensitive to its size from1to30nm, and the sharp crystals possess much higher activity than the flat crystals in OER, which in combination lead to the morphology dependence of photocatalytic activity. The conventionally regarded quantum size effect is excluded as the major cause. The physical origin for the shape-activity relationship is identified to be the unique spatial separation/localization of the frontier orbitals in the sharp nanoparticles, which benefits the adsorption of the key reaction intermediate (i.e., OH) in OER on the exposed five-coordinated Ti of (101) facet. The theoretical results here provide a firm basis for maximizing photocatalytic activity via nanostructure engineering and are also of significance for understanding photocatalysis on nanomaterials in general.
     Mechanism and Activity of Photocatalytic Oxidation of Benzyl Alcohol on Titania Anatase:
     In previous works, we have systematically studied the OER reaction mechanism and the relationship between morphology and photocatalytic reactivity. But these studies are all based on thermodynamics, while the kinetics is ignored. Therefore, our next study is focus on the photocatalytic kinetics. To this end, we chose the photocatalytic oxidation of alcohols as a protype reaction. Experimentally, this process shows a very unique reaction pathway. Our results show that the photocatalytic kinetics is quite dirrerent from other catalysis, e.g. Au, Pt.
引文
[1]Zhai, P.; Williams, E. D., Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model. Renew. Energy 2012,41,350-357.
    [2]Ko, S. W.; Verploegen, E.; Hong, S.; Mondal, R.; Hoke, E. T.; Toney, M. F.; McGehee, M. D.; Bao, Z. N.,3,4-Disubstituted Polyalkylthiophenes for High-Performance Thin-Film Transistors and Photovoltaics. J. Am. Chem. Soc.2011, 133,16722-16725.
    [3]Sadineni, S. B.; Atallah, F.; Boehm, R. F., Impact of roof integrated PV orientation on the residential electricity peak demand. Appl. Energy,2012,92, 204-210.
    [4]Cuony, P.; Alexander, D. T. L.; Perez-Wurfl, I.; Despeisse, M.; Bugnon, G.; Boccard, M.; Soderstrom, T.; Hessler-Wyser, A.; Hebert, C.; Ballif, C., Silicon Filaments in Silicon Oxide for Next-Generation Photovoltaics. Adv. Mater.2012,24, 1182-1186.
    [5]Gratzel, M., Photoelectrochemical cells. Nature 2001,414,338-344.
    [6]Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238,37-38.
    [7]Xiao, L.; Wu, S. Y.; Li, Y. R., Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions. Renew. Energy 2012,41,1-12.
    [8]Truong, Q. D.; Liu, J. Y.; Chung, C. C.; Ling, Y C., Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal. Commun.2012,19,85-89.
    [9]Im, J. H.; Yang, S. J.; Yun, C. H.; Park, C. R., Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B. Nanotechnology 2012,23.
    [10]Zhang, M.; Wang, Q.; Chen, C.; Zang, L.; Ma, W.; Zhao, J., Oxygen Atom Transfer in the Photocatalytic Oxidation of Alcohols by TiO2:Oxygen Isotope Studies. Angewandte Chemie International Edition 2009,48,6081-6084.
    [11]Wang, Q.; Zhang, M.; Chen, C.; Ma, W.; Zhao, J., Photocatalytic Aerobic Oxidation of Alcohols on TiO2:The Acceleration Effect of a Br(?)nsted Acid. Angewandte Chemie International Edition 2010,49,7976-7979.
    [12]Li, G.-L.; Li, W.-X.; Li, C., Model relation between the energy-band edge and the Fermi level of the nondegenerate semiconductor TiO2:Application to electrochemistry. Phys. Rev. B 2010,82,235109.
    [13]Fang, Y.-H.; Liu, Z.-P., Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO2(l 10). J. Am. Chem. Soc.2010,132,18214-18222.
    [14]Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H., Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001,414, 625-627.
    [15]Sano, T.; Negishi, N.; Koike, K.; Takeuchi, K.; Matsuzawa, S., Preparation of a visible light-responsive photocatalyst from a complex of Ti4+with a nitrogen-containing ligand. J. Mater. Chem.2004,14,380-384.
    [16]Kudo, A.; Miseki, Y, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev.2009,38,253-278.
    [17]Li, Y.-F.; Liu, Z.-P.; Liu, L.; Gao, W., Mechanism and Activity of Photocatalytic Oxygen Evolution on Titania Anatase in Aqueous Surroundings. J. Am. Chem. Soc. 2010,132,13008-13015.
    [18]Kikkawa, H.; O'Regan, B.; Anderson, M. A., The photoelectrochemical properties of Nb-doped TiO2 semiconducting ceramic membrane. J. Electroanal. Chem.1991, 309,91-101.
    [19]Kato, H.; Kudo, A., Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. B 2002,106,5029-5034.
    [20]Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001,293,269-27'1.
    [21]Ohno, T.; Mitsui, T.; Matsumura, M., Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chem. Lett.2003,32,364-365.
    [22]Irie, H.; Watanabe, Y.; Hashimoto, K., Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst. Chem. Lett.2003,32,772-773.
    [23]Gai, Y.; Li, J.; Li, S.-S.; Xia, J.-B.; Wei, S.-H., Design of Narrow-Gap TiO2:A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity. Phys. Rev. Lett.2009,102,036402.
    [24]Deskins, N. A.; Dupuis, M., Intrinsic Hole Migration Rates in TiO2 from Density Functional Theory. The Journal of Physical Chemistry C 2008,113,346-358.
    [25]Di Valentin, C.; Selloni, A., Bulk and Surface Polarons in Photoexcited Anatase TiO2. J. Phys. Chem. Lett.2011,2,2223-2228.
    [26]Yamaguti, K.; Sato, S., Photolysis of water over metallized powdered titanium dioxide. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases 1985,81,1237-1246.
    [27]Kato, H.; Kudo, A., New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett.1998,295,487-492.
    [28]Iwase, A.; Kato, H.; Kudo, A., Nanosized Au Particles as an Efficient Cocatalyst for Photocatalytic Overall Water Splitting. Catal. Lett.2006,108,7-10.
    [29]Arai, N.; Saito, N.; Nishiyama, H.; Shimodaira, Y.; Kobayashi, H.; Inoue, Y.; Sato, K., Photocatalytic Activity for Overall Water Splitting of RuO2-Loaded YxIn2-xO3 (x =0.9-1.5). The Journal of Physical Chemistry C 2008,112,5000-5005.
    [30]Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y, Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. Journal of Photochemistry and Photobiology A:Chemistry 2002,148, 85-89.
    [31]Sato, J.; Kobayashi, H.; Ikarashi, K.; Saito, N.; Nishiyama, H.; Inoue, Y, Photocatalytic Activity for Water Decomposition of RuO2-Dispersed Zn2Ge04 with d10 Configuration. J. Phys. Chem. B 2004,108,4369-4375.
    [32]Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation. Chem. Commun.2002,1698-1699.
    [33]Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K., TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 2003,78,555-560.
    [34]Matsumura, M.; Saho, Y.; Tsubomura, H., Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. The Journal of Physical Chemistry 1983,87,3807-3808.
    [35]Reber, J. F.; Meier, K., Photochemical production of hydrogen with zinc sulfide suspensions. The Journal of Physical Chemistry 1984,88,5903-5913.
    [36]Kudo, A.; Kato, H., Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem. Phys. Lett.2000,331,373-377.
    [37]Kato, H.; Asakura, K.; Kudo, A., Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure. J. Am. Chem. Soc.2003,125,3082-3089.
    [38]Palascak, M. W.; Shields, G. C., Accurate Experimental Values for the Free Energies of Hydration of H+OH", and H3O+. The Journal of Physical Chemistry A 2004,108,3692-3694.
    [39]Zhan, C.-G.; Dixon, D. A., Absolute Hydration Free Energy of the Proton from First-Principles Electronic Structure Calculations. The Journal of Physical Chemistry A 2001,105,11534-11540.
    [40]Valdes, A.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Norskov, J. K., Oxidation and Photo-Oxidation of Water on TiO2 Surface. The Journal of Physical Chemistry C 2008,112,9872-9879.
    [41]Valdes, A.; Kroes, G.-J., First principles study of the photo-oxidation of water on tungsten trioxide (WO3). The Journal of Chemical Physics 2009,130,114701.
    [42]Hellman, A.; Pala, R. G. S., First-Principles Study of Photoinduced Water-Splitting on Fe2O3. The Journal of Physical Chemistry C 2011,115, 12901-12907.
    [1]Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136, B864-B871.
    [2]Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965,140, A1133-A1138.
    [3]Perdew, J. P.; Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992,45 13244-13249.
    [4]Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77,3865.
    [5]Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Constantin, L. A.; Sun, J., Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry. Phys. Rev. Lett.2009,103,026403.
    [6]Tran, F.; Blaha, P.; Schwarz, K.; Novak, P., Hybrid exchange-correlation energy functional for strongly correlated electrons:Applications to transition-metal monoxides. Phys. Rev. B 2006,74,155108.
    [7]Wang, Y.; Perdew, J. P., Spin scaling of the electron-gas correlation energy in the high-density limit. Phys. Rev. B 1991,43,8911-8916.
    [8]Cohen, A. J.; Mori-Sanchez, P.; Yang, W., Insights into Current Limitations of Density Functional Theory. Science 2008,321,792-794.
    [9]Mori-Sanchez, P.; Cohen, A. J.; Yang, W., Localization and Delocalization-Errors in Density Functional Theory and Implications for Band-Gap Prediction. Phys. Rev. Lett.2008,100,146401.
    [10]Stroppa, A.; Termentzidis, K.; Paier, J.; Kresse, G.; Hafner, J., CO adsorption on metal surfaces:A hybrid functional study with plane-wave basis set. Phys. Rev. B 2007,76,195440.
    [11]Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P., Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study. Phys. Rev. B 1998,57,1505-1509.
    [12]Chan, M. K. Y.; Ceder, G., Efficient Band Gap Prediction for Solids. Phys. Rev. Lett.2010,105,196403.
    [13]Hamann, D. R.; Schluter, M.; Chiang, C., Norm-Conserving Pseudopotentials. Phys. Rev. Lett.1979,43,1494-1497.
    [14]Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D., Iterative Minimization Techniques for Abinitio Total-Energy Calculations-Molecular Dynamics and Conjugate Gradients. Rev. Mod. Phys.1992,64,1045-1097.
    [15]Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation:ideas, illustrations and the CASTEP code. J. Phys. Condes. Matter 2002,14,2717-2744.
    [16]Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996,54,11169-11186.
    [17]Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996,6, 15-50.
    [18]Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation. J. Phys. Condes. Matter 2002,14,2745-2779.
    [19]Anglada, E.; M. Soler, J.; eacute; Junquera, J.; Artacho, E., Systematic generation of finite-range atomic basis sets for linear-scaling calculations. Phys. Rev. B 2002,66, 205101.
    [20]Sanchez-Portal, D.; Ordejon, P.; Artacho, E.; Soler, J. M., Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem.1997,65, 453-461.
    [21]Junquera, J.; Paz; Oacute; scar; aacute; nchez-Portal, D.; Artacho, E., Numerical atomic orbitals for linear-scaling calculations. Phys. Rev. B 2001,64,235111.
    [22]Troullier, N.; Martins, Martins, J. L., Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991,43,1993.
    [1]Honda, K.; Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972,238,37-38.
    [2]Nozik, A. J., Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 1975,257,383-386.
    [3]Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H., Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001,414, 625-627.
    [4]Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001,293,269-271.
    [5]Matsumura, M.; Saho, Y.; Tsubomura, H., Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. The Journal of Physical Chemistry 1983,87,3807-3808.
    [6]Irie, H.; Watanabe, Y.; Hashimoto, K., Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst. Chem. Lett.2003,32,772-773.
    [7]Kikkawa, H.; O'Regan, B.; Anderson, M. A., The photoelectrochemical properties of Nb-doped TiO2 semiconducting ceramic membrane. J. Electroanal. Chem.1991,309,91-101.
    [8]Kato, H.; Kudo, A., Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. B 2002,106,5029-5034.
    [9]Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C:Photochemistry Reviews 2000,1,1-21.
    [10]Gratzel, M., Photoelectrochemical cells. Nature 2001,414,338-344.
    [11]Wrighton, M. S., Photoelectrochemical conversion of optical energy to electricity and fuels. Acc. Chem. Res.1979,12,303-310.
    [12]Nozik, A. J.; Memming, R., Physical Chemistry of Semiconductor-Liquid Interfaces. The Journal of Physical Chemistry 1996,100,13061-13078.
    [13]Wilson, R. H., Observation and analysis of surface-states on tio2 electrodes in aqueous-electrolytes. J. Electrochem. Soc.1980,127,228-234.
    [14]Salvador, P.; Gutierrez, C., The role of surface state in the electroreduction of dissolved and/or photogenerated oxygen on n-TiO2 electrodes. Chem. Phys. Lett.1982, 86,131-134.
    [15]Salvador, P.; Gutierrez, C., The nature of surface states involved in the photo-and electroluminescence spectra of n-titanium dioxide electrodes. The Journal of Physical Chemistry 1984,88,3696-3698.
    [16]Salvador, P.; Gutierrez, C., Analysis of the transient photocurrent-time behaviour of a sintered n-SrTiO3 electrode in water photoelectrolysis. J. Electroanal. Chem. 1984,160,117-130.
    [17]Salvador, P.; Gutie'rrez, C., Mediation by surface states of the electroreduction of photogenerated H2O2 and O2 onn-SrTiO3 in a photoelectrochemical cell. Surf. Sci. 1983,124,398-406.
    [18]Nakamura, R.; Nakato, Y., Primary Intermediates of Oxygen Photoevolution Reaction on TiO2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements. J. Am. Chem. Soc.2004,126,1290-1298.
    [19]Ohno, T.; Sarukawa, K.; Matsumura, M., Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component in HF Solution. J. Phys. Chem. B 2001,105,2417-2420.
    [20]Ohno, T.; Sarukawa, K.; Matsumura, M., Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem.2002,26, 1167-1170.
    [21]Ranade, M. R.; Navrotsky, A.; Zhang, H. Z.; Banfield, J. F.; Elder, S. H.; Zaban, A.; Borse, P. H.; Kulkarni, S. K.; Doran, G. S.; Whitfield, H. J., Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. U. S. A.2002,99,6476-6481.
    [22]Gong, X.-Q.; Selloni, A.; Batzill, M.; Diebold, U., Steps on anatase TiO2 (101). Nat Mater 2006,5,665-670.
    [23]Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation. Journal of Physics-Condensed Matter 2002,14,2745-2779.
    [24]Troullier, N.; Martins, J.; eacute; Luriaas, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991,43,1993.
    [25]Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77,3865.
    [26]Wang, H.-F.; Liu, Z.-P., Comprehensive Mechanism and Structure-Sensitivity of Ethanol Oxidation on Platinum:New Transition-State Searching Method for Resolving the Complex Reaction Network. J. Am. Chem. Soc.2008,130, 10996-11004.
    [27]Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991,44,943-954.
    [28]Zhao, Y.; Truhlar, D. G., A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys.2006,125.
    [29]Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters:The PBE0 model. The Journal of Chemical Physics 1999,110, 6158-6170.
    [30]Labat, F.; Baranek, P.; Domain, C.; Minot, C.; Adamo, C., Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes:Performances of different exchange-correlation functionals. The Journal of Chemical Physics 2007,126,154703.
    [31]Camellone, M. F.; Fabris, S., Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts:Activity of Substitutional Au3+/Au+Cations and Deactivation of Supported Au+Adatoms. J. Am. Chem. Soc.2009,131,10473-10483.
    [32]Lide, D. R., Ed., CRC Handbook of Chemistry and Physics. CRC Press:Boca Raton, FL,2003-2004:84th ed.
    [33]Valdes, A.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; N(?)rskov, J. K., Oxidation and Photo-Oxidation of Water on TiO2 Surface. The Journal of Physical Chemistry C 2008,112,9872-9879.
    [34]Valdes, A.; Kroes, G.-J., First principles study of the photo-oxidation of water on tungsten trioxide (WO3). The Journal of Chemical Physics 2009,130,114701.
    [35]Anderson, A. B.; Albu, T. V., Ab initio approach to calculating activation energies as functions of electrode potential:Trial application to four-electron reduction of oxygen. Electrochemistry Communications 1999,1,203-206.
    [36]Fattebert, J. L.; Gygi, F., Linear-scaling first-principles molecular dynamics with plane-waves accuracy. Phys. Rev. B 2006,73,115124.
    [37]Fattebert, J.-L.; Gygi, F., First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem.2003,93,139-147.
    [38]Fattebert, J.-L.; Gygi, F., Density functional theory for efficient ab initio molecular dynamics simulations in solution. J. Comput. Chem.2002,23,662-666.
    [39]Wang, H.-F.; Liu, Z.-P., Formic Acid Oxidation at Pt/H2O Interface from Periodic DFT Calculations Integrated with a Continuum Solvation Model. The Journal of Physical Chemistry C 2009,113,17502-17508.
    [40]Fornberg, B.; Sloan, D. M., A review of pseudospectral methods for solving partial differential equations. Acta Nwmerica 1994,3,203-267.
    [41]He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U., Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat Mater 2009,8, 585-589.
    [42]Gong, X.-Q.; Selloni, A., Reactivity of Anatase TiO2 Nanoparticles:The Role of the Minority (001) Surface. J. Phys. Chem. B 2005,109,19560-19562.
    [43]Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Gratzel, M., Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces. Phys. Rev. Lett.1998, 81,2954-2957.
    [44]Reiss, H.; Heller, A., The absolute potential of the standard hydrogen electrode:a new estimate. The Journal of Physical Chemistry 1985,89,4207-4213.
    [45]Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L., Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc.2009,131,3152-3153.
    [46]Amano, F.; Prieto-Mahaney, O.-O.; Terada, Y.; Yasumoto, T.; Shibayama, T. Ohtani, B., Decahedral Single-Crystalline Particles of Anatase Titanium(Ⅳ) Oxide with High Photocatalytic Activity. Chem. Mater.2009,21,2601-2603.
    [47]Zhang, D.; Li, G.; Yang, X.; Yu, J. C., A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem. Commun.2009,, 4381-4383.
    [48]Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008,453,638-641.
    [49]Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q., Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets. J. Am. Chem. Soc.2009,131,4078-4083.
    [50]Gong, Y.; Zhou, M., Matrix Infrared Spectra and Density Functional Calculations of TiO3 and TiO5 in Solid Argon. The Journal of Physical Chemistry A 2008,112, 9758-9762.
    [51]Gai, Y.; Li, J.; Li, S.-S.; Xia, J.-B.; Wei, S.-H., Design of Narrow-Gap TiO2:A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity. Phys. Rev. Lett.2009,102,036402.
    [1]Honda, K.; Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972,238,37-38.
    [2]Kikkawa, H.; O'Regan, B.; Anderson, M. A., The photoelectrochemical properties of Nb-doped TiO2 semiconducting ceramic membrane. J. Electroanal. Chem.1991, 309,91-101.
    [3]Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001,293 269-271.
    [4]Ohno, T.; Mitsui, T.; Matsumura, M., Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chem. Lett.2003,32,364-365.
    [5]Irie, H.; Watanabe, Y.; Hashimoto, K., Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst. Chem. Lett.2003,32,112-113.
    [6]Kato, H.; Kudo, A., Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. B 2002,106,5029-5034.
    [7]Cernuto, G.; Masciocchi, N.; Cervellino, A.; Colonna, G. M.; Guagliardi, A., Size and Shape Dependence of the Photocatalytic Activity of TiO2 Nanocrystals:A Total Scattering Debye Function Study. J. Am. Chem. Soc.2011,133,3114-3119.
    [8]Murakami, N.; Kurihara, Y.; Tsubota, T.; Ohno, T., Shape-Controlled Anatase Titanium(Ⅳ) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol. The Journal of Physical Chemistry C 2009, 113,3062-3069.
    [9]Cho, C. H.; Han, M. H.; Kim, D. H.; Kim, D. K., Morphology evolution of anatase TiO2 nanocrystals under a hydrothermal condition (pH=9.5) and their ultra-high photo-catalytic activity. Mater. Chem. Phys.2005,92,104-111.
    [10]Amano, F.; Yasumoto, T.; Prieto-Mahaney, O.-O.; Uchida, S.; Shibayama, T.; Ohtani, B., Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(iv) oxide. Chem. Commun.2009,2311-2313.
    [11]Ohno, T.; Sarukawa, K.; Matsumura, M., Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem.2002,26, 1167-1170.
    [12]Ohno, T.; Sarukawa, K.; Matsumura, M., Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component in HF Solution. J. Phys. Chem. B 2001,105,2417-2420.
    [13]Wu, N.; Wang, J.; Tafen, D. N.; Wang, H.; Zheng, J.-G.; Lewis, J. P.; Liu, X.; Leonard, S. S.; Manivannan, A., Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. J. Am. Chem. Soc.2010,132, 6679-6685.
    [14]Liu, G.; Sun, C.; Yang, H. G.; Smith, S. C.; Wang, L.; Lu, G. Q.; Cheng, H.-M., Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun.2010,46,755-757.
    [15]Li, Y.-F.; Liu, Z.-P.; Liu, L.; Gao, W., Mechanism and Activity of Photocatalytic Oxygen Evolution on Titania Anatase in Aqueous Surroundings. J. Am. Chem. Soc.2010,132,13008-13015.
    [16]Tachikawa, T.; Yamashita, S.; Majima, T., Evidence for Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis. J. Am. Chem. Soc.2011,133,7197-7204.
    [17]Fattebert, J.-L.; Gygi, F., Density functional theory for efficient ab initio molecular dynamics simulations in solution. J. Comput. Chem.2002,23,662-666.
    [18]Fattebert, J.-L.; Gygi, F., First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem.2003,93,139-147.
    [19]Fattebert, J. L.; Gygi, F., Linear-scaling first-principles molecular dynamics with plane-waves accuracy. Phys. Rev. B 2006,73,115124.
    [20]Wang, H.-F.; Liu, Z.-P., Formic Acid Oxidation at Pt/H2O Interface from Periodic DFT Calculations Integrated with a Continuum Solvation Model. The Journal of Physical Chemistry C 2009,113,17502-17508.
    [21]Fang, Y.-H.; Liu, Z.-P., Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO2(110). J. Am. Chem. Soc.2010,132,18214-18222.
    [22]Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation. J. Phys.:Condens. Matter 2002,14,2745.
    [23]Sanchez-Portal, D.; Ordejon, P.; Artacho, E.; Soler, J. M., Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem.1997,65,453-461.
    [24]Junquera, J.; Paz; Oacute; scar; aacute; nchez-Portal, D.; Artacho, E., Numerical atomic orbitals for linear-scaling calculations. Phys. Rev. B 2001,64, 235111.
    [25]Anglada, E.; Soler, M. J.; Junquera, J.; Artacho, E., Systematic generation of finite-range atomic basis sets for linear-scaling calculations. Phys. Rev. B 2002,66,205101.
    [26]Troullier, N.; Martins, J. L., Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991,43,1993.
    [27]Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77,3865.
    [28]Bockris, J. O. M.; Khan, S. U. M., Surface Electrochemistry; Plenum. Press:New York 1993, P493.
    [29]Lide, D. R., Ed., CRC Handbook of Chemistry and Physics. CRC Press: Boca Raton, FL,2003-2004:84th ed.
    [30]Liu, Z.-P.; Jenkins, S. J.; King, D. A., Car Exhaust Catalysis from First Principles:Selective NO Reduction under Excess O2 Conditions on Ir. J. Am. Chem. Soc.2004,126,10746-10756.
    [31]Penn, R. L.; Banfield, J. F., Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania. Geochim. Cosmochim. Acta 1999,63,1549-1557.
    [32]Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Gratzel, M., Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces. Phys. Rev. Lett.1998,81,2954-2957.
    [33]Gong, X.-Q.; Selloni, A., Reactivity of Anatase TiO2 Nanoparticles:The Role of the Minority (001) Surface. J. Phys. Chem. B 2005,109,19560-19562.
    [34]Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R., Preparation and characterization of quantum-size titanium dioxide. The Journal of Physical Chemistry 1988,92,5196-5201.
    [35]Anpo, M.; Shima, T.; Kodama, S.; Kubokawa, Y., Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates. The Journal of Physical Chemistry 1987,91, 4305-4310.
    [36]Brus, L. E., Electron--electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state. The Journal of Chemical Physics 1984,80,4403-4409.
    [37]Roberts, S., Dielectric Constants and Polarizabilities of Ions in Simple Crystals and Barium Titanate. Physical Review 1949,76,1215.
    [38]Wulff, G., Z. Kristallogr. Mineral 1901,34,449.
    [39]Lazzeri, M.; Vittadini, A.; Selloni, A., Erratum:Structure and energetics of stoichiometric TiO2 anatase surfaces [Phys. Rev. B 63,155409 (2001)]. Phys. Rev. B 2002,65,119901.
    [40]Penn, R. L.; Banfield, J. F., Amer. Miner.1998,83,1077.
    [41]Shang, C.; Liu, Z.-P., Origin and Activity of Gold Nanoparticles as Aerobic Oxidation Catalysts in Aqueous Solution. J. Am. Chem. Soc.2011,133, 9938-9947.
    [1]Honda, K.; Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972,238,37-38.
    [2]Yurdakal, S.; Palmisano, G.; Loddo, V.; Alagoz, O.; Augugliaro, V.; Palmisano, L., Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature. Green Chemistry 2009,11,510-516.
    [3]Augugliaro, V.; Caronna, T.; Loddo, V.; Marci, G.; Palmisano, G.; Palmisano, L. Yurdakal, S., Oxidation of Aromatic Alcohols in Irradiated Aqueous Suspensions of Commercial and Home-Prepared Rutile TiO2:A Selectivity Study. Chemistry - A European Journal 2008,14,4640-4646.
    [4]Zhang, M.; Wang, Q.; Chen, C.; Zang, L.; Ma, W.; Zhao, J., Oxygen Atom Transfer in the Photocatalytic Oxidation of Alcohols by TiO2:Oxygen Isotope Studies. Angewandte Chemie International Edition 2009,48,6081-6084.
    [5]Higashimoto, S.; Suetsugu, N.; Azuma, M.; Ohue, H.; Sakata, Y., Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation:Effect of phenyl-ring substitution on the photocatalytic activity. J. Catal.2010,274,76-83.
    [6]Haider, P.; Kimmerle, B.; Krumeich, F.; Kleist, W.; Grunwaldt, J.-D.; Baiker, A., Gold-Catalyzed Aerobic Oxidation of Benzyl Alcohol:Effect of Gold Particle Size on Activity and Selectivity in Different Solvents. Catal. Lett.2008,125,169-176.
    [7]Higashimoto, S.; Kitao, N.; Yoshida, N.; Sakura, T.; Azuma, M.; Ohue, H.; Sakata, Y, Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J. Catal.2009,266,279-285.
    [8]Shang, C.; Liu, Z.-P., Origin and Activity of Gold Nanoparticles as Aerobic Oxidation Catalysts in Aqueous Solution. J. Am. Chem. Soc.2011,133,9938-9947.
    [9]Wang, H.-F.; Liu, Z.-P., Comprehensive Mechanism and Structure-Sensitivity of Ethanol Oxidation on Platinum:New Transition-State Searching Method for Resolving the Complex Reaction Network. J. Am. Chem. Soc.2008,130, 10996-11004.
    [10]Wang, Q.; Zhang, M.; Chen, C.; Ma, W.; Zhao, J., Photocatalytic Aerobic Oxidation of Alcohols on TiO2:The Acceleration Effect of a Bransted Acid. Angewandte Chemie International Edition 2010,49,7976-7979.
    [11]Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation. J. Phys.:Condens. Matter 2002,14,2745.
    [12]Sanchez-Portal, D.; Ordejon, P.; Artacho, E.; Soler, J. M., Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem.1997,65, 453-461.
    [13]Troullier, N.; Martins, J. L., Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991,43,1993.
    [14]Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77,3865.
    [15]Lide, D. R., Ed., CRC Handbook of Chemistry and Physics. CRC Press:Boca Raton, FL,2003-2004:84th ed.
    [16]Fattebert, J.-L.; Gygi, F., Density functional theory for efficient ab initio molecular dynamics simulations in solution. J. Comput. Chem.2002,23,662-666.
    [17]Fattebert, J.-L.; Gygi, F., First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem.2003,93,139-147.
    [18]Wang, H.-F.; Liu, Z.-P, Formic Acid Oxidation at Pt/H2O Interface from Periodic DFT Calculations Integrated with a Continuum Solvation Model. The Journal of Physical Chemistry C 2009,113,17502-17508.
    [19]Korotin, M.; Fujiwara, T.; Anisimov, V., Long-period orbital order with hole stripes in La7/8Sr1/8Mn03. Phys. Rev. B 2000,62,5696-5699.
    [20]McMahan, A. K.; Martin, R. M.; Satpathy, S., Calculated effective Hamiltonian for La2CuO4 and solution in the impurity Anderson approximation. Phys. Rev. B 1988, 38,6650-6666.
    [21]Hybertsen, M. S.; Schluter, M.; Christensen, N. E., Calculation of Coulomb-interaction parameters for La2Cu04 using a constrained-density-functional approach. Phys. Rev. B 1989,39,9028-9041.
    [22]Mattioli, G.; Filippone, F.; Alippi, P.; Amore Bonapasta, A., Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO2. Phys. Rev. B 2008,78,241201.
    [23]Deskins, N. A.; Dupuis, M., Intrinsic Hole Migration Rates in TiO2 from Density Functional Theory. The Journal of Physical Chemistry C 2008,113,346-358.
    [24]Yang, W.; Zhang, Y.; Ayers, P. W., Degenerate Ground States and a Fractional Number of Electrons in Density and Reduced Density Matrix Functional Theory. Phys. Rev. Lett.2000,84,5172-5175.
    [25]Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr., Density-Functional Theory for Fractional Particle Number:Derivative Discontinuities of the Energy. Phys. Rev. Lett.1982,49,1691-1694.
    [26]Fang, Y.-H.; Liu, Z.-P., Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO2(110). J. Am. Chem. Soc.2010,132,18214-18222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700