用户名: 密码: 验证码:
苜蓿与百脉根原生质体培养及体细胞杂交的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫花苜蓿被誉为“牧草之王”,其营养价值位列各种牧草之首。然而,青饲时易造成家畜臌胀病成为限制其营养价值发挥与利用的重要原因。百脉根又称“瘠地苜蓿”,由于富含缩合单宁,单独饲喂其鲜草或直接放牧不会引起臌胀病发生。目前,利用体细胞杂交技术将百脉根细胞中控制单宁合成的基因转入紫花苜蓿成为改良苜蓿品质、创造新品种的重要方法和途径。但以适宜西北内陆地区栽种和利用的苜蓿品种作为原生质体分离材料并开展体细胞杂交的研究较少。因此,本论文拟通过对杂花苜蓿、紫花苜蓿和百脉根等3种豆科牧草不同品种进行体细胞培养、原生质体培养及清水紫花苜蓿和里奥百脉根体细胞杂交的研究,建立和优化3种豆科牧草原生质体分离和培养体系及紫花苜蓿和百脉根体细胞杂交技术体系。取得的主要结果如下:
     1、苜蓿原生质体分离和培养
     1)以MS固体培养基为基本培养基,适于甘农1号杂花苜蓿和甘农4号紫花苜蓿愈伤组织诱导的最佳外植体均为下胚轴,最佳激素浓度与配比及诱导率分别为3.0mg·L~(-1)2,4-D+1.0mg·L~(-1)NAA+0.5mg·L~(-1)6-BA,96.7%;2.0mg·L~(-1)2,4-D+1.0mg·L~(-1)NAA+0.5mg·L~(-1)6-BA,100%;适于阿尔刚金紫花苜蓿愈伤组织诱导的最适激素浓度和配比为2.0mg·L~(-1)2,4-D+0.5mg·L~(-1)NAA+0.5mg·L~(-1)6-BA,下胚轴和子叶对出愈率的影响不显著(p>0.05),诱导率分别为100%,90%。试验证明,诱导出的苜蓿愈伤组织经过一段时间的继代调整,均可酶解分离出大量活力较高的原生质体。
     2)以4个苜蓿品种的胚性愈伤组织为酶解材料,甘农1号、甘农4号和清水紫花苜蓿的最佳酶液组合均为2%纤维素酶+0.5%果胶酶+0.3%崩溃酶,最适酶解时间分别为12h、14h和10h。阿尔冈金的最佳酶液组合为2%纤维素酶+0.5%果胶酶+0.3%半纤维素酶+0.3%离析酶+0.3%崩溃酶,最适酶解时间为12h。适宜4个苜蓿品种原生质体酶解的最佳甘露醇浓度分别为:甘农1号0.75mol·L~(-1),甘农4号0.65mol·L~(-1),阿尔冈金0.6mol·L~(-1),清水紫花苜蓿0.55~0.6mol·L~(-1)。最佳愈伤组织继代培养时间均为第12d。适宜4个苜蓿品种愈伤组织酶解的最佳预处理措施分别为,甘农1号0.55mol·L~(-1)蔗糖或CPW溶液中处理1h,甘农4号预低温处理1h或0.55mol·L~(-1)蔗糖溶液中处理1h,阿尔冈金和清水紫花苜蓿均为0.55mol·L~(-1)CPW溶液中处理1h。4个苜蓿品种原生质体最高产量可达2.48×10~6个·g~(-1)(甘农4号),最大活力值为93.1%(清水紫花苜蓿)。
     3)采用液体浅层培养法和固液双层培养法,4个苜蓿品种在含KM8P培养液的培养基上培养第2~3d,均可观察到原生质体再生细胞的第1次及多次分裂,第7~14d形成肉眼可见的微愈伤组织,转入含0.5~3mg·L~(-1)2,4-D,0.5~1mg·L~(-1)NAA、0~0.5mg·L~(-1)6-BA和0~0.5mg·L~(-1)KT的固体培养基增殖与继代,最终均获得了原生质体再生的愈伤组织。固液双层培养法较液体浅层培养法形成再生细胞团的时间较早,操作简便且不易污染,更有利于苜蓿原生质体早期的分裂和再生。
     2、百脉根原生质体分离和培养
     1)以MS固体培养基为基本培养基,适于里奥愈伤组织诱导的最佳外植体为下胚轴,最佳激素浓度和组合为:1.0mg·L~(-1)2,4-D+2.0mg·L~(-1)KT,诱导率为92.2%;在仅含0.5~3.0mg·L~(-1)KT的MS基本培养基上下胚轴和子叶诱导1个月左右均可直接生成胚状体和小苗,经2~3次继代发育成完整植株。
     2)适于里奥无菌苗子叶和胚性愈伤组织原生质体分离的最适酶液组合均为2%纤维素酶+0.5%果胶酶+0.3%半纤维素酶,最佳酶解时间分别为6h及12h,最适甘露醇浓度均为0.55mol·L~(-1)。里奥愈伤组织分离原生质的最佳继代培养时间为第8d;0.55mol·L~(-1)CPW溶液中预质壁分离1h或预暗培养1d均可显著(p<0.05)增加其原生质体的产量和活力。子叶和愈伤组织原生质体最高产量和活力分别可达4.13×106个·g~(-1),65%和3.8×106个·g~(-1),67.4%。
     3)采用液体浅层培养法,由子叶和胚性愈伤组织分离的原生质体在KM8P+1.0mg·L~(-1)2,4-D+2.0mg·L~(-1)KT+13.0%(0.7mol·L~(-1))甘露醇的培养基上可持续分裂并形成肉眼可见的微愈伤组织,当愈伤组织长到直径0.5mm左右时,转入含相同激素浓度的MS固体培养基上增殖和继代。大量的体细胞胚胎和再生小植株在含MS+2.0mg·L~(-1)KT+0.7%琼脂+12.0%蔗糖的培养基中发生。从原生质体第一次分裂至再生植株仅需3~4个月。再生植株移栽成活率达95%。3、苜蓿和百脉根的体细胞杂交
     1)3~10mmol·L~(-1)的IOA和40~70μg·m L~(-1)的R-6G分别处理10min,可使清水紫花苜蓿和里奥百脉根原生质体的活力及植板率明显下降,各处理浓度与原生质体活力和植板率之间均存在极显著的负相关(p<0.01)。培养第7d,所有处理均可见再生的小细胞团,培养30~40d,2种抑制剂临界浓度下原生质体均丧失形成愈伤组织的能力。适宜2种豆科牧草的抑制剂及临界浓度分别是:清水紫花苜蓿3mmol·L~(-1)IOA或40μg·m L~(-1)R-6G;百脉根5mmol·L~(-1)IOA或50μg·m L~(-1)R-6G。
     2)FDA、罗丹明B、罗丹明6G和吖啶橙均可使苜蓿原生质体清晰染色,可用于细胞融合时亲本原生质体的标识。其中,FDA染色最为清晰,是检测原生质体活力的理想染料。吖啶橙和DAPI可对细胞核进行特异性染色,可用于融合时细胞核的观察和计数,前者还可用于检测融合细胞的活力,为进一步研究摸索融合条件和融合细胞的培养提供理论依据。
     3)在已摸索出的最佳酶解和培养条件下,用3mmol·L~(-1)IOA和50μg·mL~(-1)R-6G分别处理清水紫花苜蓿和里奥百脉根愈伤组织来源的原生质体,利用PEG高Ca高pH值法诱导二者融合,最佳PEG浓度为35%,异源融合率为3.1%。利用固液培养法,杂种融合细胞在培养第4d出现第一次细胞分裂,2周后形成肉眼可见的微愈伤组织。待愈伤组织直径达0.5cm左右,转入MS固体培养基。经3~4次继代,最终获得杂种愈伤组织。
Alfalfa (Medicago sativa L.) is praised as‘the king of the forage’, its nutritionalvalue listed first among all kinds of forages. However, Livestock bloat diseasebecome the important limit reason for utilization and extension of its nutritional valuewhen green feeding with alfalfa. Birdsfoot trefoil (Lotus corniculatus Linn.) is praisedas ‘the alfalfa of infertile regions’, and it cann’t cause the tympanites when onlyfeeding its fresh grass or directly grazing in birdsfoot trefoil field because it is rich indense tannin. Now, it is an important ways and means to transfer the controllingtannins synthetic gene by means of somatic hybridization technology for improvingalfalfa quality and creating new alfalfa germplasm. But only a little investigation wasreported on the protoplasts isolation and somatic hybridization using the materials ofcultivated alfalfa varieties adapted northwest china. Thus, this paper wanted toestablish and optimize the experimental system of protoplast isolation and culture ofthree legume forages via somatic cell culture, protoplast culture,and to obtain thesomatic cell hybridization system via the protoplast fusion between M. sativa L.and L.corniculatus Linn. The main results of this research were as follows:
     1、Protoplast isolation and culture of alfalfa
     1)For callus induction of ‘Gannong No.1’and ‘Gannong No.4’, the optimumexplant on MS basic medium both was hypocotyl, and the best hormoneconcentration and combination were3.0mg·L~(-1)2,4-D+1.0mg·L~(-1)NAA+0.5mg·L~(-1)6-BA with the rate of induction of96.7%and2.0mg·L~(-1)2,4-D+1.0mg·L~(-1)NAA+0.5mg·L~(-1)6-BA with the rate of induction of100%,respectively. There wasn’t significant influence (p>0.05) of differentexplants on callus induction from‘Algonquin’and2.0mg·L~(-1)2,4-D+0.5mg·L~(-1)NAA+0.5mg·L~(-1)6-BA were propitious both for hypocotyl andcotyledon with the rate of induction100%and90%, respectively.
     2)The optimum enzyme solution combination of protoplasts isolation for‘Gannong No.1’,‘Gannong No.4’and ‘Qingshui’were2%celluloseonozuka R~(-1)0+0.5%pectinase Y-23+0.3%Driselase with the optimumenzymolysis time of12,14and10h, respectively. For ‘Algonquin’, the bestenzyme solution combination and enzymolysis time were2%cellulose onozuka R~(-1)0+0.5%pectinase Y-23+0.3%hemicellulose+0.3%macerozyme+0.3%driselase with12h enzyme digestion. The optimumenzyme osmoticum pressure for4varieties was:0.75mol·L~(-1)for ‘GannongNo.1’,0.65mol·L~(-1)for Gannong No.4’,0.6mol·L~(-1)for ‘Algonquin’ and0.55~0.6mol·L~(-1)for‘Qingshui’. The optimum callus subculture time for4varieties was12d. The best pretreatment methods for four varieties calli were:preplasmolyzing with0.55mol·L~(-1)sucrose or CPW solutions for1h for‘Gannong No.1’, preculture in4℃in1d or with0.55mol·L~(-1)sucrosesolutions for1h for‘Gannong No.4’, preplasmolyzing with0.55mol·L~(-1)CPW solutions for1h both for‘Algonquin’ and ‘Qingshui’. The highestyield and viability of four alfalfa varieties were2.48×106·g~(-1)(‘GannongNo.4’) and93.1%(‘Qingshui’).
     3)The first divisions of four alfalfa varieties occurred in2~3days of culture andmini calli could be seen after7~14days with the liquid thin layer andsolid-liquid double layers culture methods both containing the KM8P medium.The regenerated calli from protoplasts of4cultivars were finally obtained bypropagation and subculture on the MS medium with0.5~3mg·L~(-1)2,4-D,0.5~1mg·L~(-1)NAA,0~0.5mg·L~(-1)6-BA and0~0.5mg·L~(-1)KT. Thesolid-liquid double layers culture method is advantageous than the liquid thinlayer because of the earlier cell division, more simple operate and not easy topollution during protoplast culture period.
     2、Protoplast isolation and culture of birdsfoot trefoil
     1)For callus induction of‘Leon’, the optimum explant on MS basic mediumwas hypocotyl, and the best hormone concentration and combination was1.0mg·L~(-1)2,4-D+2.0mg·L~(-1)KT with the rate of induction of92.2%. Thehypocotyls and cotyledons of L. corniculatus produced numerous somaticembryos and plantlets on MS medium only containing0.5~3.0mg·L~(-1)KTafter about1month in the culture. And after subcultured2~3times, theentirely plants were obtained.
     2)The best enzyme combination for both cotyledons and calli were2%celluloseonozuka R~(-1)0+0.5%pectinase Y-23+0.3%hemicellulose with0.55mol·L~(-1)mannitol. The optimum enzymolysis time was6h for cotyledons and12h for calli. Results indicated that both yield and viability of calli protoplastssignificantly increase (p<0.05) through pre-culture for8d, preplasmolyzingwith0.55mol·L~(-1)CPW solutions for1h, or under darkness for1d. The highestyield and viability of protoplasts for cotyledons and calli were4.13×10~6·g~(-1),65%and3.8×106·g~(-1),67.4%, respectively.
     3)The protoplast isolating from cotyledons and calli could constantly divide andform mini visible calli on KM8P medium with1.0mg·L~(-1)2,4-D+2.0mg·L~(-1)KT+13.0%(0.7mol·L~(-1)) mannital. Numerous somatic embryos andregenerated plantlets appeared on MS medium with2.0mg·L~(-1)KT+0.7%agar+12.0%sucrose by the propagation and subculture of calli. Whenregenerated mini calli grew to0.5cm, the protoplast culture medium wasneeded to change into MS solid medium.Only3~4months was needed toobtain the regenerated plantlets from the first divisions of protoplasts. Thesurvival rate of regenerated plant from protoplast arrived at95%.
     3、Somatic hybridization of M. sativa L.‘Qingshui’and L. corniculatus Linn.‘Leon’
     1)The viability and plate efficiency of protoplasts from‘Qingshui’and ‘Leon’were obviously reduced under affecting of3~10mmol·L~(-1)IOA and40~70μg·m L~(-1)Rhodamine6G for10min. Correlation analysis revealed thatthe viability and plate efficiency of2species and effects of IOA and R-6Gwith different concentrations had significantly negative correlation(p<0.01).All protoplasts regenerated small aggregated cells cluster under the influenceof IOA and R-6G after culture for7days. The development of theseprotoplasts stopped and could not form calli because affecting of IOA andR-6G with a critical concentration after culture for30to40days. Theinhibitor and critical concentrations suitable for3forages were:3mmol·L~(-1)IOA or40μg·m L~(-1)R-6G for M. sativa L.‘Qingshui’and5mmol·L~(-1)IOA or50μg·m L~(-1)R-6G for L. corniculatus Linn.‘Leon’.
     2)FDA, Rhodamine B, R-6G and Acridine Orange could dye and markprotoplasts of alfalfa clearly, which could identify parents protoplasts fromfusion clusters. FDA was the most optimal dye for testing the livability ofprotoplasts. Acridine Orange and DAPI can dye specific on nucleus of protoplasts, so that to count and survey nucleus in cell fusion. The former canalso test the viability of fusion cell and provide the theory basis by identifyingthe heterocaryon and testing their viability for exploring the cell fusioncondition and culturing the fusion cell.
     3)Under the optimum enzymolysis and culture conditions, the protoplasts of‘Qingshui’ treated with3mmol·L~(-1)IOA and the protoplast of ‘Leon’ treatedwith50μg·m L~(-1)R-6G before somatic hybridization. The best fusioncondition with PEG was35%for the hybrid cell and the heterologous fusionrate was3.1%. The first division of hybrid cells occurred in4d and cellclusters could be seen after2weeks with solid-liquid double culture method.When hybrid cells grow to0.5cm, the protoplast culture medium was neededto change into MS solid medium. The hybrid calli was obtrained aftersubculture for1~2times.
引文
[1]刘庆昌,吴国良.植物细胞组织培养[M].北京:中国农业大学出版社,2010
    [2]孙敬三,朱至清.植物细胞工程实验技术[M].北京:化学工业出版社,2006
    [3]李浚明.植物组织培养教程.北京:北京农业大学出版社,1992
    [4] Ahuja P S, Lu D Y, Cocking E C., et al. An assessment of the cultural capabilities of Trifoliumrepens L.(White Clover) and Onobrychis viciifolia Scop.(Sainfoin) mesophyll protoplasts[J].Plant Cell Reports,1983,2:269-272
    [5] Mariotti D, Arcioni S, Pezzotti M. Regeneration of Medicago arborea L. plants from tissueand protoplast cultures of different organ origin[J]. Plant Science Letters,1984,37(1-2):149-156
    [6] Gilmour D M, Davey M R, Cocking E C. Plant regeneration from cotyledon protoplasts ofwild Medicago species[J]. Plant Science,1987,48(2):107-112
    [7] Myers J R, Grosser J W, Taylor, et al. Genotype-dependent whole plant regeneration fromprotoplasts of red clover (Trifolium pretense L.)[J]. Plant Cell, Tissue and Organ Culture,1989,19:113-127
    [8] Vieira M L C, Jones B, Cocking E C, et al. Plant regeneration from protoplasts isolated fromseedling cotyledons of Stylosanthes guianensis, S. macrocephala and S. scabra[J]. Plant CellReports,1990,9:289-292
    [9] Zafar Y, Nenz E, Damiani F, et al. Plant regeneration from explant and protoplast derivedcalluses of Medicago littoralis[J]. Plant Cell, Tissue and Organ Culture,1995,41,41-48
    [10]罗建平,贾敬芬,顾月华,等.沙打旺胚性原生质体培养优化及高频再生植株[J].生物工程学报,2000,16(1):17-21
    [11]贺辉,贾春林,盛亦兵,等.草木樨愈伤组织的诱导及其原生质体的制备[J].山东农业科学,2008,4:5-7
    [12]李玉珠,陶茸,王娟,等.百脉根原生质体的分离和酶解条件的研究[J].草地学报,2010,18(6):798-804
    [13]陶茸,李玉珠,王娟,等.扁蓿豆愈伤组织原生质体分离条件的研究[J].草地学报,2011,19(2):288-293
    [14]陶茸,李玉珠,师尚礼,等.陇东野生紫花苜蓿愈伤组织原生质体有利条件的筛选[J].中国草地学报,2011,33(1):30-35
    [15]陶茸,师尚礼,李玉珠,等.‘陇东’紫花苜蓿原生质体最佳分离条件[J],植物生理学报,2011,47(5),495-500
    [16]肖尊安,祝扬.植物组织培养导论[M].北京:化学工业出版社,2006
    [17] Cocking E C. A method for the isolation of plant protoplasts and vacuoles[J]. Nature(London),1960,187:927-929
    [18] Kao K N and Michayluk M R. Plant regeneration from mesophyll protoplasts of alfalfa[J].Zeitschrift für Pflanzenphysiologie,1980,96:135-141
    [19] Ahuja P S, Hadiuzzaman S, Davey M R and Cocking E C. Proflic plant regeneration fromprotoplast-derived tissues of Lotus corniculatus L.[J].Plant Cell Reports,1983,2(20):101-104
    [20] Hideki A. Development of a quantitative method for determination of the optimal conditionsfor protoplast isolation from cultured plant cells[J]. Biotechnology Letter,2006,28:1687-1694
    [21] Nagata T, Takebl I. Plating of isolated tobacco mesophyll protoplasts on agar medium[J].Planta,1971,9:12-20
    [22]黄绍兴,王慧中,吕德扬.紫花苜蓿根原生质体植株再生[J].科技通报,1995,11(4):232-234
    [23]刘明志.大叶紫花苜蓿愈伤组织原生质体再生植株[J].武汉植物学研究,1996,14(4):329-333
    [24]徐子勤,贾敬芬,胡之德.苜蓿根癌农杆菌转化系原生质体培养研究[J].武汉植物学研究,1997,15(3):283-285
    [25] Mariza M, Beatriz A, Maria J V, et al. Plant regeneration from protoplasts of alfalfa(Medicago sativa) via somatic embryogenesis[J].Scientia Agricola,2003,60(4):683-689
    [26]王海波,玉永雄.紫花苜蓿原生质体游离条件的研究[J].中国草地学报,2006,28(5):33-37
    [27]白静仁,何茂泰,袁清,等.野生黄花苜蓿叶肉原生质体培养和再生植株[J].草地学报,1994,2(1):59-63
    [28]张相岐,王献平,安利佳,初敬华.天蓝苜蓿原生质体培养再生植株[J].植物学报,1996,38(3):241-244
    [29]刘明志.百脉根愈伤组织原生质体再生植株[J].西北植物学报,1996,16(4):403-406
    [30]张谦,郑国锠.埃斯基红豆草下胚轴愈伤组织原生质体的培养与植株再生[J].西北植物学报,1994,14(2):97-100
    [31]张谦,郑国锠.埃斯基红豆草原生质体培养直接形成体细胞胚与再生植株[J].兰州大学学报(自然科学版),1995,31(1):61-67
    [32] Carlson P S. Induction and isolation of auxotrophic mutants in somatic cell cultures ofNicotiana tabacum[J]. Science,1970,168:487-489
    [33] Bauer-Weston B, Keller W, Webb J, et al. Production and characterization of asymmetricsomatic hybrids between Arabidopsis thaliana and Brassica napus[J]. Theoretical AppliedGenetics,1993,96:150-158
    [34] Huang Y, Zhai Xiaoling, Li Shanshan, et al. Intergeneric somatic hybridization betweenTriticum aestivum L. and Legmus chinensis (Trin.) Tzvel[J]. Acta BotanicaBoreali-occidentalia sinica,1999,19(4):659-664
    [35] Varotto S, Nenz E, Lucchin M, et al. Production of asymmetric somatic hybrid plantsbetween Cichorium intybus L. and Helianthus annuus L[J]. Theoretical Applied Genetics,2001,102:950-956
    [36]李翠玲,夏光敏.混合小麦亲本与新麦草不对称体细胞杂交体系的建立[J].生物工程学报,2004,20(4):610-614
    [37]张晓红,夏光敏,陈永哲.青苗碱谷与高冰草的体细胞杂交及杂种性质鉴定[J].山东大学学报(理学版),2005,40(5):107-112
    [38]赵小强,马晖玲,周万海,等.草地早熟禾原生质体培养与融合[J].核农学报,2010,24(4):737-743.
    [39] Senda M, Takeda J, Abe S, et al Introduction of cell fusion plant protoplasts by electricstimulation[J]. Plant Cell Physiology,1979,20:1441-1443
    [40] Jadari R, Sihachakr D, Rossignol L, et al.Transfer of resistance to Verticillium dahliae Kleb.From Solanum torvum S. W. into potato (Solanum tuberosum L.) by protoplastselectrofusion[J]. Euphytica,1992,64:39-47
    [41] Brewer E P, Saunders J A, Angle J S, et al.Somatic hybridization between the zincaccumulator Thlaspi caerulescens and Brassica napus. Theoretical Applied Genetics,1999,99:761-771
    [42]王清,黄惠英,李学才,等.二倍体马铃薯体细胞电融合的研究[J].甘肃农业大学学报,2001,36:394-399
    [43]蔡兴奎,柳俊,谢从华.马铃薯栽培种与野生种叶肉细胞融合及体细胞杂种鉴定[J].园艺学报,2004,31(5):623-626
    [44]孙玉强.棉花原生质体培养和原生质体对称融合研究[D].武汉:华中农业大学,2005
    [45]徐小勇.柑橘原生质体融合及体细胞杂种核质遗传研究[D].武汉:华中农业大学,2006
    [46]汪静儿.棉花原生质体培养与体细胞杂交研究[D].杭州:浙江大学,2007
    [47] Gilmour D M, Davey M R, Cocking E C. Production of somatic hybrid tissues followingchemical and electrical fusion of protoplasts from albino cell suspensions of Medicago sativaand M. borealis[J]. Plant Cell Reports,1989,8:29-32
    [48] Gilmour D M, Davey M R, Cocking E C. Isolation and culture of heterokaryons followingfusion of protoplasts from sexually compatible and sexually incompatible Medicagospecies[J]. Plant Science,1987,53(3),263-270
    [49] Thomas M R, Johnson L B, White F F. Selection of interspecific somatic hybrids ofMedicago by using agrobacterium-transformed tissues[J]. Plant Science,1990,69(2):189-198
    [50] Mendis M H, Power J B, Davey M R. Somatic Hybrids of the Forage Legumes Medicagosativa L. and M. falcata L[J]. Journal of Experimental Botany,1991,42(12):1565-1574
    [51] Tian D, Rose R J. Asymmetric somatic hybridization between the annual legumes Medicagotruncatula and Medicago scutellata[J]..Plant Cell Reports,1999,18:989-996
    [52]金红,贾敬芬,都建国.沙打旺与苜蓿属间体细胞杂交[J].实验生物学报,2004,37(3):167-175
    [53]安骥飞.苜蓿与百脉根细胞融合的研究[D].重庆:西南农业大学,2005
    [54]贺辉.紫花苜蓿和白花草木樨细胞融合技术研究[D].兰州:甘肃农业大学,2008
    [55] Aziz M A, Chand P K, Power J B, et al. Somatic Hybrids between the forage legumes Lotuscorniculatus L. and L. tenuis Waldst et Kit[J]. Journal of experimental botany.1989,41(4):471-479
    [56] Pupilli F, Arcioni S, Damiani F. Protoplast fusion in the genus medicago and isoenzymeanalysis of parental and somatic hybrid cell Lines[J]. Journal of experimental botany,1991,106(2):122-131
    [57] Li Y G, Tanner G J, Delves A C, et al. Asymmetric somatic hybrid plants between Medicagosativa L.(alfalfa, lucerne) and Onobrychis viciifolia Scop.(sainfoin)[J]. Theoretical AppliedGenetics,1993,87:455-463
    [58] Pupilli F., Scarpa G M, Damiani F, et al. Production of interspecific somatic hybrid plants inthe genus Medicago through protoplast fusion[J]. Theoretical Applied Genetics,1992,84:792-797
    [59] Crea F, Calderini O, Nenz E, et al. Chromosomal and molecular rearrangements in somatichybrids between tetraploid Medicago sativa and diploid Medicago falcate[J]. TheoreticalApplied Genetics,1997,95:1112-1118.
    [60]张改娜.三种豆科牧草的原生质体的培养及骆驼刺和鹰嘴紫云英的体细胞杂交[D].西安:西北大学,2004
    [61] Mizukami Y, Mitsuru k, Takamizo T, et al. Interspecific hybrids between Medicago sativa L.and annual medicago containing Alfalfa weevil resistance[J]. Plant Cell, Tissue and OrganCulture,2006,84:79-88
    [62]吴殿星,胡繁荣.植物组织培养[M].上海:上海交通大学出版社,2009
    [63] Melchzer G, Sacristan M D, Holder A A. Somatic hybrids plants of potato and regeneratedfrom fused protoplast[J], Carlsberg research communications,1978,43:203-218
    [64] Liu Y H, Yu L. Advances on asymmetric somatic cell hybridization in plant[J]. Journal ofBiology,2004,21(2):10-13
    [65] Phaduivk K H, Leenhous M P. The molecular theory of radiation biology[M]. Berlin:Springer-Verlag,1977
    [66]刘宝,谢航,何孟元,等.烟草种间的体细胞杂交, Ⅰ.通过原生质体融合将波缘烟草部分核基因组转给普通烟草[J],遗传学报,1995,22(6):463-469
    [67]向凤宁,夏光敏.小麦与燕麦不对称体细胞杂交的研究[J],中国科学C辑,2002,32(4):299-305
    [68]朱永生,陈葆棠,余舜武,等.不对称体细胞杂交转移疣粒野生稻对水稻白叶枯病的抗性[J].科学通报,2004,49:1395-1398
    [69] Melchers G, Labib G. Somatic hybridisation of plants by fusion of protoplasts I. Selection oflight resistant hybrids of “Haploid” light sensitive[J]. Molecular Genetics Genomics,1974,135,177-194
    [70] Power J B, Frearson E M, Hayward C, et al. Some consequences of the fusion and selectiveculture of petunia and parthenocissus protoplasts[J]. Plant Science Letters,1975,5(3):197-207
    [71] Wijbrandi J, Vos J G M, Koornneef M. Tissue and organ culture transfer of regenerationcapacity from lycopersicon peruvianum to L.esculentum by protoplast fusion[J], Plant Cell,1988,2(2):193-196
    [72]郭文武.柑橘细胞电融合参数选择及种间体细胞杂种植株的再生[J].植物学报,1998,40(5):417-424
    [73]刘庆昌,米凯霞,周海鹰,等.甘薯和Ipomoea Lacunosa的种间体细胞杂种植株再生及鉴定[J].作物学报,1998,24(5):529-535
    [74]张冰玉,刘庆昌,翟红,等.甘薯及其近缘野生种种间体细胞杂种植株的有效再生[J].中国农业科学,1999,32(6):23-27
    [75] Guo J M, Liu, Zhai Q C, et al. Regeneration of plants from Ipomoea cairica L. protoplastsand production of somatic hybrids between I. cairica L. and sweetpoatato, I. batatas (L.)Lam[J]. Plant Cell, Tissue and Organ Culture,2006,87:321-327
    [76] Yang Y, Guan S, Zhai H, et al. Development and evaluation of a storage root-bearingsweet-potato somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L.[J]. PlantCell, Tissues and Organ Culture,2009,99:83-89
    [77]王凌健,倪迪安,宛新杉,等.水稻(Oryza sativa)原生质体经钝化后诱导融合再生可育体细胞杂种[J].实验生物学报,1998,31(4):413-421
    [78]侯喜林,曹寿椿,佘建明,等.碘乙酰胺和罗丹明对不结球白菜子叶原生质体线粒体失活效果的影响[J].中国蔬菜,2002,4:18-19
    [79] Kaendler C, Fladung M, Uhrig H. Production and identification of somatic hybrids betweenSolanum tuberosum and S. papita by using the rolC gene as a morphological selectablemarker[J]. Theoretical Applied Genetics,1996,92:488-462
    [80]王晶,向凤宁,夏光敏,等.利用不对称体细胞杂交向小麦转移高冰草染色体小片段[J].中国科学(C辑生命科学),2004,34:113-120
    [81] Christey M C, Makaroff C A, Earle E D. Atrazine-resistant cytoplasmic male-sterile-nigrabroccoli obtained by protoplast fusion between cytoplasmic male-sterile Brassicaoleracea and atrazine-resistant Brassica campestris[J]. Theoretical and Applied Genetics1991,83:201-208
    [82]司怀军,戴朝曦.马铃薯种间体细胞杂种植株的细胞学观察和过氧化物同工酶谱分析[J].马铃薯杂志,1998,12:195-199
    [83] Oberwalder B, Schilde-Rentschler L, Ruoss B. Asymmetric protoplast fusions between wildspecies and breeding lines of potato-effect of recipients and genome stability[J]. Theoreticaland Applied Genetics,1998,99:1347-1354.
    [84] Mireia B, Luis G-C, Mercedes D, et al. Somatic hybridization between an albino Cucumismelo L. mutant and Cucumis myriocarpus Naud[J]. Plant Science,1998,132(2):179-190
    [85] Jelodar N B, Blackhall N W, Hartman T P V, et al. Intergeneric somatic hybrids of rice
    [Oryza sativa L.(+) Porteresia coarctata (Roxb.) Tateoka][J]. Theoretical and AppliedGenetics,1999,99:570-577
    [86]郭文武,邓秀新.柑桔细胞电融合再生两个种间体细胞杂种[J].生物工程学报,2000,16:179-182
    [87] Xu Xiaoyong, Liu Jihong, Deng Xiuxin. Production and characterization of intergenericdiploid cybrids derived from symmetric fusion between Microcitrus papuana Swingle andsour orange (Citrus aurantium)[J]. Euplrytica,2004,136:115-123
    [88] Kao K N, Michayluk M K. Nutritional requirements for growth of Vicia hajastana cells andprotoplasts at a very low population density in liquid media[J], Planta1974,126:105-110.
    [89] Schweiger H G, Dirk J, Koop H U, et al. Individual selection, culture and manipulation ofhigher plant cells[J]. Theoretical and Applied Genetics,1987,73(6):769-783
    [90] Téoulé E. Hybridation somatique enire Medieago sativa L. et Medieago falcate L.[J].Comptes Rendus Academic des Sciences, Paris, SerieIII,1983,297:13-16
    [91] Deak M, Donn G, Feher A, et al. Dominant expression of a gene amplification-relatedherbicide resistance in medicago cell hybrids[J]. Plant Cell Reports,1988,7:158-161
    [92] Damiani F, Pezzotti M, Arcioni S. Electric field mediated fusion of protoplasts of Medicagosativa L. and Medicago arborea L.[J]. Plant Physiology,1988,132:474-479
    [93] Nenz E, Pupilli F, Damiani F, et al. Somatic hybrid plants between the forage legumeMedicago sativa L. and Medicago arborea L.[J]. Theoretical and Applied Genetics,1996,93:183-189
    [94] Pupilli F, Businelli S. Caceres M E, et al. Molecular cytological and morpho-agronomicalcharacterization of hexaploid somatic hybrids in Medicago[J]. Theoretical and AppliedGenetics,1995,90:347-355
    [95] Pupilli F, Labombarda P, Arcioni S. New mitochondrial genome organization in threeinterspecific somatic hybrids of Medicago sativa including the parent-specific amplificationof substoichiometric mitochondrial DNA units[J]. Theoretical and Applied Genetics,2001,103:972-978
    [96] Niizeki M, Saito K. Callus formation from protoplast fusion between leguminous species ofMedicago sativa and Lotus corniculatus[J]. Ikushugaku Zasshi,1989,39(3):373-377
    [97]徐子勤,贾敬芬.红豆草与苜蓿原生体融合再生属间体细胞杂种植株[J].中国科学(C辑).1996,26(5):449-454
    [98]韦革宏,朱铭莪,郭杰,等.苜蓿中华根瘤菌与鹰嘴豆中慢生根瘤菌原生质体的融合研究[J].西北农林科技大学学报(自然科学版),2002,1:18-22
    [99]王堃,陈默君.苜蓿产业化生产技术[M].北京:中国农业科技出版社,2001
    [100]金淑梅,管清杰,罗秋香,等.柳参奎苜蓿愈伤组织高频再生遗传和转化体系的建立[J].分子植物育种,2006,4(4):571-578
    [101]马晖玲,卢欣石,曹致中,等.紫花苜蓿不同栽培品种植株再生的研究[J].草业学报,2004,13(6):99-105
    [102]陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-560
    [103] McKersie B D, Chen Y R, deBeus M, et al. Superoxide dismutase enhances tolerance offreezing stress in transgenic alfalfa (Medicago stativa L.)[J]. Plant physiology,1993,103:1155-1163
    [104] Zhang J Y, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putativeMedicago truncatula AP2domain-containing transcription factor gene, increases cuticularwax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativaL.)[J]. The Plant Journal,2005,42:689-707
    [105] Brouwer D J, Duke S H, Osborn T C. Mapping factors associate with winter hardiness, fallgrowth and freezing injury in autotet raploid alfalfa [J]. Crop Science,2000,40:1387-1396
    [106]韩利芳,张玉发.烟草MnSOD基因在保定苜蓿中的转化[J].生物技术学报,2004,(1):39-43.
    [107] Winicov I, Bastola D R. Transgenic over expression of the transcription factor Alfin1enhances expression of the endogenous MsPRP2gene in alfalfa and improves salinitytolerance of the plant s[J]. Plant Physiology,1999,120:473-480.
    [108] Tesfaye M, Temple S J, Allan D L, et al. Over expression of malate dehydrogenase intransgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J].Plant Physiol,2001,127:1836-1844
    [109]罗小英,崔衍波,邓伟,等.超量表达苹果酸脱氢酶基因提高苜蓿对铝毒的耐受性[J].分子植物育种,2004,2(5):621-626
    [110] Hipskind J D, Pavia N L. Constitutive accumulation of resveratrol-glucoside in transgenicalfalfa increases resistance to Phoma medicaginis[J]. Molecular Plant-Microbe Interactions,2000,13(5):551-562
    [111] Dixon R A, Guo D G, Chen F, et al. Improvement of in-rumen digestibility of alfalfa forageby genetic manipulation of lignin O-methy ltrans ferases[J]. Transgenic Research,2001,10:457-464
    [112] Mizukami Y, Houmura I, Takamizo T, et al. Production of transgenic alfalfa with chintinasegene (RCC2)[A]. In: Spangenberg G. Abstracts2nd International Symposium MolecularBreeding of Forage Crops[C]. Victoria: Lorne and Hamitton,2000,105
    [113] Samac D A, Smigocki A C. Expression of oryzacystatin I and II in alfalfa increasesresistance to the root-lesion nematode[J]. Phytopathology,2003,93:799-804
    [114] Strizhov N, Sneh B, Koncz C, et al. A synthetic cryIC gene, encoding a Bacillusthuringiensis-endotoxin, confers Spodoptera resistance in alfalfa and tobacco[J]. Proceedingsof the National Academy of Sciences of the United States of America,1996,93:15012-15017
    [115]柳武革,薛庆中.蛋白酶抑制剂及其在抗虫基因工程中的应用[J].生物技术通报,2000,(1):20-25
    [116] Thomas J C, Wasmanm C C, Echt C, et al. Introduction and expression of insect proteinaseinhibitor in alfalfa (Medicago stativa L.)[J]. Plant Cell Reports,1994,14:31-36.
    [117]马建岗.基因工程学原理[M].西安:西安交通大学出版社,2001
    [118] Halluin K D, Boteerman J, Greef W D. Engineering of herbicide-resistant alfalfa andevaluation under field condition[J]. Crop Science,1990,30:866-871
    [119]刘艳芝,王玉民,刘莉,等. Bar基因转化草原1号苜蓿的研究[J].草地学报,2004,12(4):273-276
    [120] Schroeder H E, Khan M R. Expressing of chicken ovalbumin gene in three lucernecultivars[J]. Journal of Plant Physiology,1991,18:495-505
    [121] Wandelt C L, Khan M R I, Craig S, et al. Vicilin with carbory-terminal KDEL is retained inthe endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants[J].Plant Journal,1992,2:181-192
    [122] Tabe L M, Higgins C M, McNabb W C, et al. Genetic engineering of grain and pasturelegumes for improved nutritive value[J]. Genetica,1993,90:181-200
    [123]吕德扬,范云六,俞梅敏,等.苜蓿高含硫氨基酸蛋白转基因植株再生[J].遗传学报,2000,27(4):331-337
    [124] Avraham T, Badani H, Galili S, et al. Enhanced levels of methionine and cysteine intransgenic alfalfa (Medicago sativa L.) plants overexpressing the Arabidopsiscystathionine-synthase gene[J]. Plant Biotechnology Journal,2005,(3):71-79
    [125] Baucher M, Bernard-Vailhe M A, Chabbert B, et al. Down–regulation of cinnamyl alcoholdehydrogenase in transgenic alfalfa(Medicago sativa L.) and the effect on lignin compositionand digestibility[J]. Plant Molecular Biology,1999,39:437-447
    [126] Ray H, Yu M, Auser P, et al. Expression of ant hocyanins and proant hocyanidins aftertransformation of alfalfa with maize Lc1,2[J]. Plant Physiology,2003,132:1448-1463
    [127] Sullivan M L, Hatfield R D, Thoma S L, et al. Cloning and characterization of red cloverpolyphenol oxidase cDNAs and expression of active protein in Escherichia coli andtransgenic alfalfa[J]. Plant Physiology,2004,136:3234-3244
    [128] Ortega J L, Temple S J, Sengupta-Gopalan C. Constitutive over expression of cytosolicglutamine synthetase(GS1)gene in transgenic alfalfa demonstrates that GS1may be regulatedat the level of RNA stability and protein turnover[J]. Plant Physiology,2001,126:109-121
    [129] Santos M J, Wigdorovitz A, Trono K, et al. A novel methodology to develop a foot andmouthdisease virus(FMDV) peptide-based vaccine in transgenic plants[J]. Vaccine,2002,20(728):1141-1147
    [130] Santos M J, Carrillo C, Ardila F, et al. Development of transgenic alfalfa plants containingthe foot and mouth disease virus structural polyprotein gene P1and its utilization as anexperimental immunogen[J]. Vaccine,2005,23:1838-1843
    [131] Wigdorovitz D, Mozgovoj M, Parenno V, et al. Protective lactogenic immunity conferred byan edible peptide vaccine to bovine rotavirus produced in transgenic plants[J]. Journal ofGeneral Virology,2004,85:1825-1832
    [132] Ziauddin A, Lee R W H, Ro R, et al. Transformation of alfalfa with a bacterial fusion gene,Mannheimia haemolytica A1leukotoxin50-gfp: response with Agrobacterium tumefaciensstrains LBA4404and C58[J]. Plant Cell, Tissue and Organ Culture,2004,79:271-278
    [133]赵桂琴,慕平,张勃.紫花苜蓿基因工程研究进展[J].草业学报,2006,15(6):9-18
    [134]张改娜,贾敬芬.植物体细胞杂交及其杂种鉴定方法研究进展[J].西北植物学报,2007,27(1):206-213
    [135] Gepts, Hancock J. The future of plant breeding[J]. Crop Science,2006,46:1630-1634
    [136]南丽丽.不同根型苜蓿根颈与根系特性及抗逆性研究[D].兰州:甘肃农业大学,2011
    [137]王亚玲,师尚礼,焦亮.陇东野生紫花苜蓿的生态特征[J].草业科学,2008,25(1):55-58.
    [138]孙勇如,安锡培.植物原生质体培养[M].北京:科学出版社,1991
    [139]于晓玲,李春强,彭明.植物原生质体技术及其应用[J].中国农学通报,2009,25(08):22-26
    [140] Arcioni S,Dowey M R, dos Somtos A V P et al. Somatic embryogenesis in tissue frommesophyll and cell suspension protoplaste of Medicago coerulea and M. glutinosa[J].Zeitschrift für Pflanzenphysiologie,1982,106:105-110
    [141]罗希明,赵桂兰,谢雪菊,等.沙打旺原生质体培养再生植株[J].遗传学报,1991,18(3):239-243
    [142]张相岐,安利佳,向卫,等.草木樨状黄芪叶肉原生质体的植株再生[J].实验生物学报,1993,26(1):11-14
    [143]吕德扬,李凤玲,陈一明,等.多变小冠花(豆科牧草)原生质体和外植体胚状体的形成和植株再生[J].实验生物学报,1987,20(l):31-39
    [144] Murashige T, Skoog F.A revised medium for rapid growth and bioassays with tobacco tissueculture[J]. Physiologia Plantarum,1962,15:473-497
    [145]陶茸,师尚礼,李玉珠,等.种子处理对扁蓿豆种子在1/2MS培养基上发芽率的影响[J].草原与草坪,2011,31(3):69-72
    [146]胡静,马晖玲,谢俊仁.甘农2号杂花苜蓿愈伤组织诱导及体细胞胚和芽分化的研究[J].甘肃农业大学学报,2007,4:87-91
    [147]张静妮,王铁梅,卢欣石,等.紫花与杂花苜蓿再生影响因子的比较研究[J],草地学报,2008,16(1):45-49
    [148]张万军,王涛.紫花苜蓿愈伤成苗高频再生体系的建立及其影响因子的研究[J],中国农业科学,2002,35(12):1579-1583
    [149]王珺,柳小妮,植物激素对2个紫花苜蓿品种再生体系的影响[J].草原与草坪,2010,30(6):15-18
    [150]陶茸.清水野生紫花苜蓿和扁蓿豆原生质体分离与培养条件的研究[D].兰州:甘肃农业大学,2011
    [151]舒文华,耿华珠,孙勇如.紫花苜蓿原生质体培养与植株再生[J].草地学报,1994,2(1):40-44
    [152]朱至清.植物细胞工程[M].北京:化学工业出版社,2003,25-26
    [153] Widholm, J. The use of fluorescein diacetate and phenosafranine for determining viability ofcultured plant cells[J]. Stain Technology,1972,47:189-194
    [154] Shao C Y, Russinova E A, Iantcheva, et al. Rapid transformation and regeneration ofMedicago sativa (Medicago falcate L.) via direct somatic embryogenesis[J]. Plant GrowthRegulation,2000,31:155-166
    [155] Margareta Dijak. Donor tissue and culture condition effects on mesophyll protoplasts ofmedicago sativa[J].Plant cell, tissue and organ culture,1987,9:217-228.
    [156]陆美莲,许新萍,周厚高,等.均匀正交设计在百合组织培养中的应用[J].西南农业大学学报(自然科学版),2004,26(6):699-702
    [157]王兴仁,张录达,王华方.正交试验设置重复的必要性和统计分析方法[J].土壤通报,2000,31(3):135-139
    [158]葛军,刘振虎,卢欣石.紫花苜蓿再生体系研究进展[J].中国草地,2004,26(2):63-67
    [159]陈爱萍,罗玉鹏,姜婷娜,张博.不同酶液组合及酶解时间对普通红豆草原生质体游离的影响[J].新疆农业大学学报,2008,31(2):29-32
    [160]袁华玲.二倍体马铃薯原生质体培养基体细胞杂交的研究[D].北京:中国农业科学院,2008
    [161] Kyozuka J., Otoo E., Shimamaoto K.. Plant regeneration from protoplasts of indica rice:genotypic differences in culture response[J]. Theoretical and Applied Genetics,1988,76:872-890
    [162]丁爱萍,王洪范,曹玉芬.苹果原生质体培养及植株再生[J].植物学报,1994,36(4):271-277
    [163]赵小强.草地早熟禾原生质体培养及体细胞杂交[D].兰州:甘肃农业大学,2009
    [164] Oliveira M, Pais MSS. Somatic embryogenesis in leaves and leaf-derived Protoplasts ofActinindia deliciosa var.delieiosa cv. Hayward(kiwi)[J]. Plant Cell Rep,1992,11:314-317
    [165]马晖玲,张崇浩,肖尊安,等.影响植物原生质体分裂的生理生化因素[J].甘肃农业大学学报,1998,33(1):42-46.
    [166]李贤,钟仲贤.甘蓝原生质体培养和融合的研究[J].上海农业学报,1996,12(3):23-27
    [167] Taras P P, Els P, Ferhan A, et al. The Role of Auxin, pH, and Stress in the Activation ofEmbryogenic Cell Division in Leaf Protoplast-Derived Cells of Alfalfa[J]. Plant Physiology,2002,129,1807-1819
    [168]王明玖.百脉根的优缺点及其利用管理—与紫花苜蓿比较[J].国外畜牧学——草原与草坪,1999,2:1-2
    [169]闫向忠,百脉根早熟品系农艺性状及组培再生体系研究[D].兰州:甘肃农业大学,2007
    [170]韦正乙,刘艳芝,王兴智,等. HAL1基因转化百脉根(Lotus cirniculatus)的初步研究[J].吉林农业科学,2007,32(1):14-16
    [171]刘建利,张占路,吴燕民,等.百脉根农杆菌快速高效遗传转化体系的建立[J].草业学报,2006,15(3):128-131
    [172]张振霞,席嘉宾,张惠霞,等.农杆菌介导转化豆科牧草百脉根影响因子[J].中山大学学报(自然科学版),2005,44(4):96-98
    [173]孙艳香,杨红梅,耿云红,等.根癌农杆菌介导的百脉根遗传转化体系的优化研究[J].南开大学学报(自然科学版),2006,39(2):51-57
    [174]冯雪,王彬,孙艳香.百脉根谷胱甘肽硫转移酶基因的载体构建与检测[J].安徽农业科学,2011,39(29):17778-17780
    [175] Bavage A D, Davies I D, Robbinss M K, et al. Expression of an antirrhinum dihydroflavonolreductase gene results in changes in consensed tannin structure and accumulation in rootcultures of Lotus corniculatus[J]. Plant Molecular Biology,1997,35:443-458
    [176] Tanner G J, Ashton A R, Abrahams S, et al. Proanthocyanidins destabilize plant proteinfoams in a dose dependent maner[J]. Australian Journal of Agriculture Research,1995,46:1101-1109
    [177] Gruber M Y, Skadhauge B, Stougaard J. Condensed tannin mutations in Lotus japonicus [J].Polyphenol Letters,1996,18:4-8
    [178]唐广立,李传山,陈明利,等.百脉根高频再生体系的建立及兔出血症病毒衣壳蛋白VP60基因的转化.分子植物育种,2007,5(4):593-600
    [179]王宝琴,王小龙,张永光,等. FMDV vp1基因在豆科牧草百脉根中的转化与表达[J].中国病毒学,2005,20(5):526-529
    [180]王炜,张永光,潘丽,等.口蹄疫病毒P12A3C免疫原基因在百脉根中的遗传转化与表达[J].中国人兽共患病学报,2007,23(3):236-247
    [181]张占路,唐益雄,薛文通,等.百脉根表达H5N1亚型禽流感血凝素的研究[J].中国农业科学,2008,41(1):303-307
    [182] Judith W K, Woodcock S, Chamberlain D A. Plant regeneration from protoplasts ofTrifolium repens and Lotus corniculatus[J].Plant Breeding,1987,98(2):111-118
    [183] Pupilli F, Arcioni S, Damiani F, et al. Plant regeneration from callus and protoplast culturesof Lotus pedunculatus Cav.[J]. Plant cell, tissue and organ culture,1990,23:193-199
    [184] Vessabutr S, Grant W F. Isolation, culture and regeneration of protoplasts from birdfoottrefoil (Lotus corniculatus)[J]. Plant cell, tissue and organ culture,1990,41:9-15
    [185] Akashi R, Harris S, Hoffmann-tsay S-S, et al. Plants from protoplasts isolated from along-term root culture (Super Root) of Lotus corniculatus[J]. Journal of plant physiology,2000,157(2):215-221
    [186]刘法涛,杨志忠.里奥百脉根的优点与利用评价[J].中国草地,1998,6,30-34,42
    [187]宋淑明,聂朝相,赵欣,等.百脉根种子硬实处理与耐藏性的探讨[J].草业科学,1994,11(5):52-54
    [188]时永杰,周丽霞.百脉根的组织培养与植株再生[J].草业科学,1997,14(5):63-64
    [189]安骥飞,玉永雄.百脉根组织培养的研究[J].山西农业大学学报,2005,25(4):337-339
    [190]何奕昆,侯万儒,梁素华.百脉根的体细胞胚胎发生与高频率植株再生[J].四川师范学院学报(自然科学版),1996,17(1):16-20
    [191]安利佳,李凤霞,张俊敏,等.豆科植物组织培养的研究[J],植物学报,1992,34(10):743-752
    [192]李勤报,谭保才,梁厚果,等.烟草愈伤组织继代培养和分化期间蛋白质代谢的比较研究[J]. Journal of Integrative Plant Biology,1993,35(3):179-186
    [193]薛美凤,郭余龙,李名扬,等.长期继代对棉花胚性愈伤组织体胚发生能力及再生植株变异的影响[J].西南农业学报,2002,15:19-21
    [194] Toriyama K, Hinatak K, Kameya T. Production of somatic hybrid plants,‘Brassicomoricandia’, through protoplast fusion between Moricandia avensis and Brassicaoleracae[J]. Plant Science,1987,48(2):123-128.
    [195]司家钢,朱德蔚,杜永臣,等.原生质体非对称融合获得胡萝卜(Daucus carota L.)种内胞质杂种[J].园艺学报,2002,29(2):128-132
    [196]朱永生,陈葆棠,余舜武,等.不对称体细胞杂交转移疣粒野生稻对水稻白叶枯病的抗性[J].科学通报,2004,49(14):1395-1398.
    [197]付莉莉,杨细燕,张献龙,等.棉花原生质体“供-受体”双失活融合产生种间杂种植株及其鉴定[J].科学通报,2009,54(15):2219-2227
    [198] Gear A.R.L. Rhodamine6G a potent inhibitor of mitochondrial oxidative phosphorylation[J].Journal of Biological Chemistry,1974,249(11):3628-3637.
    [199]中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南
    [M].北京:科学出版社,1999
    [200]王国平.原生质体融合技术在枣育种中的应用展望[J].分子植物育种,2008,6(3):555-560
    [201]金红.三种豆科牧草的原生质体培养及体细胞杂交[D].西安:西北大学生物技术省级重点实验室,2002.44
    [202]黄静,赵琦,李楠,等.烟草原生质体活力检测和细胞核染色方法的研究[J].首都师范大学学报:自然科学版,2007,28(4):42-45
    [203]安丽华,尤瑞麟.一种用于DAPI染色的方法—Steedman’s wax包埋切片法[J].西北植物学报,2004,24(8):1367-1372
    [204]陈乐真,张杰.荧光原位杂交技术及其应用[J].细胞生物学杂志,1999,21(4):177-180
    [205]赵志强,郑小林,张思杰,等.细胞融合技术[J].生物学通报,2005,40(10):40-41
    [206]赵军胜,蔡云飞,李子东,等.胡萝卜与川西獐牙菜不对称体细胞杂交[J].山东大学学报(理学版),2004,39(6):108-111
    [207]崔海峰.小麦体细胞杂交中外源染色质的消减与渐渗研究[D].济南:山东大学,2008
    [208]向凤宁.小麦远缘体细胞杂交及体细胞杂种的遗传研究[D].济南:山东大学,2003
    [209] Kao K N. Michaylue M R. A method of high frequency integeneric fusion of plantprotoplasts[J]. Planta,1974,115:355-367
    [210] Kao K N. Plant protoplast fusion and samatic hybrids. In: Ham Hed.Plant TissueCulutre[M].The Pitman Int Ser in Appl Biol, Proc Beijing Symp. London: Pitman,1981,331-339
    [211] BenbadisA,de vir ville J D. Effect of polyethylene glycol treatment used for protoplastfusion and organelle teansplantation on the functional and structural integrity of mitochondriaisolated from spinach leaves[J]. Plant Science Letters,1982,26:257-264.
    [212]熊兴耀.苎麻体细胞杂交研究[D].长沙:湖南农业大学,2000
    [213]邢道臣,王晶珊,郭宝太,等.花生与其近缘野生种间细胞融合及培养[J].花生学报2002,31(4):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700