用户名: 密码: 验证码:
褐煤气流—喷动—移动床一体化干燥技术研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国乃至世界范围内,褐煤都有十分丰富的储量。随着我国石油、天然气资源的紧缺,以及对烟煤、无烟煤资源的过度开采,对褐煤的开发和利用将越来越重要。但是由于褐煤属于低阶煤,它含水量高、热值低,其应用受到了一定的限制。要大规模开发利用褐煤,必须对其加工提质。大连理工大学开发的固体热载体褐煤低温干馏技术(DG工艺),能将褐煤热解得到轻质油品、煤气和半焦,是一种经济、高效的褐煤利用技术。本文在DG工艺的背景下,以实现褐煤的干燥、输送和分离一体化为目标,以试验研究和专利技术为基础,将气流干燥、喷动床干燥以及移动床干燥进行合理组合,开发了一种新型的带内换热器的气流-喷动-移动床一体化干燥系统。
     本一体化干燥技术研发包括带内换热器的气流-喷动-移动床一体化干燥器的数学模型、系统阻力模型、设备结构设计、设备的ANSYS分析设计,以及应力分析评定等内容。
     一体化干燥器的工艺中,褐煤在气流干燥器底部加入,经热风干燥提升后进入喷动-移动床,气固在喷动床中分离,废气从床顶部排出,物料进入内热式移动床继续干燥,最后由床底部卸料。文章建立了直管型气流干燥器设计的通用数学模型。模型分析了恒速干燥过程中物料湿含量与气力输送过程中颗粒加速运动之间的不同关系,综合考虑了气固相对雷诺数Rer在过渡区、湍流区的情况,对一般气流干燥过程具有一定的普适性。对比了一体化干燥器与单一气流干燥器的设计结果,结论是一体化干燥器经济有效,热效率高、物料停留时间长。
     设计了一体化干燥器主体与相关附属结构。气流干燥管与喷动-移动床分别用带刚性环的耳式支座固定,它们之间用波形膨胀节连接。喷动-移动床底部由一“天圆地方”结构与卸料搅龙连接。
     利用ANSYS有限元分析软件,在不同工况组合下,分别对气流干燥器、喷动-移动床进行分析设计。分析了设备的应力强度分布,对应力结果进行应力线性化以及应力强度评定,并根据分析结果对设备结构进行了优化。分析设计结果表明,在设计工况下,气流干燥器和喷动-移动床干燥设备均满足应力强度要求。
There is a large quantity of lignite all over the world, including our country. With the shortage of oil and natural gas resources, as well as over-exploitation of bituminous coal and anthracite resources, development and utilization of lignite is becoming increasingly important. However, lignite blongs to low rank coal, and its utilization is greatly restricted because of its high water contents and low calorific values. It is necessary to upgrade&improve its quality for large-scale development and utilization. DG process developed by DUT is an economic and efficient lignite utilization technique, which can be used to pyrolyze lignite into light oil, gas and carbocoal. An integrated pneumatic-spouted-moving bed drying system with internal heat exchanger is developed in the present work. This new drying system, which appropriately combines pneumatic drying, spouted bed drying and moving bed drying based on experiment study and patent technology, is aimed to achieve the integration of lignite drying, conveying and separating against the background of DG technology.
     The development of this integrated drying technique includes of mathematical model of integrated pneumatic spouted mobile bed with internal heat exchanger, system resistance model, device structure design, analytical design of the device using Ansys software, and intensity evaluation.
     In the process of the novel integrated drying technique, lignite is feed in the bottom of pneumatic dryer first, then is raised into the spout-mobile bed by hot air, and separates with air in the spouted bed, then partly-dried lignite fells into the mobile bed with internal heat exchanger to continue the drying process while exhaust air is discharged through top of the spout bed, and dried lignite is unloaded from bottom of the dryer finally. A universal mathematical model is built to design straight pipe dryer in the paper. The model has discussed the varied relationship between the material moisture content during constant rate drying and the particle acceleration during pneumatic transmission, considered the relative Reynolds number of gas-solid two-phase in both transition flow and turbulent flow, and therefore is applicable to general pneumatic drying situations. Compared with the results of single pneumatic dryer, the integrated drying performance, higher thermal efficiency and longer residence time.
     The main device and subsidiary structure of the integrated dryer have been designed and drawn. The pneumatic dryer and spout mobile bed are connected by bellow expansion joint, and fixed by lug support with stiffening ring respectively. On the bottom of the spout mobile bed, round top and square bottom components are connected to the discharge auger.
     The pneumatic dryer and spout mobile bed were analytically designed by ANSYS finite element software with various load cases. Stress intensity of device was calculated, linearized, and evaluated. In addition, the device structure was optimized according to analysis design. The study showed that results meet the stress intensity requirements under design condition.
引文
[1]高文永,单葆国.中国能源供需特点与能源结构调整[J].华北电力大学学报(社会科学版),(3).
    [2]林伯强,姚昕,刘希颖.节能和碳排放约束下的中国能源结构战略调整[J].中国社会科学,2010,(1):58-71.
    [3]余江龙,宋辉,毕孝国,等.褐煤干燥提质一体化加工设备:中国,200720011131.5[P].2007-08-22.
    [4]宋彬彬.褐煤低温热改质及成浆性能研究[D].大连理工大学,2008.
    [5]煤炭加工与高效洁净利用教育部重点实验室中国矿业大学化工学院.褐煤利用的实践与研究.中国大型现代化煤矿建设——全国大型煤矿建设现场会暨推进煤炭生产规模化现代化发展论坛资料汇编[C].鄂尔多斯,[出版者不祥]2009:258-262.
    [6]郭树才,罗长齐,张代佳,等.褐煤固体热载体干馏新技术工业性试验[J].大连理工大学学报,1995,(1):46-50.
    [7]王涛.褐煤的脱水提质及干燥/热分解动力学研究[D].大连理工大学,2011.
    [8]国家统计局,中国统计年鉴1996.北京:中国统计出版社,1996.
    [9]崔民选主编.2007年中国能源报告.北京:社会科学文献出版社,2007.
    [10]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999.
    [11]尹立群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004,(8):12-14.
    [12]Nakagawa H, Namba A, Bohlmann M, et al. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst [J]. Fuel,2004,83(6):719-725.
    [13]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神华科技,2009,(2):17-22.
    [14]汪寿建.褐煤干燥成型多联产在工程实践中的应用和发展[J].化工进展,2010,(8):1379-1387.
    [15]曲万山,杜遂卿,殷玉莲.褐煤提质干燥成型一体化技术.全国褐煤干燥、提质技术与产业发展论坛报告论文集[C].昆明,[出版者不祥]2009:69-77.
    [16]郭树才.煤化学工程[M].冶金工业出版社,1991.
    [17]Chun-Zhu Li. Advances in the science of victorian brown coal [M],2004.
    [18]陈海旭.我国褐煤燃前脱灰脱水提质现状[J].中国煤炭,2009,35(4):98-101.
    [19]闫玉杰,秦志宏,李瑞丰.国内褐煤的加工应用[J].广州化工,2011,39(10):23-25.
    [20]李凤刚,鞠彩霞.K-燃料-工艺技术及应用[J].煤化工,2011,(3):13-15.
    [21]张伟,王再义,王相力,等.日本神户制钢UBC工艺的开发[J].洁净煤技术,2010,(4):63-66.
    [22]Sugita S, Deguchi T, Shigehisa T. UBC(UpgradedBrown Coal)process development [J]. Kobe Steel Engineering Reports,2003(2):41-45.
    [23]郭树才.褐煤新法干馏[J].煤化工,2000,(3):6-8.
    [24]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2004.
    [25]Katalambula H, Gupta R. Low-Grade Coals:A review of some prospective upgrading technologies [J]. Energy & Fuels,2009,23(7):3392-3405.
    [26]姚强.洁净煤技术[M].北京:化学工业出版社,2005.
    [27]Rozgonyi, T. G., Szigeti, L. Z. Upgrading of high moisture content lignite using saturated steam [J]. Fuel processing technology 1985,10(1),1-18.91.
    [28]申宝宏,赵路正.高碳能源低碳化利用途径分析[J].中国能源,2010,(1):10-13.
    [29]王学举,王涛,于才渊.褐煤资源洁净高效转化中的脱水技术[J].干燥技术与设备,(3).
    [30]董冰,刘涛.基于褐煤提质的技术分析与产能实现[J].河南科学,2010,(10):1344-1347.
    [31]于才渊,王宝和,王喜忠编著.干燥装置设计手册[M].北京:化学工业出版社,2005.
    [32]化学工程手册编委会.化学工程手册4[M].北京:化学工业出版社,16-211.
    [33]Pelegrina A H, Crapiste G H. Modelling the pneumatic drying of food particles [J]. Journal of Food Engineering,2001,48(4):301-310.
    [34]Bunyawanichakul P, Walker G J, Sargison J E, et al. Modelling and simulation of paddy grain (rice) drying in a simple pneumatic dryer [J]. Biosystems Engineering, 2007,96(3):335-344.
    [35]Ross D, Doguparthy S, Huynh D, et al. Pressurised flash drying of Yallourn lignite [J]. Fuel,2005,84(1):47-52.
    [36]Baeyens J, van Gauwbergen D, Vinckier I. Pneumatic drying. The use of large-scale experimental data in a design procedure [J]. Powder Technology,1995,83(2):139.
    [37]S. M. El-Behery, et al. Porous particles drying in a vertical upward pneumatic conveying dryer [J]. Int. J. Aerospace Mech. Eng.,5(2011), pp.110-125.
    [38]Jamaleddine T J, Ray M B. Numerical simulation of pneumatic dryers using computational fluid dynamics [J]. Industrial and Engineering Chemistry Research, 2010,49 (12):5900-5910.
    [39]Mezhericher M, Levy A, Borde I. Three-dimensional modelling of pneumatic drying process [J]. Powder Technology,2010,203(2):371-383.
    [40]Skuratovsky I, Levy A, Borde I. Two-dimensional numerical simulations of the pneumatic drying in vertical pipes [J]. Chemical Engineering and Processing: Process Intensification,2005,44(2):187-192.
    [41]金辉.气流干燥技术研究现状与发展趋势[J].现代农业科技,2010,(3):31,35.
    [42]理丛.气流干燥器设计中的若干问题[J].化工设计通讯,1988,(03).
    [43]马克承,陈明凤.气流干燥器加速区的工作方程式——有关微分方程式的分段积分法.成都科技大学学报,1990(4):81-90.
    [44]叶世超.气流干燥器管长设计的简便方法[J].化工机械,1993:82-86.
    [45][日]桐荣良三.气流干燥装置(续——新化学工业讲座(10))[M].(日刊工业新闻社).1960.
    [46]化学工程手册编委会.化学工程手册4[M].北京:化学工业出版社,16-277.
    [47]张怀清.大直径喷动床流动特性的研究近况[J].沈阳化工学院学报,1991,(2):105-114.
    [48]张怀清.第二讲喷动床技术及其应用[J].沈阳化工,(4).
    [49]曹恒武,田振山.干燥技术及其工业应用[M].北京:中国石化出版社,2003.
    [50]沈善明.内加热式流化床干燥器[J].医药工程设计杂志,2004,25(6):3-5.
    [51]Mujumdar, A S. Research and development in drying recent trends and future prospects. Beijing,2002.
    [52]李建国,赵丽娟,潘永康,等.组合干燥的应用及进展[J].化学工程,2006,34(1):8-11.
    [53]田忠坤.直管式气流干燥器干燥褐煤的试验研究[J].选煤技术,2010,(3):16-20.
    [54]田忠坤.管式气流干燥器提质低阶煤理论与技术的研究[D].中国矿业大学(北京),2009.
    [55]许圣华.烟气物性的直接计算方法[J].苏州丝绸工学院学报,1999,(03).
    [56]张言文.气流干燥器数学模型及分段设计计算方法[J].计算机与应用化学,2006,(04).
    [57]上海海运学院起重运翰机械教研组气力运翰小组.气力输送中悬浮速度的理论与实践[J].医药工程设计,1977,(01).
    [58][日]桐荣良三.干燥装置手册.秦霁光等译.上海科学技术出版社1983.
    [59]Ranz W E,Marshall W R. Chem Eng Progr,1952,48 (3):141.
    [60]李文曲,叶京生.喷动床干燥工艺综述[J].医药工程设计,2001,(5):45-48.
    [61]JBT4746-2002,钢制压力容器用封头[S].
    [62]李永生,李建国.波形膨胀节实用技术——设计、制造与应用[M].北京:化学工业出版社,2002.
    [63]朱志彬,翟丽华,李健,等ANSYS在化工机械设计中的应用[J].装备制造技术,2004,(1):16-20.
    [64]余炜炜,高炳军ANSYS在机械与化工装备中的应用[M].北京:中国水利水电出版社,2007:114-149.
    [65]龚曙光,谢桂兰.氨冷器管板的应力分析设计[J].化工装备技术,2003,24(2):26-29.
    [66]ANSYS Inc. ANSYS Workbook [Z],rease5.7.2000.
    [67]JB/T 4710-2005,钢制塔式容器[S].
    [68]杨刚,经树栋.合成塔的应力分析及评定[J].石油化工设备,2007,(5):38-42.
    [69]马宇山,金涛.基于ANSYS的塔设备地震与风载分析[J].制造业自动化,2010,(1):1-5.
    [70]JBT4732-1995,钢制压力容器——分析设计标准[S].
    [71]梅林涛,杨国义,寿比南.球形储罐应力分析及评定[J].压力容器,2002,(7):15-17.
    [72]杨国义,寿比南,梅林涛.塔式容器整体应力分析及评定[J].石油化工设备,2004,(1):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700