用户名: 密码: 验证码:
甘肃北山花岗岩裂隙几何学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发育于岩石中的天然裂隙几何学参数(密度、优势方位、长度、隙宽等)不仅是确定裂隙系统流体动力学的重要参数,而且也是大型工程施工和运行情况下稳定性分析中的重要考虑因素之一,一直以来倍受工程地质学家的重视。数十年来国内外学者分别采取构造地质研究(野外裂隙调查)、构造物理学的实验模拟和数值模拟试验与仿真等方法对岩石的裂隙几何学特征做了较为广泛而深入地研究,取得了丰硕的成果。
     本文以我国高放废物处置库的重点预选区—甘肃北山旧井地段板滩单元花岗岩中发育的构造裂隙(主要指节理)为研究对象,通过现场野外调查测量,结合已有的区调成果和钻孔详细的裂隙分析资料,运用传统的概率统计方法和分形理论,在ArcGIS平台下对裂隙几何学要素(长度、方位、密度等)进行统计、计算和分析,研究花岗岩岩体中裂隙的分布特征,对裂隙的几何学参数予以定量描述,为核废料处置库的选择提供必要的基础数据。同时,把裂隙密度和裂隙网络的空间结构结合,对甘肃北山花岗岩的岩体工程质量进行初步评价。论文所取得的成果如下:
     一、获得单个裂隙的几何学参数
     对研究区花岗岩体地表露头中发育的构造节理进行数字测量与调查,共获得露头区五个测点、328m~2数字化的二维裂隙空间分布图像。同时对裂隙图像进行几何变换和矫正处理,在Mapinfo平台下以人工目视判读、解译为基础,经配准、数字化获得数字化裂隙网络图。
     根据甘肃北山区域裂隙发育状况,结合野外裂隙实地调查结果、钻孔裂隙特征,在ArcGIS平台下运用SQL查询语言进行裂隙分组、统计、计算,获得单个裂隙的几何参数,相关主要研究成果如下:
     1.节理裂隙的长度分布具有不均匀性和方向性。优势方向上裂隙的总长度也呈现优势增长。裂隙长度变化并不是无规则的,而是连续的;当采样面积较大、裂隙数量较多时,裂隙长度分布可以用指数函数y=ce~(kx)来拟合;裂隙长度集中在0.5m~4m之间,其比例占到95%以上。裂隙长度概率密度函数符合幂函数分布;在不分组的情况下,长短裂隙的比例在1~2之间。
Geometrical parameters of fractures developing in natural rocks, such as density, dominant orientations, length, fracture aperture, are long recognized by engineering scientists because they are not only important parameters to fluid dynamics of fracture systems but also main considering factors for large-scale projects during construction and stability analysis. In several decades many scholars have made wide and deep research to fracture geometrical parameters using tectonic geology, tectonophysical test simulation and numerical experimentation and emulator and obtained abundant results.In this thesis, as a candidate area for high level waste repository (HLW) in China, the rock mass fracture system of the Bantan unit granite of the Jiujing block the Beishan area in Gansu province, is chosen as the study object. The fracture system is studied in detail by field survey bedrock outcrop fractures surveying and combining completed regional geological survey results with acoustic borehole television measurements. Traditional probabilistic statistics and the fractal theory are used to analyze fracture geometric parameter including fracture length, azimuth and density . Statistics and calculation using the ArcGIS software is made to study fracture distribution characteristics in the granite rock mass.Quantitative description is performed to fracture geometrical parameters in order to provide necessary basic data for the selection of HLW. In the same time combining fracture density with fracture network spatial structure, using RQD and fractal dimension the quality of rock mass of the Bantan unit granite is assessed.The result is of this thesis are as follows:Firstly, fracture geometrical parameters are obtained by statistics on ArcGIS.Using numeral camera I investigate tectonic joints developed in the Bantan unit granite rock mass. Five specimens including 328 square meters of digital planar fracture images were finished. Then by geometrical transform and rectification disposal, manual judgments, interpretation, digitalization, fracture network digitalized map can be obtained. According to regional conditions for fracture development,
    combined with outcrop field fracture survey results and borehole fracture features, fractures are grouped, counted and calculated by Select Query Language (SQL.) in ArcGIS software.Fracture length distribution is inhomogeneous and anisotropic. Total fracture length of preferential orientation show rapid increasing. Fracture lengths change continuously. When the sampling area is bigger and the fracture number is large, fracture lengths accord with an exponential function. Fracture lengths mostly fall between 0.5 and 4 meters and their proportion reaches 95 percent. The probability density function of fracture lengths follows a power function. The proportion of long and short fractures is between 1 and 2.Fracture planar density reflects fracture developing degrees on a rock cross section. Its value is related to fracture number and size. Bigger density indicates well developed fractures. Two of 5 specimens are 4.642 and 4.113 in density, respectively, the others change near 3.Fracture permeability ratio is directly proportional to the cube of fracture aperture. So fracture aperture distribution is very important to study fracture permeability. By the statistics and analysis of outcrop fractures, it is found that the fracture aperture between 0.1 to 0.3 centimeter accounts for 78%, that between 0.3 and 0.5 centimeter is 12%, and greater than 1 centimeter is less than 5%. According to the description recommended by ISRM, the fractures of the Bantan unit granite of the beishan area mainly belong to the open-rupture type.Joint statistics is characterized by sizes effect. Different size of survey grids bring about distinct statistical results. This work chooses the sample of No.3 borehole-3 to simulate that fracture geometrical parameters are characterized by orientations and sizes when the of survey grid changes. Analysis result shows that the relatively increasing mode of fracture lengths fits the exponent function y=ce x whatever the measuring size is. With increasing of the survey size the length increasing trend becomes slow. The total characteristics of fracture density are from small-scale unstable change to large scale gradual steady. Survey orientations affect strongly calculated results.
    Secondly, spatial structure of fracture network is studied by the fractal theory. On the basis of box-counting dimension, a simple way to calculate fractal dimension is developed on the fracture network map of Beishan. The result shows that spatial structure of the fracture system is fit for fractal distribution within the range from 10 centimeters to 200 centimeters. At the same sampling site fractal dimensions of fractures in different group vary for different fracture developing degrees. While in the different survey places, because of varied survey grid sizes, fracture numbers, fracture lengths, fracture azimuths and fracture developing degrees fractal dimensions present different values. Fractal dimensions of two sites with relatively well developed fractures are big, separately 1.724 and 1.636. The other three of five average about 1.6.Many natures of rock mass fractures have fractal features to some degree, but their fractal properties are not often strict rather in a statistical sense. So, different measure areas correspond to obviously distinctive results. The research results are not comparable with each other. How to define the scale invariant section deserves deep investigation. This work seeks for a brief way to solve this problem.Fractal dimensions indicate complexity of fracture networks. A lot of impact factors have effects on their values. From the six aspects such as planar density, fracture number, fracture size, fracture predominant orientation, the ratio of long and short fracture, and area of survey grid, I think fore-three items affect obviously, in which density is related to linear correlation coefficient R up to 0.914.Finally, the rock mass engineering quality of the Bantan unit granite is appraised by RQD (Rock Quality Designation) and the fractal method.RQD (Rock Quality Designation) judges the good and bad rock mass qualities by intact degrees of drilling core and classifies rock mass. Using finished drilling data I analyze RQD of BSOl and BS03 and conclude that RQD of BSOl is between 75% and 100% accounts up 75.84%, and averages 74.4%. The RQD of BS03 is generally big. So, the engineering quality of the Bantan unit granite borehole belongs to the good class with intact core.Fractal dimensions not only describe fracture number of rock mass but also
    reflect homogeneous degree of fracture distribution and the intact and cracked conditions. So rock mass quality classified by fractal dimensions combined with RQD is more objective and efficient than single RQD index. Above research indicates that the fracture network is characterized by fractal distribution. Fractal dimensions of five sampling sites are in turn 1.636, 1.548, 1.596, 1.724, and 1.604, respectively, and fall into between 1.5 and 1.75. According to the rock mass quality classified by fractal dimensions, the Bantan unit granite belongs to rock mass with fracture well developed and normal quality.
引文
陈剑平等,1995,岩体裂隙网络分数维计算机模拟,工程地质学报,Vol.3 No.3:79-85;
    陈剑平,王清,肖树芳,1995,岩体裂隙网络分维数计算机模拟.工程地质学报.Vol.3(3):79-85;
    陈剑平等,1996,不连续面平均迹长概率估算法及其应用,工程地质学报,Vol.4 No.1:8-13;
    陈剑平,2001,岩体随机不连续面三维网络数值模拟技术,岩土工程学报,Vol.23 No.4:397-402;
    陈剑平等,2001,取样窗口迹长均值估计方法的讨论,工程地质学报,302-307;
    陈剑平等,2004,窗口测线法获取岩体RQD,岩石力学与工程学报,2004(09),P79-83;
    陈伟明,王驹等,2002,中国高放废物处置库甘肃北山预选区旧井地段1:5万区域地质特征研究(内部报告),核工业北京地质研究院:
    陈顒,陈凌,1998,分形几何学,地震出版社;
    陈佩佩等,2003,山西榆次地裂缝几何形态研究,西北地质,Vol.36 No.1:100-104;
    陈乃明,王如路,刘宝琛.1995.岩体节理网络分形的计算机模拟研究.岩石力学与工程学报,Vol.14(3):255-259;
    柴军瑞,2000,采用Monte-Carlo模拟技术计算裂隙岩体的分维数,水文地质工程地质,2:12-13;
    蔡永庆,刘亚晨,2001,核废料地质贮存岩体裂隙结构面几何特性参数分析,地质灾害与环境保护,Vol.12(1):33-47;
    丁多文,1993,岩体结构分形及应用研究,岩土力学,vol.14(3):67~72
    杜时贵,1999,岩体结构面的工程性质,北京:地震出版社
    杜时贵,1990,乌江构皮滩水利枢纽可行性研究补充报告附件,水利部长江水利委员会编,武汉
    杜时贵,李军等,1997,岩体质量的分形表述,地质科技情报,Vol.16(1):91-96;
    杜时贵,潘别桐,1992,黄河小浪底水库风雨沟西侧边坡稳定性研究,地球科学-中国地质大学学报,1992(06),P91-100
    杜时贵,潘别桐,1993,岩石节理粗糙度系数的分形特征,水文地质工程地质,1993(03),P40-43
    范留明,2005,基于数码摄影技术的岩体裂隙方法初探,岩石力学与工程学报,Vol.24 No.5:792-797;
    范留明、黄润秋等,2002,裂隙结构面迹长估计方法研究,水利学报,(01)26-30;
    范留明、黄润秋,2004,一种估计结构面迹长的新方法及其工程应用,岩石力学与工程学报,(01)55-59;
    范留明,李宁,2004,基于模式识别技术岩体裂隙图像的智能解译方法研究,自然科学进展,Vol.14(2):236-240;
    谷德振,1979,岩体工程地质力学基础.北京,科学出版社;
    金曲生等,1997,估计迹长概率分布函数的新方法及其应用,工程地质学报.Vol.5 No.2:150-155;
    金为铣,杨先宏,邵鸿潮,1994,摄影测量学[M].武汉:武汉测绘科技大学出版社;
    黄国明,1999,节理岩体的几何描述.博士论文:
    黄润秋等,2002,节理岩体不连续面广义H-H迹长估计,自然科学进展,Vol.12 No.12:132-1325;
    黄国明,黄润秋,1998,岩体节理分形描述,中国煤田地质,Vol.10 No.3:45-48;
    胡宗全,2000,裂缝发育区平面分布的分形评价,高校地质学报,Vol.6 No.4:583-587;
    侯贵廷,1994,裂缝的分形分析方法.应用基础与工程科学学报,Vol.2(4):299-305;
    刘建国,彭功勋,韩文峰,2000,岩体裂隙网络的分形特征,兰州大学学报(自然科学版),Vol.36(4):96-99;
    连建发,慎乃齐,张杰坤.2001.分形理论在岩体质量评价中的应用研究.岩石力学与工程学报,Vol.20(增):1695-1698;
    刘建国,彭功勋,韩文峰.2000 岩体裂隙网络的分形特征,兰州大学学报(自然科学版),36(4):96-99;
    卢金凯,1985,基岩裂隙水的野外调查方法,地质出版社;
    李亮,傅鹤林.2000.岩体节理裂隙特征的分形研究.铁道学报,Vol.22(2):77-81;
    米哈依洛夫A.E.,(高崇照译)1960,岩石裂隙的野外研究方法,地质出版社;
    彭振华,丁浩等,2003.分形理论在地下工程岩体质量评价中的应用.隧道建设,Vol.23(1):7-10;
    潘别桐,徐光黎.1989.岩体节理几何特征的研究现状及趋势.SE程勘察,Vol(5):23-31
    潘别桐,黄润秋等,1984工程地质数值法[专著]/潘别桐,黄润秋主编.北京:地质出版社,1994
    潘别桐,井兰如.1989.岩体结构概率模型模拟和应用,岩石力学新进展.沈阳:东北工学院出版社
    秦四清等.1993.非线性工程地质学导引.成都:西南交通大学出版社,5-37;
    秦四清、张倬元等,1993,节理岩体的分维特征及其工程地质意义,工程地质学报,Vol.1(2):14-23;
    秦四清.1995.分维D_f与RQD的关系模型.水文地质工程地质,1:1-2;
    荣冠,周创兵.2004.基于裂隙网络模拟技术的结构面分布分维数计算.岩石力学与工程学报,23(20):3465~3469;
    孙玉科,李建国.1965.岩质边坡稳定的工程地质研究.地质科学,No.4;
    孙广忠.1988.岩体结构力学.北京,科学出版社;
    宋晓晨,徐卫亚.2004.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随即生成.岩石力学与工程学报,Vol.23(12):2015-2020;
    单业华、李志安、曾联波,1997,估测地下天然裂缝间距指数的新方法,石油勘探与开发,V.25,No.1,p:77-80;
    单业华、李志安,1998,估测地下多组系统性裂缝间距的原理和应用,石油实验地质;
    石雨田,潘保芝.2000.分维的应用一定量描述裂缝发育程度.物探与化探,Vol.24(6):426-237;
    隋少强,宋丽红,周扬新.2003.古潜山灰岩裂缝分布的分形特征.断块油气田,Vol.10(6):13-16;
    中维,1998,初论分形地质学[J].世界地质,(4):75-84;
    盛建龙,伍佑伦,2002,基于分形几何理论的岩体结构面分布特征研究[J].金属矿山,3(14):45-47;
    石雨田,潘保芝,2000,分维的应用一定量描述裂缝发育程度,物探与化探,Vol.24 No.6:426-437;
    隋少强等,2003,古潜山灰岩裂缝分布的分行特征,断块油气田,Vol.10 No.6:13-15;
    田洪艳等,2003,草原地裂缝分布的分形特征研究,干旱区研究,Vol.20 No.1:53-59;
    吴志勇,2001.数码图像的解析在野外岩体裂隙统计上的应用.成都理工学院学报,Vol.28(增刊):157;
    吴志勇,聂德新等.2003.基于数码图像的岩体结构信息采集处理研究.岩石力学与工程学报,Vol.22(增2):2568-2571;
    吴旭君.潘别桐,1992,裂隙参数分析在岩体力学和水力学习性研究中的应用,现代地质,1992(02),P101-110;
    王言中,黄杰藩,1993,储层岩石应力裂隙演化的逐级连通模型及意义,地球物理学进展,8(4):81-89;
    汪富泉,1994,断层分维与裂缝系统的分形渗流研究,四川师范学院学报(自然科学报),第15卷第4期:308-309;
    汪小刚,贾志欣,陈祖煜.1998.岩石结构面网络原理在节理岩体连通率研究中的应用.水利水电技术;
    王金安,谢和平,田晓燕等,2000,岩石断裂表面分形测量的尺度效应(J).岩石力学与工程学报,19(1):11-17;
    万天丰,1988,古构造应力场[M].北京:地质出版社;
    巫兆聪.2002.分形分析中无标度区间确定问题.测绘学报,V01.31(3):240-244;
    巫静波,谢和平,高峰,2000,岩石节理剪切力学特性的光弹实验研究[J].中国矿业大学学报;
    王驹,徐国庆等.2000.甘肃北山地区区域地壳稳定性研究.北京:地质出版社29(6):640-642;
    夏元友,朱瑞赓.关于分形理论在结构岩体的应用研究[J].岩石力学与工程学报,1997,16(4):362-367;
    徐志斌,谢和平,王继尧.1996.分维——评价矿井断裂复杂程度的综合指标[J].中国矿业大学学报,25(3):11-15;
    徐光黎.1993.岩石结构面几何特征的分形与分维.水文地质工程地质,Vol.20(2):20-22;
    徐光黎,唐辉明,潘别桐,等.1993.岩体结构模型与应用[M].武汉:中国地质大学出版社;
    徐光黎,佟永贺,张家明,1992,地下水抽汲对西安地面沉降和地裂缝活动的影响程度分析, 中国地质灾害与防治学报,1992(04),P3-7+15
    许建东,曲国胜.1999.天然裂缝网络二维裂缝度的估算方法.地球学报,Vol.20(增刊):904-911:
    徐开礼,朱忠澄.1989.构造地质学[M].北京:地质出版社;
    谢炎石,谭凯旋.2002.断裂构造的分形研究及其地质应用.地质地球化学,Vol.30(1):71-77;
    谢和平.分形几何及其在岩土力学中的应用[[J].岩土工程学报,1992,14(1):1424;
    谢和平.岩石节理粗糙系数(JRC)的分形估计[J].中国科学仍辑),1994,24(5):524-530;
    谢和平,王金安.岩石节理(断裂)表面的多重分形性质[[J].力学学报,199830(3):314-320;
    谢卫红,谢和平,赵鹏.岩石分形节理应力状态的光弹性研究[C].中国岩石力学与工程学会第四次学术大会论文集,北京:中国科学技术出版社,1996:104110:
    袁绍国,王震.1998.节理测量误差的来源及其分析.包头钢铁学院学报,Vol.17(4):253-257;
    袁绍国,王震,1999,岩体节理迹长与节理真实长度的概率关系,包头钢铁学院学报,Vol.18No.1:5-8;
    袁绍国,1998,节理迹长线测量与面测量的精度对比,包头钢铁学院·014010:47-49;
    袁宝远,杨志法,肖树芳.1998.岩体结构要素分形几何研究.工程地质学报,Vol.6(4):355-361;
    尹中民、单业华,1999,利用岩心资料估测地下一组裂缝分布的原理和应用,石油实验地质,V.21,No.4,p:346-352;
    易顺民,唐辉明,龙昱.1994.基于分形理论的岩体工程分类初探(J).地质科技情报,13(12):101-106;
    赵文,林韵梅,1994,结构面密度的新指标,中国矿业,1994(03),P42-44+63;
    周创兵,熊文林.1996.不连续面的分形维数及其在渗流分析中的应用[J].水文地质工程地质,6:1-6;
    朱文彬.1998.三维结构面网络模拟在岩体变形特性中的应用(J).长沙铁道学院学报,Vol.16(1):1821;
    周维垣,杨若琼等.1997.三维岩体构造网络生成的自协调法及工程应用.岩石力学与工程学报,Vol.16(1):29-35;
    张文佑.1992.节理的发育[A].张文佑文集[c].北京:科学出版社,20-27;
    张拴宏,周显强.2000.断裂系统分形研究新进展.桂林工学院学报,Vol.20(1):84-88;
    张国禄.2002.应用分形理论评价齐家古潜山裂缝性油气藏的油气富集性.特种油气藏,Vol.9(2):15-19;
    张继春,钮强,徐小荷.岩体节理间距分布的分形模型研究[[J].金属矿山,1994,(2):19-23;
    郑德超,1998,节理岩体结构的分形研究,包头钢铁学院学报,Vol.17 No.1:9-12;
    张飞等,2002,岩体结构面赤平极射投影极点图的分形研究,有色金属(矿山部分),2002(05),P22-24
    宗自华.2004.甘肃北山旧井地段断裂构造及其分形特征研究,硕士论文;
    赵茹石等.1994.甘肃省板块构造单元划分及其构造演化.中国区域地质,No.1;
    Barton N. Review of a new shear strength criterion for rock joints [J]. Engineering Geology, Elsevier, Amsterdam, 1973, 17: 287332
    Boadu F K, LOng L T. 1994. The fractal character of fracture spacing and RQD [J]. Int. J. Rock Min. Sci. & Geomech. Abstr. 31(2): 127-134
    Billings, M. P. 1972. Structural Geology (3nded)[M]. Prenticehall. NewYork
    Bridges, M. D. 1976. Presentation of Fracture Data for Rock Mechanics, Proceedings 2nd Australian-New Zealand Conf. On Geomech.
    Cacas, M. C., Ledoux, E., de Marsily, G., Tillie, B., Barbreau, A., Durand, E., Feuga, B., and Peaudecerf, P., 1990. Modeling fracture flow with s stochartic discrete fracture network.
    Calibration and Validation, 2, The transport model: Water Resour. Res., 26 (3), 491-500.
    BARTON, J. M. 1983. Pb-isotopic evidence for the age of the Messina Layered Intrusion, Central Zone, Limpopo Mobile Belt. In: VAN BILJON, W.J. & LEGG, J. H. (eds) The Limpopo Mobile Belt. Geological Society of South Africa, Special Publications, 8, 39-41.
    Davis G. H.1984. Structure Geology of Rocks and Regions[M]. NewYork, John Wiley and Sons
    Dershowitz, W. S., and H. H. Einstein, 1984. Application of Artificial Intelligence to Problems of Rock Mechanics. Proceedings, 25th U. S. Symposium on Rock Mechanics: Rock Mechanics in Productivity and Protection, Evanston, Illinois. Society of Mining Engineers of AIME, New York, NY. p. 483-494.
    Einstein, H. H. ete, 1980, Risk analysis for rock slopes in open pit mines, Parts Ⅰ-Ⅴ, USBM Technical Rechnical Report J0275015.
    Falconer K. J. 1990. Fractal geometry: mathematical foundation and application[M]. New York: Wiley
    Huang, Q. and Angelier, J., Fracture spacing and its relation to bed thickness: Geology Magazine, 1989, 126, 355-362.
    Hestir, K., Biilaux, D., Chiles, J. P., Long, J. C. S., Statistical modeling of a three-dimensional fracture network, Earth Sciences Division annual report 1987, LBL (Lawrence Berkeley Laboratory, Energy and Environment Division), 24200,, 1988.
    ISRM(国际岩石力学学会). 1978. Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. Int. J. of Rock Mechanics and Mining Sciences, Vol.15(6): 319-368
    Gentier, S., Hopkins, D., and Riss, J., 2000. Role of fracture geometry in the evolution of flow paths under stress: Dynamics of Fluids in fractured Rock, Geophysical Monograph Series122, American Geophysical Union Geology, 1981, 3, 179-183
    Guido G Z. 1998. A practical implementation of the box-counting Algorithm. Computers & Geoscience, 1998, Vol.24(1): 95-100
    Kulatilake, P. H. S., State-of-the-art in stochastic joint geometry modeling: Key Questions in Rock Mechanics, Proceedings of the 29th U. S. symposium, 1988, 215-229.
    Kulatilake, P. H. S., Wathugala, D. N., and Stephansson, O., Three dimensional stochastic joint geometry modeling including a verification: a case study: Rock Joints, Barton & Stephansson, Loen, Norway, 1990.
    Kulatilake, P. H. S. W., Wu, T. h. 1984. Estimation of mean length of discontinuity. Rock Mech Rock Engng, Vol.17: 215-232
    Kulatilake P H S W, Fiedler R, Panda B B. 1997. Box fractal dimension as measure of statistical homogeneity of jointed rock masses[J]. Engineering Geology, 48: 217-229
    Ladeira, F. L. and Price, N. J., Relationship between fracture spacing and bed thickness: Journal of Structural
    La Pointe, P. R., and J. Hudson, 1985. Characterization and Interpretation of Rock Joint Patterns. GSA Special Paper 199. GSA, Denver.
    Laslett G. M, 1982, Censoring and edge effects in area and line transect sampling of rock joint, Mathematical Geology, 14(2): 125-139;
    L. Zhang and H. H. Einstein, 1998, Estimating the Mean Trace Length of Rock Discontinuities, Rock Mech. Rock Engng 31(4), 217-235;
    Liu Jianguo, Peng Gongxun, Han Wenfeng. Fractal characteristics of fracture network in rock-mass, Joural of Lanzhou University(Natural Sciences), 2000, 36(4): 96~99
    Long, J. C. S., and Billaux, D. M. 1987. From field data to fracture network modeling: an example incorporating spatial structure: Water Resour. Res., 23, 1201-1216.
    Long et al., 1982, Porous media equivalents for network of discontinuous fractures, Water Resour. Res., 18(3), 645-658.
    Long, J. C. S., Gilmour, P and Witherspoon, E A., 1985, A model for steady state flow in random three-dimensional networks of disc-shaped fractures: Water Resources Research, 21. 1105-1115.
    M. Mauldon, 1998, Estimating Mean Frature Trace length and Density from Observations in Convex Windows, Rock Mech. Rock Engng, 31(4), 201-216;
    Mech. Min. Sci and Geomech Abstr. 1980, 17: 63-66
    Mauidon et al. 2001. Circular scanlines and circular windows: new tools for charactering the geometry of fracture traces. Joural of Structural Geology, Vol.23: 247-258
    Mandelbrot B B. 1977. Fractal: forms, chance and dimension[M]. San Francisco: W. H. Freeman
    Mandelbrot B B. 1983.The Fractal geometry of nature[M]. San Francisco: W. H. Freeman
    Narr, W., Fracture density in the deep subsurface: Techniques with application to Point Arguello oil field. AAPG Bulletin, 1991, (75): 1300-1323.
    Narr, W., Estimating average fracture spacing in subsurface rock, AAPG Bulletin, 1996, 80(10): 1565-1586.
    Narr, W. and Suppe, J., Joint spacing in sedimentary rocks: Journal of Structural Geology, 1991, 13, 1037-1048.
    Odling, N. E. and Webman, Ⅰ. 1991. A conductance mesh approach to the permeability of natural and simulated fracture patterns. Water Resource Research, Vol.27, 2633-2643
    Priest S. D., Hudson J. A. 1976. Discontinuity of Spacing in Rocks. Int. J. Rock Mech. Min. Sci. And Geomech. Abstracts, Vol. 13
    Priest S. D., Husdon J. A. 1981. Estimation of discontinuity spacing amd trace length using scanline. Int. J. Rock Mech. Min. Sci. And Geomech. Abstracts, Vol.19
    P. J. Pahl, 1981, Estimating the Mean Length of Discontinuity Traces, Int. J. Rock Mech. Min. sci. &Geo, ech. Abste. Vol.18, pp.221 to 228;
    Pointe P R. 1988. A method to characterize fracture density and connectivity through fractal geometry[J]. Int. J. Rock Min. Sci. & Geomech. Abstr., 25(6): 421-429
    Priest, S. D., 1993. Discontunuity analysis for rock engineering. Chapman & Hall Press
    Priest, S.D., Hudson, J.A., 1981. Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics, Mining Science & Geomechanics Abstracts 18, 183-197.
    Renshaw, C. E. and Harvey, C. E, 1994. Propagation velocity of a natural hydraulic fracture in a poroelastic medium: Journal of Geophysics Research, 99, 21, 667-21, 677.
    Renshaw, C. E., Influence of subcritical fracture growth on the connectivity of fracture networks, Water Resources Research, 1996, 32(10): 1519-1530.
    S. D. Priest, J. A. Hudson. 1981. Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. and Geomech. Abstracts, Vol.18: 183-197
    S. D. Priest. 1993. Discontnnuity analysis for rock engineering. Chapman & Hall Press
    S. D. Priest, 2004, Determination of Discontinuity Size Distributions from Scanline Data, Rock Mech. Rock Engng, DOI 10.1007/s00603-004-0035-2;
    S. D. Priest & J. A. Hudson, 1981, Estimation of Discontinuity Spacing and Trace Length Using Scanline Suereys, Int. J. Rock Mech. Min. sci. &Geomech. Abstr. Vol.18, pp.183 to 197;
    S. Sen, A. Kazi,1984, Discontinuity Spacing and RQD Estimates from Finite Length Scalines, Int. J. Rock Mech. Sci. & Geomech. Abstr. Vol.21(4): 203-212
    Sen Z, et al. Kulatilake, 1984, Discontinuity spacing and ROD estimates from finite length scanline Int. J. Rock Mech. Min. sci. &Geomech. Abstr, 21(4): 203;
    Sen Z, et al. 1984. Discontinuity spacing and RQD estimates from finite length scanline. Int. J. Rock Mech. Min. Sci .and Geomech. Abstracts, Vol.18: 203-212
    Snow, D. T. 1965. A Parallel Plate Model of Fractured Permable Media, Ph. D. Dissertation, Univ. of California, Berkeley, California.
    Snow D. t. 1970. The Frequency and Apertures of Fracture in Rock. Int. J. of Rock Mechanics and Mining Science. Vol.7(1): 23-30
    Steffen O. H. K. et al. Recent developments in the interpretation of data from the joint surveys in rock masses. Proc.6th Regional Conf. for Africa on Soil Mech. and Foundation Engineering Durban, South Africa, 1975: 135
    Underwood, E. E., The mathematical foundations of quantitative stereology. In: Stereology and Quantitative Metailography, Massachusetts, Addison-Wesley, Reading, 1972: 3-38.
    Veneziano, D., 1978. Probabilistic Model of Joints in Rock. Civil Engineering Dept. Research Report. Massachusetts Institute of Technology, Cambridge MA
    Warburton P. M. 1980, A stereological interpretation of joint trace data. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 17, 181-190.
    Wallis P. E, King M. S. Discontinuity spacings in crystalline rock. Inter J. Rock Mech. Min. Sci. & Geomech. Abstr.
    Wayne Narr, 1996, Estimating average fracture spacing in subsurface rock: AAPG Bulletin, V.80, No.10, p.1565-1585.
    Wu, H. and Pollard, D. D., 1995, An experimental study of the relationship between joint spacing and layer thickness, Journal of Structural Geology, 17(6): 887-905
    Xu Jiandong., Qu, G. and Jacobi, R. D., 1999, Fractal and multifractal properties of the spatial distribution of natural fracture networks - analyses and applications: ACTA Geological Sinica, v.72, no.4, 477-487.
    Xu Jiandong., Lin J. and Jacobi, R. D., 2002, Characterizing fracture patterns by using semivariograms: ACTA Geological Sinica, v.76, no.1, p.89-99.
    Xu Jiandong. and Jacobi, R. D., 2003, Estimating 2-D and 3-D fracture densities from 1-D data - experimental and field results: ACTA Geological Sinica, v.77, no.4, p.495-503.
    Xu, J., Lin, J and Jacobi, R. D., 2002, Characterizing fracture patterns by using semivariograms: ACTA Geological Sinica, 75(1), 89-99.
    Xie Heping. Fractals in rock mechanics[M]. AA Balkema Press, Netherlands, 1992
    Xie H P, Pariseau, W CI. Fractal dimension of joint roughness surface[C]. In: Proc of Int Confon Fractured and Jointed Rock Masses. Berkeley, 1992, 72-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700