用户名: 密码: 验证码:
巴里坤湖孢粉浓缩物定年及湖泊记录的全新世以来气候变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊是研究过去气候变化的良好载体,尤其是在高分辨率记录相对缺乏的干旱半干旱区,湖泊记录显得更为重要。但是由于干旱半干旱区湖泊容易受到碳库效应的影响,使得年代序列的建立,往往存在一定的误差。这给古气候的研究带来了很大的困难。14C测年是湖泊沉积物定年的主要方法,随着对全新世的气候环境变化模式的深入研究,对于湖泊样品中的年代要求更高,而不同的14C定年方法,造成了不同的误差。
     文章通过对巴里坤湖部分样品,分别进行全样、植物残体、孢粉浓缩物定年进行比较,以探讨干旱区湖泊中更合理的14C定年方式。结果表明:孢粉浓缩物的测年值比同义层位的沉积物全样测年值年轻780年,这与用陆生植物残体推算出的碳库效应相似;孢粉浓缩物与植物残体的测年值极为接近,表明了它的潜在应用价值。在西北干旱区湖泊测年过程中,孢粉浓缩物有望成为一种可靠的测年材料。
     通过对新疆巴里坤湖的地层剖面进行的精确定年和A/C分析,结合碳酸盐和粒度,重建了该地区8.8 cal. kyr BP以来植被和环境演化历史。结果表明:在末次冰消期及早全新世(8.8~7.9 cal. kyr BP)研究区以荒漠植被为主,A/C值所指示的有效湿度明显偏低,气候干旱.8.8~7.9 cal. kyr BP为气候环境逐渐改善的过渡期。研究区在中全新世(7.9~4.3 cal. kyr BP)为荒漠草原/草原,有效湿度明显升高,气候环境相对最为适宜,湖泊周围高地可能有片状的桦木林地出现。在4.3~3.8 cal. kyr BP这一短暂时期,研究区植被由荒漠草原/草原迅速转变为荒漠,有效湿度显著降低,可能是一次百年尺度的干旱气候事件。研究区在晚全新世(3.8~0.53 cal. kyr BP)呈现出典型的荒漠草原/草原草甸景观,有效湿度相对较高,气候环境相对较为适宜。0.53cal.kyr BP以来,呈现荒漠植被景观。区域对比显示,该地区8.8 cal. kyr BP以来的气候环境演化特征与东亚季风影响区有着明显的差异,在末次冰消期-早全新世气候干旱,中-晚全新世气候相对湿润。
The record of lakes sediment is a good and effective carrier to study past climate changes, especially in arid and semi arid areas where there is lack of high-resolution records relatively. However, due to the impact of the "reservoir effect" of lakes, there are always some errors during the processes of establishing a chronological sequence, which makes it difficult to research the paleoclimate.14C dating is one of the primary methods in dating lake sediments. With the further study of the Holocene climate changes, the higher-resolution dating of lake samples plays a more and more important role in the lake studies, whereas different 14C dating methods make different errors.
     To explore more reasonable ways of 14C dating of the lakes in arid areas, based on some sample of Barkol Lake, this study compared the pollen concentrates for AMS 14C dating, with the whole sample analysis method for 14C dating and the terrestrial higher plant residues for 14C dating. Our dating results show that AMS 14C ages of the pollen concentrates are consistently 780 years younger than the whole samples in the same layer, which is similar to the "carbon pool" effect calculated through the 14C ages of whole samples subtract the 14C ages of terrestrial higher plant residues; the AMS 14C ages of the pollen concentrates is very close to the 14C ages of terrestrial higher plant residues, implying that the pollen concentrates can be expected as reliable dating material in the dating process of the lake sediments in arid areas.
     A high-resolution proxies record from the sedimentary cores of Balikun Lake, combined with reliable chronology, is used to reconstruct the history of Holocene vegetation and climatic change in the study area. The climate environment was ameliorative in 8.8~7.9 cal. kyr BP. The study area was desert steppe/steppe in middle Holocene (7.9~4.3 cal. kyr BP), and the effective humidity was improved dramatically, the climate environment was the optimum, while the adjacent upland of lake might grow Patch Birch Forest. The vegetation of study area changed form desert steppe/steppe to desert vegetations in the ephemeral period 4.3~3.8 cal. kyr BP. The effective humidity was decreased, and there might be a century arid climate event. There was a typical desert steppe/steppe scene in later Holocene (3.8~0.53 cal. kyr BP), and the effective humidity was improved dramatically. The desert vegetation appeared since 0.53cal.kyr BP. The comparison results of different areas appeared that the climate environment evolution in study area was different from the area controlled by the East Asian monsoon. The period of Last Glacial-Early Holocene was dry, while it was more humid in mid-later Holocene.
引文
AndreeM, Oeschger H, Siegenthaler U et al.14C dating of plant macrofossils in lake sediment [J]. Radiocarbon,1986,28 (2A):411-416.
    Birks CJA, Koc-N. A high-resolution diatom record of late Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea [J]. Boreas,2002,31:323-344.
    Bohner J. General climatic controls and topoclimatic variations in central and high Asia[J]. Boreas,2006,35:279-295.
    BjErck S, Hjort C, Ingolfsson et al. Radiocarbon dates from the Antarctic Peninsula region:Problems and potential[J]. Quaternary Proceedings,1991, (1):55~65.
    Bondevik S, Mangerud J, Birks HH et al. Changes in North Atlantic radiocarbon reservoir ages during the Allerd and Younger Dryas[J]. Science,2006,312:1514~ 1517.
    Bradley RS. Quaternary Paleoclimatology[J]. Boston:Allen and Unwin,1985.
    Brown TA, Nelson DE, Mathewes RW et al. Radiocarbon dating of pollen by accelerator mass spectrometry[J]. Quaternary Research,1989,32(2):205-212.
    Brubaker LB, Garfinkee HL, Edwards ME. A LateWisconisn and Holocene vegetation history from the central brooks range:Implications forAlaskan palaeoecology[J]. Quaternary Research,1983,20 (2):194~214.
    Chen FH, Bloemendal J, Feng ZD, WangJM, Parker E, Guo ZT. East Asian monsoon variations during the last interglacial:evidence from the northwestern margin of the Chinese loess plateau[J]. Quaternary Science Reviews,1999,18(8-9)1127-1135.
    Cheng pq,1990.Global Change-A new international frontier science programme[J], Quaternary Research,(1):68-75.
    Callonnec LL, Person A, Renard M, Letolle R, Nebout N, Ben Khelifa L, Rubanov I.. Preliminary data on chemical changes in the Aral Sea during low-level periods from the last 9000 years C. R[J]. Geoscience.2005,337:1035-1044.
    Clayton L, Moran SR. Chronology of Late Wisconsinan glaciation in middle North America[J]. Quaternary Science Reviews,1982, (1):55-82.
    Colman SM, Jones GA, RubinM et al. AMS radiocarbon analyses from Lake Baikal, Siberia:Challenges of dating sediments from a large,oligotrophic lake[J]. Quaternary Geochronology,1996,15:669~684.
    Dahl-Jensen D, Mosegaard K, Gundestrup N et al. Past temperatures directly from the Greenland ice sheet[J]. Science,1998,282:268-271.
    Davis BAS, Brewer S, Stevenson AC et al. The temperature of Europe during the Holocene reconstructed from pollen data[J]. Quaternary Science Reviews,2003,22: 1701-1716.
    Deckker PD, Correge T, Head J.1993, Late Pleistocene record of cyclic eolian activity from tropical Australia suggesting the Younger Dryas is not an unusual climatic event[J]. Geology,22:602-605.
    Deckker PD & Last WM.1988, Modern dolomite deposition in continental, saline lakes, western Victoria, Australia[J]. Geology,16:29-32.
    Dansgaard W, White JWC Johnsen SJ. The abrupt termination of t he Younger Dryas climate event [J]. Nature,1989,339:532-534.
    Eddy JA. The PA GES Project:Proposed implementation plans for research activities[R]. IGBP Report No.19. Stock-holm,1992.112.
    Fontes JC, Gasse F, Gibert E. Hollocene environmental changes in Lake Bangong basin (West Tibet), Part 1:Chronology and stable isotope of carbonates of a Holocene lacustrine core[J]. Palaeogeo-graphy, Palaeoclim atology, Palaeoecology,1996,120: 25~47.
    Fowler AJ, Gillespie R, Hedges REM. Radiocarbon dating of sediments[J]. Radiocarbon,1986,28 (2A):441~450.
    F(?)gri, K, Iversen, J. Textbook of Pollen Analysis[J].1989,4th ed. John Wiley and Sons, London, UK.
    Grimm E G, J acobson GL, Watt s W A. A 50000 a record of climate oscillations f rom Florida and it s temporal correlation with the Henrich event s[J]. Science,1993, 261:198-200.
    Hafsten U. A sub2division of t he Late Pleistocene period on asynchronous basis, intended for global and universal usage [J].Paleogeograpgy, Paleoclimatology, Paleoecology,1970,7 (4):279-296.
    Hu Ruji, Jiang Fenqing, Wang Yajun.2007. the importance of the lake On China's arid region[J],Arid Zone Research,24(2):137-140.
    Johnsen SJ, DahlJensen D, GundestrupN et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations:Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP[J]. Journal of Quaternary Science,2001,16:299-307.
    Kaplan MR, Wolfe AP. Spatial and temporal variability of Holocene temperature in the North Atlantic region[J]. Quaternary Research,2006,65:223-231.
    Koc N, Jansen E, Haflidason H et al. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms[J]. Quaternary Science Reviews,1993,12:115-140.
    Keits K,1991.Reading environmental signals from lake sediment archives, in Report of ⅩⅢ INQUA Congress[J], Science Press, China,10-19.
    Kelts K. Hsu KJ. Fresh water Carbonate Sedimentation In:Lerman A. ed. Lakes Chemistry, Geology. Physics[J]. Berlin:Springer Verlag.1978,295-323.
    Kilian MR, Vander Plicht J, van GeelB et al. Problematic 14C AMSdates of pollen concentrates from Lake Gosciaz(Poland) [J]. QuaternaryInternational,2002,88 (1): 21-26.
    Long A, Davis OK, Lanois JD, Separation and 14C dating of pure pollen from lake sediments[J]. Radiocarbon,1992,34(3):557-560.
    Lowe JJ. Radiocarbon dating:Recent app lication and future potential[J]. Quaternary Proceed ings,1991, (1):1~89.
    MacDonald GM, Beukens RP, Kieser WE et al. Comparative radiocarbon dating terrestrial p lant macrofossils and aquatic moss from the"ice2free corrodor"of weatern Canada[J]. Geology,1987,15:837~840.
    Newnham RM,Vandergose MJ, Garnett MH et al. Test ofAMS 14C dating of pollen concentrates using tephrochronology[J]. Journal of Quaternary Science,2007,22 (1): 37-51. Noakes et al.,1965
    Numaguti A. Origin and recycling processes of precipitating water over the Eurasian continent:Experiments using an atmospheric general circulation model[J]. Journal of Geophysical reseacha,1999,104:1957-1972.
    Oeschger H.To get past the technical and environmental information on the International Geosphere-the focus of the MAB[J], Geological and geochemical,1990 (5):35-50.
    Peteet DM, Vogel JS, Nelson DE et al. Younger dryas climatic reversal in Northeastern USA? AMS ages for an old p roblem[J]. Quaternary Research,1990,33 (2):219~230.
    Piotrowska N, Bluszcz A, Demske D et al. Extraction and AMS radiocarbon dating of pollen from Lake Baikal sediments[J]. Radiocarbon,2004,46 (1):181~187.
    Reimer RW, Reimer PJ. Marine reservoir corrections and the calibration curve[J]. Pages Newsletter,2006,14 (3):12~13.
    Regnell J. Preparing pollen concentrations for AMS dating-a methodological study from a hard-water lake in southern Sweden[J]. Boreas.1992,21:373-377
    Reimer PJ, Baillie MGL, Bard E, et al. Intca104 terrestrial radiocarbon age calibration, 0-26 cal kyr BP[J]. Radiocarbon,2004,46:1029-1058.
    Schotton FW. An examp le of hard2water error in radiocarbon dating of vegetable matter[J]. Nature,1972,240:460~461.
    Shen J, LiuX, WangSetal. Palaeoclimatic changes in theQinghai.Lake area during the last 18000 years[J]. Quaternary International,2005,136:131~140.
    Sun XJ, Du Naiqiu, Chen Yinshuo et al. Analysis on pollen of lake sediment in Silling Co, Tibet[J]. Acta Botanica Sinica,1993,35 (12):943~950.
    Sutherland DG. Problems of radiocarbon dating deposits from newly deglaciated terrain:Examp les from the Scottish lateglacial. In:Lowe J J, Gray JM, Robinson J E eds. Studies in the Lateglacial ofNorth-West Europe[J]. Oxford:Pergamon Press, 1980.139~149.
    Vandergoes M J. AMS dating of pollen concentrates—A methodological study of Late Quaternary sediments from South Westland,New Zealand[J]. Radiocarbon,2003,45 (3):479~491.
    Vandergoes MJ, Newnham RM, Preusser F et al. Regional insolation forcing of Late Quaternary climate change in the Southern Hemisphere[J]. Nature,2005,436:242~ 245.
    Vandenberghe J, Renssen H, van Huissteden K et al. Penetrationof Atlantic westerly winds into central and East Asia[J]. Quaternary Science Reviews,2006,25:2380-2389.
    Vogel JS, Briskin M,Nelson DE et al. Ultra-small carbon samples and the dating of sediments[J]. Radiocarbon,1989,31 (3):601~609.
    Wan Guojiang. On the increase in atmospheric trace gases and environmental effects on geological records[J],Quaternary Research,1991 (2):158-163.
    Wang RL, Scarpitta SC, Zhang SC et al. Later Pleistocene Holocene climate conditions ofQinghai2Xizang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments[J].Earth and Planetary Science Letters,2002,203: 461~477.
    Williams JB. Examination of freshwater peat pretreatment methodology [J]. Radiocarbon,1989,31 (3):269~275.
    Xiao JL, Inouchi Y, Kμmai H, et al.1997, Eolian quarts flux to Lake Biwa, Central Japan, over the past 145000 years[J]. Quaternary Research,48:48-57.
    Xiao J, XuQ, Nakamura T et al. Holocene vegetation variation in theDaihaiLake regionofNorth2centralChina:A direct indication of the Asian monsoon climatic history[J]. Quaternary Science Reviews,2004,23:1669~1679.
    ZhouW, Donahue D, Jull T. Radiocarbon AMS dating of pollen concentrated from Eolian sediments;Implication for monsoon climate change since the Late Quaternary [J].Radiocarbon,1997,39 (1):19~26.
    安成邦;陈发虎.中东亚干旱区全新世气候变化的西风模式——以湖泊研究为例[J].湖泊科学,2009,21(3):329-334.
    安成邦,冯兆东,唐领余.黄土高原西部全新世中期湿润气候的证据[J].科学通报,2003,48:2280-2287.
    曹琼英,沈德勋.第四纪年代学及实验技术[M].南京大学出版社,1988.
    陈发虎,朱艳,李吉均等.民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化[J].科学通报,2001,46:1414-1419.
    陈发虎,黄小忠,杨美临等.亚洲中部干旱区全新世气候变化的西风模式——以新疆博斯腾湖记录为例[J].第四纪研究,2006,26(6):881-887
    陈发虎,安成邦,杨美临,黄小忠,于子成.中东亚内陆干旱区全新世气候变化研究.《中国地理学会2006年学术年会论文摘要集》2006年.
    陈敬安,万国江,汗福顺,黄荣贵,张峰,ZhangD.D.,SchmidtR.胡泊现代沉积物碳环境记录研究[J].中国利一学(D辑),2002,32:73-80.
    陈敬安,万国江,张峰等.不同时间尺度卜的湖泊沉积物环境记录—以沉积物粒度为例[J].中国科学,D辑,2003,33(6):563-568.
    陈敬安,万国江,徐经意.洱海沉积物粒度记录与气候干湿变迁[J].沉积学报,2000,18(3):341-345.
    成都地质学院陕北队(编).沉积岩(物)粒度分析及其应用北京[M].地质出版社,1978.
    顾兆炎,刘嘉麟,袁宝印等12000年来青藏高原季风变化-色林错沉积地球化学证据[J].科学通报,1993,38(1):61-64.
    韩淑媞,董光荣.巴里坤湖全新世环境演变的初步研究[J].海洋地质与第四纪地质,1990,10:91-98.
    韩淑媞.吴乃琦.李志中.晚更斯世北疆内陆型气候环境变迁地理研究[J].1993.12(2):4-54.
    韩淑媞、袁玉江新疆巴里坤湖3.5万年以来气候变化序列[J].地理学报,1990,45(3):350-362.
    黄小忠,赵艳,程波,陈发虎,徐俊荣.2004.新疆博斯腾湖表层沉积物的抱粉分析[J].冰川冻土,26(5):602-609.
    黄小忠.2004.新疆博斯腾湖记录的亚洲中部干旱区全新世气候变化研究.兰州大学博士论文,pp:1-178.
    黄麟,蔡碧芩,余俊青.盐湖年龄的测定-青藏高原几个盐湖的14C年龄及沉积旋回[J].科学通报.1980.25(21):990-991.
    蒋庆丰,沈吉,刘兴起等.西风区全新世以来湖泊沉积记录的高分辨率古气候演化 [J].科学通报,2007,52(9):1042-1049.
    金章东,沈吉,王苏民,张恩楼.早全新世降温事件的湖泊沉积物证据[J],高校地质学报,2003,9(1):11-18.
    金章东,王苏民,沈吉,张恩楼,王建,陈晔,陈仕涛.岱海地区近400年来的“尘暴”事件——来自岱海沉积物粒度的证据[J].湖泊科学,2000,12(3):193-198.
    刘兴起,王苏民,沈吉.青海湖QH-2000钻孔沉积物粒度组成的古气候古环境意义[J].湖泊科学,2003,15(2):112-117.
    李炳元,王富宝,张青松等.西藏第四纪地质[M].北京:科学出版社,1983.
    李志中.新疆巴里坤湖400年来湖泊沉积的地球化学特征与意义,干旱区资源与环境.19926(3):28-38.
    陆化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究.科学通报,1997,42(23):2535-2538.
    强明瑞.2002.青藏高原北缘苏干湖湖芯记录的全新世气候变化研究.兰州大学博士论文,pp:1-144.
    强明瑞,陈发虎,张家武,高尚玉,周爱锋.2ka来苏干湖沉积碳酸盐稳定同位素记录的气候变化.科学通报,2005,1385-1393.
    齐文,郑绵平。西藏扎不耶湖ZK91-2钻孔沉积特征与气候环境演化。湖泊科学。1995.7(2):133-140.
    秦蕴珊,李铁刚,苍树溪.末次间冰期以来地球气候系统的突变[J].地球科学进展,2000,15(3):243-249.
    苏志殊、董光荣.萨拉乌苏地层年代的再次确定[J].沉积学报。1997.15(4):159-163
    孙湘君,杜乃秋,陈因硕等.西藏色林错湖相沉积物的花粉分析[J].植物学报,1993,35(12):943~950.
    孙千里,周杰,肖举乐.2001.岱海沉积物粒度特征及其古环境意义[J].海洋地质与第四纪地质,1:93-95.
    孙千里,肖举乐.岱海沉积记录的季风/干旱过渡区全新世适宜期特征[J].第四纪研究,2006,26(5):781~790.
    施雅风,孔昭宸,王苏民.中国全新世大暖期的气候波动与重要事件[J].中国科学 (B辑)1992,22(12):1300-1308.
    吴艳宏,王苏民,周力平,孙照斌.2007岱海14C测年的现代碳库效应研究[J].第四纪研究,2007,27(4):507-510.
    吴艳宏,王苏民,侯新花.青藏高原中部错鄂全新世湖泊沉积物年代学研究[J].中国科学(D辑),2006,36(8):713~722.
    夏鼐:《碳—14测定年代和中国史前考古学》,《考古》1977年第4期业渝光,要薛积彬,钟巍.新疆巴里坤湖全新世环境记录及区域对比研究[J].第四纪研究,2008,28(4):610-620.
    业渝光,重视和加强年轻沉积物年代学研究[J].海洋地质动态研究(2)1991,1-5业渝光,海洋地质动态[J],1986,第9期,9-10.
    余华贵,周卫健14C AMS测年在考古学中的应用[J].2007.
    赵新生,杨向荣,吴兆宁,刘晓疆,陈川,柴凤梅.新疆巴里坤东部几类主要土壤的地球化学特征[J].干旱区地理,2006,29(2):297-300.
    郑绵平,向军.魏新俊等.青藏高原的盐湖[M].北京.北京科学技术出版社,1989.
    郑喜玉,张明刚,董继和等.内蒙古盐湖[M].北京.科学出版社,1992.
    周卫建,1998.花粉浓缩物加速器.
    中国科学院新疆综合考察队中国科学院植物研究所,1978.
    朱海虹等.云南断陷湖泊环境与沉积[[J]].北京,科学出版社,1989.
    钟巍.近500年来新疆巴里坤湖相沉积物的生物地层学古气候意义[J].新疆大学学报,1993,10(2):95-100.
    张成君,曹洁,类延斌.中国新疆博斯腾湖全新世沉积环境年代学特征[J].沉积学报,2004,22(3)494-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700