用户名: 密码: 验证码:
猕猴桃AsA合成相关酶基因及启动子的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗坏血酸(AsA)是动植物体内重要的氧化还原剂,参与体内活性氧清除,调控细胞分裂和细胞生长,并作为多个酶的辅因子参与多种生理过程。此外,AsA为人类必需的营养物质,能增强人体相关免疫系统的活性,在由氧胁迫引起的相关疾病的防御方面,发挥着相当重要的作用。AsA还是植物生长调控的必需因子,它能控制植物的开花时间,还能够增强植物体对逆境的抵御能力,比如臭氧毒害、水涝胁迫、高温伤害和病原菌入侵等。
     目前,推测AsA合成与积累的关键调控酶:包括GDP-D-甘露糖3’,5’-差向异构酶(GME)、L半乳糖-1-磷酸磷酸酶(GPP)和GDP-L-半乳糖磷酸化酶(GGP)。本研究以山梨猕猴桃(Actinidia rufa)、美味猕猴桃品种“秦美”(A. deliciosa cv.‘qinmei’)和毛花猕猴桃(A. eriantha)为材料,克隆了AsA合成相关酶基因GME、GPP和GGP,并利用实时荧光定量PCR分别分析了这些基因在不同处理条件下的表达模式;克隆了GME、GPP和GGP基因启动子序列并在不同处理下对其进行了活性分析;同时测定了不同处理条件下猕猴桃叶片中AsA含量变化。此外,还研究了猕猴桃果实发育期GGP基因表达水平的变化及其与AsA含量的关系。获得的主要结果如下:
     1.从山梨猕猴桃和美味猕猴桃中克隆了GME基因全长,包含1143bp,编码376个氨基酸,把这两个cDNA分别命名为ArGME和AdGME,并登录Genebank,登陆号分别为JN132110和GU339037,二者序列相似性为99.7%。RT-qRCR结果表明:ABA、黑暗和光照处理对ArGME和AdGME基因在叶片中的表达量没有明显影响;GA3处理降低了ArGME和AdGME的表达;SA处理、机械损伤、高温和低温处理,均不同程度的增加了ArGME和AdGME的表达。相同处理对两个猕猴桃种的作用趋势基本一致。
     2.利用染色体步移法克隆了山梨猕猴桃和美味猕猴桃GME基因启动子的序列,其长度均为1225-bp,命名为ParGME和PadGME,并登录Genebank,登陆号分别为JQ693500和JQ693499,二者序列相似性为99.16%。瞬时表达实验证明,这两个启动子具有转录活性。光照、机械损伤对GME基因的启动子没有明显的响应,而水杨酸和高温对GME基因启动子的活性却有很强的诱导和激活作用。
     3.从美味猕猴桃中克隆了GPP基因并对其表达模式进行了分析,结果发现:持续的黑暗处理降低了GPP基因的表达,紧随其后的光照处理诱导了GPP基因的表达;SA对GPP基因的表达影响甚微;ABA、机械损伤和低氧胁迫能先增加GPP基因的表达而后降低其表达。
     4.利用染色体步移法克隆美味猕猴桃GPP基因启动子,长度为1395-bp,瞬时表达实验证明,其具有转录活性。GPP基因启动子5’端缺失体实验表明,光照能够明显诱导GPP基因启动子的活性,重要的光调控元件可能位于-1210到-1047这个区段内。另外,ABA、SA、机械损伤和淹水等处理也能诱导GPP基因启动子的活性。
     5.从山梨猕猴桃和毛花猕猴桃中克隆了GGP基因全长cDNA序列,命名为AeGGP(登录号:KC146049)和ArGGP(登录号:KC146048)。猕猴桃果实发育过程中,GGP基因表达与AsA含量变化一致,且毛花猕猴桃最高,山梨猕猴桃最低。GGP基因的表达对光很敏感;MeJA、高温和低氧能诱导GGP基因的表达,ABA降低了其表达。
     6.利用染色体步移法克隆了山梨猕猴桃、美味猕猴桃和毛花猕猴桃GGP基因启动子的序列,山梨猕猴桃GGP基因启动子的活性最低,在其序列中发现了一段300bp的插入,启动子缺失体实验研究表明,在山梨猕猴桃GGP基因的启动子中可能存在负调控元件。光、ABA、MeJA、高温和低氧均能诱导GGP基因启动子的活性。根据毛花猕猴桃和美味猕猴桃GGP基因启动子缺失体对不同处理的响应情况,推测G-box motif可能在光暗响应中发挥着极为重要的作用;ABRE在ABA对GGP基因启动子的诱导中发挥了重要作用;CGTCA-motif元件在MeJA对GGP基因启动子的诱导中发挥了重要作用。
Ascorbic acid (AsA) is an important antioxidant in animals and plants, which playsimportant roles in eliminating reactive oxygen species (ROS) while allowing for crucialsignaling to regulate plant growth and defenses and an essential enzyme cofactor in manymetabolism processes. AsA is clearly an essential dietary component for humans, with aprotective role proposed for many disorders through increasing resistance of immune system.Ascorbic acid (AsA) is a vital compound in plants with a range of functions as a growthregulation factor in regulating flowering time, or as a stress response factor, which is involvedin many stress-induced oxidative processes, e.g., responses to water loss, pathogens andoxidizing agents, high temperature, photo-oxidative stress and ozone. Up to now,GDP-mannose-3',5'-epimerase (GME), GDP-L-galactose phosphotylase (GGP), L-galactosephosphatase (GPP) may play key roles in ASA biosynthesis and regulation. In present study,gene cloning, real-time PCR, and promoter characteristics were used to illustrate themolecular characteristics of enzymes involved in ASA biosynthesis under different treatments.To gain a better understanding of the relationship between AsA concentrations andtranscriptional levels of the above genes, and to investigate the regulatory mechanisms fortheir expression in kiwifruit under stress conditions, we performed a systematic investigationof AsA, mRNA expression, and promoter activities in response to various treatments. For this,we evaluated three kiwifruit species (A. eriantha, A. deliciosa cv.‘qinmei’ and A.rufa) thatproduce different amounts of AsA. Furthermore, to evaluate the relationship between levels ofAsA in fruits development and GGP transcripts, we systematically investigated the regulatorymechanisms for GGP expression in the three kiwifruit species. The main results were asfollows:
     1. The full-length cDNA sequence of GME gene was cloned from A. deliciosa‘qinmei’and A.rufa, named AdGME (GenBank Accession NO. GU339037) and ArGME (GenBankAccession NO. JN132110). They were both1143-bp long, both encoded a polypeptide of376amino acids. Using the MegAlign program of MEGA, we determined that these amino acidsequences shared99.7%identity. RT-qPCR analyses in two species demonstrated that ABA, dark or light did not seem to alter GME expression, but GA3resulted in a decrease in thetranscript levels of GME. However, application of SA, wounding, cold or heat, GMEtranscript exhibited an increase in both species.
     2. The promoters of GME genes were cloned by Genomic DNA-walking method. Theywere both1225-bp long, named ParGME和PadGME. We comparatively analysed thepromoter sequences of ParGME (GenBank Accession NO. JQ693500) and PadGME(GenBank Accession NO. JQ693499). Sequence alignment revealed that they shared99.16%similarity. They showed transcriptional activation identified by transformed tobacco GUShistochemical assay. The promoter activities of GME genes were not significantly inducedwhen the transformed tobacco exposing to light or wounding. While the promoter activities ofGME genes were significantly induced when treated by SA or heat.
     3. The full-length cDNA sequence of AdGPP gene was cloned from A. deliciosa. Theexpression patterns of AdGPP gene were studied when kiwifruit plants were exposing todifferent conditions. RT-qRCR analyses demonstrated: during the first12h of darkness,AdGPP expression gradually but continually declined. After48h of dark treatment, plantswere then exposed to light, and AdGPP expression quickly recovered within1h. Following apeak at Hour2, then AdGPP expression began to decrease to the original level. Treatmentwith SA caused only a slight increase in expression over the entire period. ABA or hypoxicconditions were associated with high AdGPP expression at first, followed by a gradualdecline in transcript levels.
     4. The AdGPP promoter was isolated from A. deliciosa genomic DNA by GenomicDNA-walking method. After sequencing, we cloned a1395-bp fragment (GenBank AccessionNo. JX122767). The AdGPP promoter showed transcriptional activation identified bytransformed tobacco GUS histochemical assay. The promoter activities of AdGPP were notsignificantly induced when the transformed tobacco exposing to light or wounding. While thepromoter activities of AdGPP gene were significantly induced when treated by SA or heat.
     5. The full-length cDNA sequence of GGP genes were cloned from A.eriantha andA.rufa, named AeGGP (GenBank Accession No. KC146049) and ArGGP (GenBankAccession No. KC146048). Some correlation between relative levels of GGP mRNA andAsA concentrations in three species during fruit development. Transcripts were the mostabundant in A. eriantha, and the lowest in A. rufa. RT-qPCR results with the kiwifruit leavesrevealed that expression of the GGP genes was induced by light, MeJA, heat, hypoxicconditions; and was very sensitive to light conditions.
     6. The promoters of GGP genes were cloned from three kiwifruit species by GenomicDNA-walking method. GUS activity of the entire AeGGP promoter was the highest and that of ArGGP promoter was the lowest under normal growing conditions. When compared thethree promoters, we found that ArGGP promoter has a nearly300-bp insertion. The result of5`deletion derivates transformed into tobacco indicates that some negative cis-elements mayexist in the ArGGP promoter. The promoter activities of GGP genes were significantlyinduced when application of ABA or MeJA. Light, heat or hypoxic conditions can also inducethe promoter activities of GGP genes. According to the results of5`deletion derivates ofAeGGP or AdGGP promoter, we deduced that G-box is important for the expression of GGPin kiwifruit under different types of illumination and ABRE or CGTCA-motif may play animportant role in regulating GGP promoter activities after application of ABA or MeJArespectively.
引文
安华明(2005)刺梨高含量AsA的积累机制及其关键酶基因的克隆与表达.博士论文.杭州:浙江大学
    梁东(2010)苹果山梨醇代谢相关基因的分子特性研究.博士论文.杨凌:西北农林科技大学
    李明军(2009)苹果和猕猴桃抗坏血酸形成与积累的生理和分子机理研究.博士论文.杨凌:西北农林科技大学
    马春花,马锋旺,李明军,韩明玉,束怀瑞(2007)不同叶龄苹果叶片抗坏血酸含量与其代谢相关酶活性的比较.园艺学报,34(4),995-998.
    徐伟荣(2010)中华东葡萄抗白粉病芪合成酶基因及启动子的克隆与功能分析.博士论文.杨凌:西北农林科技大学
    Agarwal P, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stresssignalling. Biol Plantarum,54:201-212
    Agius F, Amaya I, Botella MA, Valpuesta V (2005) Functional analysis of homologous and heterologouspromoters in strawberry fruits using transient expression. J Exp Bot,56:37-46
    Agius F, González-Lamothe R, Caballero JL, Mu oz-Blanco J, Botella MA, Valpuesta V (2003)Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase.Nature Biotech,21:177-181
    Alós E, Rodrigo MJ, Zacarías L (2013) Transcriptomic analysis of genes involved in the biosynthesis,recycling and degradation of L-ascorbic acid in pepper fruits ( Capsicum annuum L.). PlantSci,207:2-11
    Arguello-Astorga GR, Herrera-Estrella LR (1996) Ancestral multipartite units in light-responsive plantpromoters have structural features correlating with specific phototransduction pathways. Plant physiol,112:1151-1166
    Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripeningbanana fruit. Plant Mol Biol Rep,18:109-115
    Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémen on B, Burrier R, Hediger MA (2013)The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects of Med,34:436-454
    Badejo AA, Fujikawa Y, Esaka M (2009) Gene expression of ascorbic acid biosynthesis related enzymes ofthe Smirnoff-Wheeler pathway in acerola (Malpighia glabra). J Plant Physiol,166:652-660
    Baker SS, Wilhelm KS, Thomashow MF (1994) The5′-region of Arabidopsis thaliana cor15a hascis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol,24:701-713
    Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and theonset of senescence. J Exp Bot,57:1657-1665
    Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between lightand respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thalianaleaves. J Exp Bot,57:1621-1631
    Bellamacina C (1996) The nicotinamide dinucleotide binding motif: a comparison of nucleotide bindingproteins. FASEB J,10:1257-1269
    Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivationstress: a review. Ann Bot,91:179-194
    Borst P (2008) Mega-dose vitamin C as therapy for human cancer? Proc Natl Acad Sci,105: E95
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Anal Biochem,72:248-254
    Brenner C (2002) Hint, Fhit, and GalT: function, structure, evolution, and mechanism of three branches ofthe histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry,41:9003-9014
    Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009)Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates thatGDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot,60:765-778
    Chaouch S, Queval G, Vanderauwera S, Mhamdi A, Vandorpe M, Langlois-Meurinne M, Van Breusegem F,Saindrenan P, Noctor G (2010) Peroxisomal hydrogen peroxide is coupled to biotic defense responsesby isochorismateIsynthase1in a daylength-related manner. Plant Physiol,153:1692-1705
    Chatterjee I (1973) Evolution and the biosynthesis of ascorbic acid. Science,182:1271-1272
    Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function.Plant physiol,142:775-787
    Chen Z, Gallie DR (2008) Dehydroascorbate reductase affects non-photochemical quenching andphotosynthetic performance. J Biol Chem,283:21347-21361
    Chen Z, Young TE, Ling J, Chang S-C, Gallie DR (2003) Increasing vitamin C content of plants throughenhanced ascorbate recycling. Proc Natl Acad Sci,100:3525-3530
    Conklin P (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant CellEnviron,24:383-394
    Conklin P, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants toozone, pathogens, and the onset of senescence. Plant Cell Environ,27:959-970
    Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA,Smirnoff N (2006) Arabidopsis thaliana VTC4encodes L-galactose-1-P phosphatase, a plant ascorbicacid biosynthetic enzyme. J Biol Chem,281:15662-15670
    Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for therole of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci,96:4198-4203
    Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsisthaliana mutants. Genetics,154:847-856
    Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation duringdevelopment and response to biotic and abiotic stress. Proc Natl Acad Sci,92:4114-4119
    Daraselia ND, Tarchevskaya S, Narita JO (1996) The promoter for tomato3-hydroxy-3-methylglutarylcoenzyme A reductase gene2has unusual regulatory elements that direct high-level expression. PlantPhysiol,112:727-733
    Davey M, Franck C, Keulemans J (2004) Distribution, developmental and stress responses of antioxidantmetabolism in Malus. Plant Cell Environ,27:1309-1320
    Davey MW, Gilot C, Persiau G, stergaard J, Han Y, Bauw GC, Van Montagu MC (1999) Ascorbatebiosynthesis in Arabidopsis cell suspension culture. Plant Physiol,121:535-544
    Davey MW, Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D,Fletcher J (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects ofprocessing. J Sci Food Agr,80:825-860
    De Tullio M, Arrigoni O (2004) Hopes, disillusions and more hopes from vitamin C. Cell Mol Life Sci,61:209-219
    Di Matteo A, Hancock R, Ross H, Frusciante L, Viola R (2003) Characterisation of Chlorella pyrenoidosaL-ascorbic acid accumulating mutants: Identification of an enhanced biosynthetic enzyme activity andcloning of the putative gene from Arabidopsis thaliana. Comp Biochem Physiol A,134: S155
    Diaz-De-Leon F, Klotz KL, Lagrimini LM (1993) Nucleotide sequence of the tobacco (Nicotiana tabacum)anionic peroxidase gene. Plant Physiol,101:1117-1118
    Dolferus R, Jacobs M, Peacock WJ, Dennis ES (1994) Differential interactions of promoter elements instress responses of the Arabidopsis Adh gene. Plant Physiol,105:1075-1087
    Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thalianaencoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.Plant J,52:673-689
    Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007)Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced toleranceto ozone, salt and polyethylene glycol stresses. Planta,225:1255-1264
    Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, butdoes not increase ascorbic acid. Plant Physiol,149:1042-1049
    Englard S, Seifter S (1986) The biochemical functions of ascorbic acid. Annu Rev Nutr,6:365-406
    Feldbrügge M, Sprenger M, Hahlbrock K, Weisshaar B (2002) PcMYB1, a novel plant protein containing aDNA‐b inding domain with one MYB repeat, interacts invivo with a light-regulatory promoter unit.Plant J,11:1079-1093
    Fink JS, Verhave M, Kasper S, Tsukada T, Mandel G, Goodman RH (1988) The CGTCA sequence motif isessential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer.Proc Natl Acad Sci,85:6662-6666
    Foster R, Izawa T, Chua NH (1994) Plant bZIP proteins gather at ACGT elements. FASEB J,8:192-200
    Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidaseover-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot,59:729
    Fotopoulos V, Sanmartin M, Kanellis AK (2006) Effect of ascorbate oxidase over-expression on ascorbaterecycling gene expression in response to agents imposing oxidative stress. J Exp Bot,57:3933-3943
    Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface betweenstress perception and physiological responses. Plant Cell,17:1866-1875
    Frei B, Lawson S (2008) Vitamin C and cancer revisited. Proc Natl Acad Sci,105:11037-11038
    Gallie DR (2013) The role of l-ascorbic acid recycling in responding to environmental stress and inpromoting plant growth. J Exp Bot,64:433-443
    Gong M, Hay S, Marshall KR, Munro AW, Scrutton NS (2007) DNA binding suppresses human AIF-M2activity and provides a connection between redox chemistry, reactive oxygen species, and apoptosis. JBiol Chem,282:30331-30340
    Goossens A, H kkinen ST, Laakso I, Sepp nen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM,S derlund H, Zabeau M (2003) A functional genomics approach toward the understanding ofsecondary metabolism in plant cells. Proc Natl Acad Sci,100:8595-8600
    Grimes HD, Perkins KK, Boss WF (1983) Ozone degrades into hydroxyl radical under physiologicalconditions a spin trapping study. Plant physiol,72:1016-1020
    Hancock RD, McRae D, Haupt S, Viola R (2003) Synthesis of L-ascorbic acid in the phloem. BMC PlantBiol,3:7
    Hancock RD, Viola R (2005) Improving the nutritional value of crops through enhancement of L-ascorbicacid (vitamin C) content: rationale and biotechnological opportunities. J Agr Chem,53:5248-5257
    Hartmann U, Valentine WJ, Christie JM, Hays J, Jenkins GI, Weisshaar B (1998) Identification of UV/bluelight-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologousprotoplast transient expression system. Plant Mol Biol,36:741-754
    Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in anascorbate-deficient Arabidopsis mutant. J Exp Bot,56:3041-3049
    Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK(2009) Expression profiling of ascorbic acid-related genes during tomato fruit development andripening and in response to stress conditions. J Exp Bot,60:663-678
    Isherwood F, Chen Y, Mapson L (1954) Synthesis of L-ascorbic acid in plants and animals. Biochem J,56:1-15
    Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis andaccumulation in plants. Physiol Planta,126:343-355
    Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T, Shigeoka S (2008) The pathwayvia d-galacturonate/l-galactonate is significant for ascorbate biosynthesis in Euglena gracilis. J BiolChem,283:31133-31141
    Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiologicalsignificance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem,72:1143-1154
    Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesisin plants. Mol Breeding,6:73-78
    Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P (2002) Changes inoxidative processes and components of the antioxidant system during tomato fruit ripening. Planta,214:751-758
    Joo JH, Wang S, Chen J, Jones A, Fedoroff NV (2005) Different signaling and cell death roles ofheterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. PlantCell,17:957-970
    Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD,Foyer CH (2011) The transcription factor ABI4is required for the ascorbic acid-dependent regulationof growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. PlantCell,23:3319-3334
    Kuhlemeier C, Cuozzo M, Green PJ, Goyvaerts E, Ward K, Chua NH (1988) Localization and conditionalredundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit ofribulose-bisphosphate carboxylase. Proc Natl Acad Sci,85:4662-4666
    Laing WA, Bulley S, Wright M, Cooney J, Jensen D, Barraclough D, MacRae E (2004) A highly specificL-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc Natl Acad Sci,101:16976-16981
    Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway ofascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content.Proc Natl Acad Sci,104:9534-9539
    Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutantsimplicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol,138:882-897
    Lee SH, Oe T, Blair IA (2001) Vitamin C-induced decomposition of lipid hydroperoxides to endogenousgenotoxins. Science,292:2083-2086
    Li J, Li M, Liang D, Cui M, Ma F (2013) Expression patterns and promoter characteristics of the geneencoding Actinidia deliciosa l-galactose-1-phosphate phosphatase involved in the response to light andabiotic stresses. Mol Biol Rep,40:1473-1485
    Li M, Ma F, Guo C, Liu J (2010a) Ascorbic acid formation and profiling of genes expressed in its synthesisand recycling in apple leaves of different ages. Plant Physiol Biochem,48:216-224
    Li M, Ma F, Liang D, Li J, Wang Y (2010b) Ascorbate biosynthesis during early fruit development is themain reason for its accumulation in Kiwi. PloS one,5: e14281
    Li M, Ma F, Liu J, Li J (2010c) Shading the whole vines during young fruit development decreasesascorbate accumulation in kiwi. Physiol Planta,140:225-237
    Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009) Influence of light on ascorbate formation andmetabolism in apple fruits. Planta,230:39-51
    Li Y, Schellhorn HE (2007) Can ageing-related degenerative diseases be ameliorated throughadministration of vitamin C at pharmacological levels? Med Hypotheses,68:1315-1317
    Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG (2007) ArabidopsisVTC2encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheelerpathway to ascorbic acid in plants. J Biol Chem,282:18879-18885
    Liu Z-B, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994) Soybean GH3promoter contains multipleauxin-inducible elements. Plant Cell,6:645-657
    Loewus FA (1963) Tracer studies on ascorbic acid formation in plants. Phytochemistry2:109-128
    Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acidin fungi. Phytochemistry,52:193-210
    Loewus FA, Jang R, Seegmiller C (1956) The conversion of C14-labeled sugars to L-ascorbic acid inripening strawberries. J Biol Chem,222:649-664
    Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of thecomplete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci,92:5905
    Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-Inositol oxygenase offers a possible entry pointinto plant ascorbate biosynthesis. Plant Physiol,134:1200-1205
    Müller-Moulé P (2008) An expression analysis of the ascorbate biosynthesis enzyme VTC2. Plant Mol Biol,68:31-41
    Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high lightdespite chronic photooxidative stress. Plant Physiol,134:1163-1172
    Ma YH, Ma FW, Zhang JK, Li MJ, Wang YH, Liang D (2008) Effects of high temperature on activities andgene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Sci,175:761-766
    Major LL, Wolucka BA, Naismith JH (2005) Structure and function of GDP-mannose-3',5'-epimerase: anenzyme which performs three chemical reactions at the same active site. J Amn Chem Soc,127:18309-18320
    Manjunath S, Sachs MM (1997) Molecular characterization and promoter analysis of the maize cytosolicglyceraldehyde3-phosphate dehydrogenase gene family and its expression during anoxia. Plant MolBiol,33:97-112
    Mapson L, Isherwood F, Chen Y (1954) Biological synthesis of l-ascorbic acid: the conversion ofl-galactono-γ-lactone into l-ascorbic acid by plant mitochondria. Biochem J,56:21-28
    Mart n ez-Hernández A, López-Ochoa L, Argüello-Astorga G, Herrera-Estrella L (2002) Functionalproperties and regulatory complexity of a minimal RBCS light-responsive unit activated byphytochrome, cryptochrome, and plastid signals. Plant Physiol,128:1223-1233
    Mellidou I, Chagne D, Laing W, Keulemans J, Davey MW (2012) Allelic variation in paralogues ofGDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit.Plant Physiol,160:1613-1629
    Mustafa MG (1990) Biochemical basis of ozone toxicity. Free Radical Bio Medi,9:245-265
    Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T(2009) Transgenic multivitamin corn through biofortification of endosperm with three vitaminsrepresenting three distinct metabolic pathways. Proc Natl Acad Sci,106:7762-7767
    Nash J, Luehrsen KR, Walbot V (1990) Bronze-2gene of maize: reconstruction of a wild-type allele andanalysis of transcription and splicing. Plant Cell,2:1039-1049
    Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mappingof the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbicacid biosynthesis missing in man. J Biol Chem,269:13685-13688
    Olmos E, Kiddle G, Pellny T, Kumar S, Foyer C (2006) Modulation of plant morphology, root architecture,and cell structure by low vitamin C in Arabidopsis thaliana. J Exp Bot,57:1645-1655
    Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003)Leaf vitamin C contents modulate plant defense transcripts and regulate genes that controldevelopment through hormone signaling. Plant Cell,15:939-951
    Pastuglia M, Roby D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection ofan S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell,9:49-60
    Phillips BW, Sharma R, Leco PA, Edwards DR (1999) A sequence-selective single-strand DNA-bindingprotein regulates basal transcription of the murine tissue inhibitor of metalloproteinases-1(Timp-1)gene. J Biol Chem,274:22197-22207
    Proietti S, Moscatello S, Famiani F, Battistelli A (2009) Increase of ascorbic acid content and nutritionalquality in spinach leaves during physiological acclimation to low temperature. Plant Physiol Biochem,47:717-723
    Radzio JA, Lorence A, Chevone BI, Nessler CL (2003) L-Gulono-1,4-lactone oxidase expression rescuesvitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol,53:837-844
    Rai M, Datta K, Parkhi V, Tan J, Oliva N, Chawla HS, Datta SK (2007) Variable T-DNA linkageconfiguration affects inheritance of carotenogenic transgenes and carotenoid accumulation intransgenic indica rice. Plant Cell Rep,26:1221-1231
    Rai M, He C, Wu R (2009) Comparative functional analysis of three abiotic stress-inducible promoters intransgenic rice. Transgenic Res,18:787-799
    Rassam M, Laing W (2005) Variation in ascorbic acid and oxalate levels in the fruit of Actinidia chinensistissues and genotypes. J Agr Food Chem,53:2322-2326
    Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression ofascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathioneredox states and increased sensitivity to ozone. Planta,216:918-928
    Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol,6:365-371
    Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin PlantBiol,3:229-235
    Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. AnnuRev Plant Biol,52:437-467
    Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusionproteins in tobacco plants and generation of stably transformed plants. Nat Protoc,1:2019-2025
    Stevens R, Buret M, Duffé P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes andquantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant physiol,143:1943-1953
    Thomas LD, Elinder C-G, Tiselius H-G, Wolk A, kesson A (2013) Ascorbic acid supplements and kidneystone incidence among men: A prospective study. Jama Internal Med,73:386-388
    Tokunaga T, Esaka M (2007) Induction of a novel XIP-type xylanase inhibitor by external ascorbic acidtreatment and differential expression of XIP-family genes in rice. Plant Cell Physiol,48:700-714
    Toledo MEA, Ueda Y, Imahori Y, Ayaki M (2003) l-ascorbic acid metabolism in spinach ( Spinaciaoleracea L.) during postharvest storage in light and dark. Postharvest Biol Tech,28:47-57
    Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTC4is a bifunctionalenzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol,150:951-961
    Tyagi AK (2001) Plant genes and their expression. Curr Sci,80:161-169
    Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced bydehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell,5:1529-1539
    Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG(2012) Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of theVTC2gene encoding a GDP-L-galactose phosphorylase. J Biol Chem,287:14234-14245
    Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an oldantioxidant. Trends Plant Sci,9:573-577
    Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1mutant ofArabidopsis is associated with decreased growth and intracellular redistribution of the antioxidantsystem. Plant Physiol,127:426-435
    Walker JC, Howard EA, Dennis ES, Peacock WJ (1987) DNA sequences required for anaerobic expressionof the maize alcohol dehydrogenase1gene. Proc Natl Acad Sci,84:6624-6628
    Watanabe K, Suzuki K, Kitamura S (2006) Characterization of a GDP-d-mannose3'',5''-epimerase fromrice. Phytochemistry,67:338-346
    Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature,393:365-369
    Wolucka BA, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitaminC in plant cell suspensions. J Exp Bot,56:2527-2538
    Wolucka BA, Persiau G, Van Doorsselaere J, Davey MW, Demol H, Vandekerckhove J, Van Montagu M,Zabeau M, Boerjan W (2001) Partial purification and identification of GDP-mannose3",5"-epimeraseof Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc Natl Acad Sci,98:14843-14848
    Wolucka BA, Van Montagu M (2003) GDP-mannose3′,5′-epimerase forms GDP-L-gulose, a putativeintermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem,278:47483-474490
    Wu CY, Suzuki A, Washida H, Takaiwa F (1998) The GCN4motif in a rice glutelin gene is essential forendosperm-specific gene expression and is activated by opaque-2in transgenic rice plants. Plant J,14:673-683
    Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoterinvolved in pathogen-and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta,231:475-487
    Yabuta Y, Maruta T, Nakamura A, Mieda T, yoshimura K, ishikawa T, shigeoka S (2008) Conversion ofL-galactono-1,4-lactone to L-ascorbate is regulated by the photosynthetic electron transport chain inArabidopsis. Biosci Biotech Biochem,72:2598-2607
    Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S(2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transportchain but independent of sugars in Arabidopsis. J Exp Bot,58:2661
    Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010)Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, conferstolerance to aluminum stress in transgenic tobacco. Planta,231:609-621
    Yoshio N, Cotgreave IA, Moldéus P (1991) Relationships between ascorbic acid and α-tocopherol duringdiquat-induced redox cycling in isolated rat hepatocytes. Biochem pharmacol,42:883-888
    Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEsleads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato.Plant Cell Rep,30:389-398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700