用户名: 密码: 验证码:
CuPc/TiO_2纳米有序复合材料的制备与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过控制纳米材料的形貌和结构对材料的性能进行调控已经成为光电功能材料及器件当前研究的一个新的热点。对光电复合材料的结构与性能之间的关系和物理机制进行深入研究将有助于对其工作原理的进一步理解、新现象的发现和新概念的提出。光电功能材料中的光致电荷转移可显著提高载流子的解离和传输效率,是优化光电器件性能的有效途径。通过有机和无机半导体材料的纳米有序复合以及微观形貌的调控,形成拥有大面积接触界面、分子级别的紧密接触且有序定向排布的有机/无机电子给体-受体纳米有序复合体系可显著提高复合材料的光致电荷转移效率。本论文以电化学阳极氧化法和溶胶凝胶法结合真空蒸镀及电泳沉积法制备了CuPc/TiO_2纳米有序复合材料,并研究了其光电性能。
     本文首先综述了有机/无机纳米复合材料在光电导、光伏、传感器等各个领域的研究进展,并介绍了几种典型的有机、无机半导体材料在光电领域的应用,以及本文所采用的用于制备纳米复合材料的各种方法的研究进展。
     通过电化学阳极氧化法在Ti片上获得了尺寸可控且高度有序的TiO_2纳米管阵列,不同晶型的TiO_2纳米管阵列可以通过控制热处理温度得到。利用真空蒸镀法将CuPc填入TiO_2纳米管管内,通过调节CuPc的蒸镀速度以及厚度,可以获得不同形貌的CuPc/TiO_2纳米有序复合材料。并以此为光活化层制备了结构为Au/PEDOT:PSS/CuPc/TiO_2/Ti的光电器件,通过I-V特性曲线研究了其光电性能。在CuPc的蒸镀厚度为100 nm,TiO_2纳米管管径为70 nm的条件下,纳米有序复合材料的光电流较暗电流高出2-3个数量级,且有序材料的光电性能明显优于基于TiO_2无序纳米颗粒制备的复合材料。I-V测试结果表明,有序复合材料中的纳米结构为激子离解为自由载流子提供了较大的分离界面,而TiO_2纳米管阵列垂直于基底生长的特点促使光生载流子沿着纳米管的纵轴向Ti电极定向传输,使得载流子传输和收集效率大大增加,进而促使光电流大幅上升。光电器件在亮态/暗态之间转换时电流出现“滞后”现象是由于材料内部缺陷对多数载流子的捕获和释放过程有效地延缓了载流子的收集和淬灭所造成的。
     根据酞菁类物质在酸性溶液中易被质子化,质子化后的分子在外加电场作用下可定向迁移的特点,利用电泳沉积的方法在TiO_2纳米管阵列表面电泳沉积CuPc制备了CuPc/TiO_2纳米复合薄膜。通过改变沉积条件对CuPc薄膜的微观形貌和聚集态结构进行了调控。利用UV-vis吸收光谱和XRD等手段研究了CuPc薄膜的聚集态结构,薄膜中CuPc分子聚集体类型的转变是造成其Q带吸收峰发生移动的根源。不断沉积的CuPc分子的堆积方式主要受到下层分子性质的影响,并借助等离子体基元耦合模型和激子理论对其聚集态结构的演变进行了分析。而CuPc溶液和薄膜的电致变色现象也正是源于H聚体与J聚体之间的转变。以CuPc/TiO_2纳米复合薄膜为光活化层制备了双层感光体,通过改变CuPc薄膜形貌可以对感光体的光电性能进行调控,光电导测试结果表明,只有厚度适当的CuPc薄膜才能充分利用入射的光能,在产生足够多的激子的同时,保证产生的激子可以迁移到CuPc/TiO_2界面处解离形成自由载流子,从而大大提高复合薄膜的光电导性能。
     以高度有序的AAO为模板,使用溶胶.凝胶法和电泳沉积法分别制备了TiO_2和CuPc纳米线阵列,并结合两种方法通过二次沉积技术,将CuPc沉积在TiO_2纳米线和AAO模板孔壁之间的空隙处,得到了CuPc包覆的TiO_2纳米有序复合阵列。借助于瞬态荧光光谱证实了在复合纳米线中CuPc和TiO_2两者之间存在着光致电荷转移作用,通过改变EPD条件控制复合纳米线的形貌,可以调控复合纳米线的光电导性能。复合纳米线的光电导性能较单组分纳米线高出1-2个数量级。复合结构中酞菁铜包覆层与氧化钛纳米线之间较大的界面接触面积以及分离后的载流子定向连续传输通道是复合纳米线光电导性能提高的主要原因。
Tailoring the performance of materials via changing the morphologies and structures of materials has emerged as a new and important activity in optoelectronic functional materials and devices. The investigation of the relationship between structure and performance of optoelectronic composites would help to apprehend the optoelectronic mechanism, discover novel phenomenon, and raise new ideas. Photo-induced charge transfer in optoelectronic materials can be enhanced in one dimensional ordered nanocomposites and thus greatly improve the separation and transportation of charge carriers which are the key factors influencing optoelectronic device performance. The efficiency of photo-induced charge transfer in organic/inorganic nanocomposites can be effectively improved due to the effective contact in molecular level, larger contact area, and ordered directional donor/accepter nanocomposites construction which can be achieved through the ordered composite of organic and inorganic semiconductors and controlling the morphology of organic/inorganic ordered nanocomposites. In this dissertation, several approaches, anodic oxidation, sol-gel, vacuum thermal evaporation, and electrophoretic deposition, were carried out to fabricate high photosensitive CuPc/TiO_2 ordered nanocomposites. The optoelectronic property of the nanocomposites was investigated in details as well.
     The recent progress on the application of organic/inorganic nanocomposites in the area of photoconductivity, photovoltaic characteristic, sensors, etc. was reviewed firstly. A detailed description was covered on optoelectronic field based on copper phthalocyanine (CuPc), phthalocyanine dyes and titania, including the preparation methods of nanocomposites used in this dissertation.
     Size-controllable and high ordered vertically-oriented TiO_2 nanotube arrays were fabricated using anodic oxidation of pure titanium sheets in electrolyte solutions, and the crystallization of TiO_2 nanotubes could be tuned by altering annealing temperature. CuPc was filled into TiO_2 nanotubes by vacuum deposition at various deposition rates, a series of CuPc/TiO_2 ordered nanocomposites with various morphologies were achieved by tailoring the thickness of CuPc and the diameter of the TiO_2 nanotubes. A double-layered photoconductive device (Au/CuPc/TiO_2 nanotubes/titanium) was designed and fabricated with the CuPc/TiO_2 nanocomposites as photoactive layer. The photoconductive property of devices was studied via current-voltage(I-V) curves, and the current value increased by 2 or 3 orders of magnitude when exposed to light from dark, depending on the thickness of CuPc layer (100 nm for the best) and the diameter of TiO_2 nanotubes (70 nm for the best). For a control experiment, the I_l/I_d ratio of the device with disordered TiO_2 nanoparticles (TNPs) is obviously lower than that with ordered nanotube arrays. Several factors contribute to the improvement of photoconductive property of devices: the nanoarrays of TiO_2 nanotubes can enormously increase the contact area between CuPc and TiO_2, which offers much more sites for the exciton dissociation, and the one-dimensional and well-ordered structure of TiO_2 nanotube arrays can act as efficient transport channels. With the help of the aligned TiO_2 nanotubes, the collection and transfer efficiency of electrons is greatly enhanced, leading to an evident increase of photocurrent. The capturing and releasing majority carriers by traps or recombination centers at the donor/acceptor interface could effectively delay the process of collection or annihilation of charged carriers, which results in the hysteretic phenomenon of current change as device switches from light to dark and the reverse.
     Phthalocyanine, a p-type organic semiconductor, contains bridging nitrogen atoms and can be easily protonated in organic acid solution. The protonated phthalocyanine molecules can orientationally migrate and nucleate on the negative electrode under external electric field. Basing on these considerations, CuPc/TiO_2 nanocomposites were fabricated by the electrophoretic deposition method (EPD) from the mixed solution of chloroform and trifluoroacetic acid containing the protonated CuPc. The morphology of the CuPc nanofilms can be manipulated by deposition time, concentration of CuPc, and applied voltage. The aggregation structure of the CuPc nanofilms was investigated by UV-vis spectroscopy and X-ray diffraction (XRD). The shift of Q-band absorption of CuPc nanofilms was resulted from the transition of aggregated structure of CuPc molecules. The XRD patterns demonstrated that the stack style of the deposited CuPc molecules is influenced by the property of the underlayer molecules. The evolvement of CuPc molecular aggregated structure was investigated by molecular exciton model and plasmon coupling, and the electrochromatic property of CuPc nanofilms and solution is derived from the transition of H- and J-aggregates. A dual-layered photoreceptors containing CuPc/TiO_2 nanocomposites as the charge generation layer (CGL) were designed and fabricated. The photoconductive property of photoreceptors was tailored via changing the morphology of the CuPc nanofilms. It was found that, to guarantee the adequate utilization of light energy, the thickness of the CuPc layer must be appropriate to efficiently absorb incident photons as well as to favor the migration of the excitons, which improved the photoconductivities of photoreceptors greatly.
     Using highly-ordered porous anodic aluminum oxide (AAO) with nanopores perpendicular to the conductive substrate as the template, highly-ordered and well-aligned TiO_2 and CuPc nanowire arrays were prepared by assembly of TiO_2 precursors and CuPc in the AAO templates via sol-gel and EPD method, respectively. Coupling these two methods, a series of CuPc-coated TiO_2 ordered nanowire arrays were achieved via this secondary deposition technique. The photoluminescence spectra and the time-resolved fluorescence spectra of CuPc/TiO_2 nanowires confirmed the photoinduced charge transfer occurs between CuPc and TiO_2 nanowires, which contributes to the photoconductivity enhancement of CuPc/TiO_2 nanowires compared to pure CuPc or TiO_2 nanowires. The photoconductivity of the CuPc/TiO_2 nanowires can be tailored by changing the morphologies of CuPc/TiO_2 nanowires. It was found that the CuPc/TiO_2 nanowires arrays exhibited one or two orders of magnitude higher photoconductivity than that of pristine TiO_2 or CuPc nanowire arrays due to the large donor-acceptor (CuPc-TiO_2) contact area and the directional alignment of TiO_2 nanowires.
引文
1. N. S. Sariaiftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 1992, 258: 1474-1476.
    
    2. Y. Wang, Photoconductivity of fullerene-doped polymers, Nature, 1992, 356: 585-587.
    
    3. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789-1791.
    
    4. G. Ramos, T. Belenguer, E. Bernabeu, F. Monte, D. Levy, A Novel Photoconductive PVK/SiO_2 Interpenetrated Network Prepared by the Sol-Gel Process, J. Phys. Chem. 5,2003,107: 110-112.
    
    
    5. G. Ramos, T. Belenguer, D. Levy, A Highly Photoconductive Poly(vinylcarbazole)/2,4,7-Trinitro-9-fluorenone Sol-Gel Material that Follows a Classical Charge-Generation Model, J. Phys. Chem. B, 2006,110: 24780-24785.
    
    6. H. P. Xu, B. Y. Xie, W. Z. Yuan, J. Z. Sun, F. Yang, Y. Q. Dong, A. Qin, S. Zhang, M. Wang, B. Z. Tang, Hybridization of thiol-functionalized poly(phenylacetylene) with cadmium sulfide nanorods: improved miscibility and enhanced photoconductivity, Chem. Commun., 2007,1322-1324.
    
    7. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, C. Stocky, F. Wudl, Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells, Appl. Phys. Lett., 1993, 62: 585.
    
    8. X. N. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nanoscale morphology of high-performance polymer solar cells, Nano Lett., 2005, 5(4): 579-583.
    
    9. G. Li, V. Shrotriya, J. S. Huang, Y. Ya, Tommoriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 2005,4: 864-868.
    
    10. T. Martens, J. D'Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D'Olieslaeger, D. Vanderzande, L. De Schepper, R. Andriessen, Disclosure of the
    ??nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM, Synthetic Metal., 2003, 138(1-2): 243-247.
    
    11. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, M. Ree, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells, Nature Materials, 2006, 5(3): 197-203.
    
    12. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science, 2002, 295(5564): 2425-2427.
    
    13. W. U. Huynh, J. J. Dittmer, W. C. Libby, G L. Whiting, A. P. Alivisatos, Controlling the morphology of nanocrystal-polymer composites for solar cells, Adv. Func. Mater., 2003, 13(1): 73-79.
    
    14. P. C. Dastoor, C. R. McNeill, H. Frohne, C. J. Foster, B. Dean, C. J. Fell, W. J. Belcher, W. M. Campbell, D. L. Officer, I. M. Blake, P. Thordarson, M. J. Crossley, N. S. Hush, J. R. Reimers, Understanding and Improving Solid-State Polymer/C_(60)-Fullerene Bulk-Heterojunction Solar Cells Using Ternary Porphyrin Blends, J. Phys. Chem. C,2007, 111: 15415-15426.
    
    15. G. Yu, K. Pakbaz, A. J. Heeger, Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity, Appl. Phys. Lett., 1994, 64: 3422.
    
    16. M. Hiramoto, H. Fukusumi, M. Yokoyama, Three-layered organic solar cell with a photoactive interlayer of codeposited pigments, Appl. Phys. Lett., 1991, 58: 1062.
    
    17. M. Hiramoto, H. Fukusumi, M. Yokoyama, Organic solar cell based on multistep charge separation system, Appl. Phys. Lett., 1992, 61: 2580.
    
    18. P. A. Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. V. Gennip, P. Jonkheijin, R. A. J. Janssen, Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO_2, Adv. Mater., 2003, 15(2): 118-121.
    
    19. K. M. Coakley, M. D. McGehee, Photovoltaic cells made from conjugated polymers infiltrated into mesoporous Titania, Appl. Phys. Lett., 2003, 83: 3380-3382.
    
    20. K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, C. Goh, Y. X. Liu, M. D. McGehee, Enhanced Hole Mobility in Regioregular Polythiophene Infiltrated in Straight Nanopores, Adv. Func. Mater., 2005,15: 1927-1932.
    
    21. Y. Shao, Y. Yang, Efficient Organic Heterojunction Photovoltaic Cells Based on Triplet Materials, Adv. Mater., 2005,17: 2841-2844.
    
    22. V. Gowrishankar, S. R. Scully, M. D. McGehee, Exciton splitting and carrier transport across the amorphous-silicon/polymer solar cell interface, Appl. Phys. Lett., 2006, 89: 252102.
    
    23. I. Gur, , N. A. Fromer,, C.-P. Chen,, A. G. Kanaras,, A. P. Alivisatos,, Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals, Nano Lett., 2007, 7(2): 409-414.
    
    24. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science, 2007, 317: 222-225.
    
    25. P. Robert, P. Serge, K. Jessica, G. Michael, Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells, J. Phys. Chem. B, 2002,106: 7578-7580.
    
    26. S. Yoo, B. Domercq, B. Kippelen, Efficient thin-film organic solar cells based on pentacene/C_(60) heterojunctions, Appl. Phys. Lett., 2004, 85(22): 5427-5429.
    
    27. J. G. Xue, S. Uchida, B. P. Rand, S. R. Forrest, 4.2% efficient organic photovoltaic cells with low series resistances,Appl. Phys. Lett., 2004, 84: 3013.
    
    28. J. G. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions, J. Appl. Phys., 2004, 85(23): 5757.
    
    29. J. G. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance, J. Appl. Phys., 2005, 98(12): 124903.
    
    30. C. L. Huisman, A. Goossens, J. Schoonman, Photodoping of Zinc Phthalocyanine: Formation, Mobility, and Influence of Oxygen Radicals in Phthalocyanine-Based Solar Cells, J. Phys. Chem. 5,2002, 106(41): 10578-10584.
    
    31. Y. Amao, T. Komori, Dye-Sensitized Solar Cell Using a TiO_2 Nanocrystalline Film Electrode Modified by an Aluminum Phthalocyanine and Myristic Acid Coadsorption Layer, Langmuir, 2003,19(21): 8872-8875.
    
    32. V. Lemaur, M. Steel, D. Beljonne, J. L. Bredas, J. Cornil, Photoinduced Charge Generation and Recombination Dynamics in Model Donor/Acceptor Pairs for
    ??Organic Solar Cell Applications: A Full Quantum-Chemical Treatment, J. Am. Chem. Soc, 2005,127(16): 6077-6086.
    
    33. J. G Xue, B. P. Rand, S. Uchida, S. R. Forrest, A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaci Cell,Adv. Mater., 2005, 17: 66-71.
    
    34. A. T. Pavel, K. Robert, S. P Alexander., M. P. Svetlana, E. Martin, N. L. Rimma, N. S. Sariciftci, Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells, Chem. Mater., 2007,19(22): 5363-5372.
    
    35. P. Peumans, S. Uchida, S. R. Forrest, Efficient Bulk Heterojunction Photovoltaic Cells Using Small-Molecular-Weight Organic Thin Films. Nature, 2003, 425: 158-162.
    
    36. P. Peumans, S. R. Forrest, Very-High-Efficiency Double-Heterostructure Copper hthalocyanine/C_(60) Photovoltaic Cells. Appl. Phys. Lett., 2001, 79: 126-128.
    
    37. S. Uchida, J. Xue, B. P. Rand, S. Forrest, Organic Small Molecute Solar Cells with a Homogeneously Mixed Copper Phthalocyanine: C_(60) Active Layer. Appl. Phys. Lett., 2004, 84: 4218-4220.
    
    38. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv. Fund Mater, 2005,15: 1617-1622.
    
    39. P. K. Watkins, A. B. Walker, G. L. B. Verschoor, Dynamical Monte Carlo Modeling of Organic Solar Cells: The Dependence of Internal Quantum Efficiency on Morphology. Nano Lett., 2005, 5: 1814-1818.
    
    40. R. A. Marsh, C. Groves, N. C. Greenham, A Microscopic Model for the Behavior of Nanostructured Organic Photovoltaic Devices. J. Appl. Phys., 2007, 101 : 083509.
    
    41. F. Yang, K. Sun, S. R. Forrest, Efficient Solar Cells Using All-Organic Nanocrystalline Networks. Adv. Mater, 2007, 19: 4166-4171.
    
    42. F. Yang, S. R. Forrest, Photocurrent Generation in Nanostructured Organic Solar Cells, ACS Nano., 2008,2(5): 1022-1032.
    
    43. K. M. Coakley, M. D. McGehee, Conjugated Polymer Photovoltaic Cells, Chem. Mater, 2004,16:4533-4542.
    
    44. W. J. Salcedo, F. J. R. Fernandez, J. C. Rubim, Nano-composite of porous silicon and organic dye molecules for optical gas sensor and lasing medium, physica status solidi (c), 2004,1: S26-S30.
    
    45. H. Tanaka, T. Yasuda, K. Fujita, T. Tsutsui, Transparent Image Sensors Using an Organic Multilayer Photodiode, Adv. Mater., 2006,18(17): 2230-2233.
    
    46. A. Das, R. Dost, T. Richardson, M. Grell, J. J. Morrison, M. L. Turner, A Nitrogen Dioxide Sensor Based on an Organic Transistor Constructed from Amorphous Semiconducting Polymers, Adv. Mater, 2007,19(22): 4018-4023.
    
    47. A. Tsumura, H. Koezuka, T. Ando Macromolecular electronic device: Field-effect transistor with a polythiophene thin film, Appl. Phys. Lett., 1986,49: 1210.
    
    48. D. F. Barbe, C. R. Westgate, Surface state parameters of metal-free phthalocyanine single crystals, Phys. Chem. Solids, 1970, 31: 2679-2687.
    
    49. H. Koezuka, A. Tsumora, T. Ando, Field-effect transistor with polythiophene thin film, Synth Met., 1987,18: 699-704.
    
    50. A. Afzali, C. Dimtrakopoulis, T. Breen, High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor, J. Am. Chem. Soc, 2002,124:8812.
    
    51. Y. Wang, Y. Q. Liu, Y. B. Song, S. H. Ye, W. P. Wu, Y. L. Guo, C. A. Di, Y. M. Sun, G. Yu, W. P. Hu, Organic Field-Effect Transistors with a Low Pinch-Off Voltage and a Controllable Threshold Voltage, Adv. Mater, 2008, 20(3): 611-615.
    
    52. S. A. DiBenedetto, D. Frattarelli, M. A. Ratner, A. Facchetti, T. J. Marks, Vapor Phase Self-Assembly of Molecular Gate Dielectrics for Thin Film Transistors, J. Am. Chem. Soc, 2008,130: 7528-7529.
    
    53. K. J, KimuraM, N. K. Multilayer, White Light emitting Organic Electroluminescent Device, Science, 1995, 267: 1332.
    
    54. J. Kido, K. Nagai, Y. Okamoto, Bright organic electroluminescent devices with double-layer cathode, IEEE Trans. Electron Devices, 1993,40: 1342.
    
    55. N. F. Colaneri, D. D. C. Bradley, R. H. Friend, Photoexcited states in poly(p-phenylene vinylene): Comparison with trans,trans-distyrylbenzene, a model oligomer, Phys. Rev. B, 1990,42: 11670-11681.
    
    56. W. Helfrich, W. G. Schneider, Recombination Radiation in Anthracene Crystals. Phys. Rev. Lett., 1965,14: 229.
    
    57. Vincett P S, Barlow W A, Hann R A, et al., Electrical Conduction and Low Voltage Blue Electroluminescence in Vacuum-deposited Organic Films, Thin Solid Films, 1982, 94:171.
    
    58. C. W. Tang, S. A. Vanslyke, Organic Electroluminenscent Diodes, Appl. Phys. Lett., 1987,51:913.
    
    59. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting Diodes Based on Conjugate Polymers, Nature, 1990, 347: 539-541.
    
    60. K. J. Matsumoto, Bright Organic Electroluminescent Devices Having a Meta 1-doped Electron-injecting Layer, Appl. Phys. Lett., 1988, 73: 2866.
    
    61. G. Gustafsson, Y. Cao, G M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Flexible Light-emitting Diodes Made from Soluble Conducting Polymers, Nature, 1992, 357: 477-479.
    
    62. Y. Cao, G. M. Treacy, P. Smith, A. J. Heeger, Solution-cast Films of Polyaniline: Optical-quality Transparent Electrodes, Appl. Phys. Lett., 1992, 60: 2711.
    
    63. P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, R. H. Friend, R. W. Gymer, Chemical Tuning of Electroluminescent Copolymer to Improve Emission Efficiencies and Allow Patterning. Nature, 1992, 356: 47-49.
    
    64. A. C. Fou, O. Onitsuka, M. Ferreira, M. F. Rubner, B. R. Hsieh, Fabrication and Properties of Light-emitting Diodes Based on Self-assembled Multilayers of Poly(phenylene vinylene), J. Appl. Phys., 1996, 79(10): 7501-7509.
    
    65. G. Gu, Z. Sken, P. E. Burrows, S. R. Forrest, Transparent Organic Light Emitting Device. Adv. Mater., 1997,9: 725.
    
    66. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, J. C. Sturm, Ink-jet Printing of Doped Polymers for Organic Light Emitting Devices. Appl. Phys. Lett., 1998, 72(5): 519-521.
    
    67. C. D. Miiller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohnel, O. Nuyken, H. Becker, K. Meerholz, Multi-colour Organic Light-emitting Displays by Solution Processing. Nature, 2003,421: 829-833.
    
    68. P. Gregory, Industrial applications of phthalocyanines, Industrial applications of phthalocyanines, 2000,4(4): 432-437.
    
    69. M. I. Newton, T. K. H. Starke, M. R. Willis, G. McHale, NO_2 detection at room temperature with copper phthalocyanine thin film devices, Sensors and Actuators B-Chemical, 2000, 67(3): 307-311.
    
    70. R. Zeis, T. Siegrist, C. Kloc, Single-crystal field-effect transistors based on copper phthalocyanine,Appl. Phys. Lett., 2005, 86(2): 022103.
    
    71. E. M. Maya, E. M. Garcia-Frutos, R Vazquez, T. Torres, G. Martin, G. Rojo, F. Agullo-Lopez, R. H. Gonzalez-Jonte, V. R. Ferro, J. M. G. de la Vega, I. Ledoux, J. Zyss, Novel push-pull phthalocyanines as targets for second-order nonlinear applications, JPhys. Chem. A, 2003, 107(12): 2110-2117.
    
    72. H. Spanggaard, F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Solar Energy Materials & Solar Cells, 2004, 83: 125-146.
    
    73. G. M. Delacote, J. R Fillard, F. Marco, Electron injection in thin films of copper phtalocyanine, Solid State Commun., 1964,2: 373.
    
    74. C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett., 1986, 48: 183-185.
    
    75. S. A. V. Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability, Appl. Phys. Lett, 1996, 69: 2160-2162.
    
    76. A. Yakimov, S. R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Appl. Phys. Lett., 2002, 80: 1667-1669.
    
    77. V. P. Singh, R. S. Singh, B. Parthasarathy, A. Aguilera, Copper-phthalocyanine- based organic solar cells with high open-circuit voltage, Appl. Phys. Lett., 2005, 86: 082106.
    
    78. K. Suemori, T. Miyata, M. Yokoyama, M. Hiramoto, Three-layered organic solar cells incorporating a nanostructure-optimized phthalocyanine:fullerene codeposited interlayer, Appl. Phys. Lett., 2005, 86: 063509.
    
    79. F. Yang, M. Shtein,, S. R. Forrest, Controlled Growth of a Molecular Bulk Heterojunction Photovoltaic Cell. Nat. Mater., 2005,4: 37-41.
    
    80. S. Karan, D. Basak, B. Mallik, Copper phthalocyanine nanoparticles and nanoflowers, Chemical Physics Letters, 2007,434: 265-270.
    
    81. S. Karan, B. Mallik, Templating Effects and Optical Characterization of Copper (II) Phthalocyanine Nanocrystallites Thin Film: Nanoparticles, Nanoflowers, Nanocabbages, and Nanoribbons, J. Phys. Chem. C, 2007, 111: 7352-7365.
    
    
    82. M. Brumbach, D. Placencia, N. R. Armstrong, Titanyl Phthalocyanine/C_(60) Heterojunctions: Band-Edge Offsets and Photovoltaic Device Performance, J. Phys. Chem. C, 2008,112: 3142-3151.
    
    83. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395: 583-585.
    
    84. A. C. Arango, S. A. Carter, P. J. Brock, Charge transfer in photoltaics consisting of interpenetrating networks of conjugated polymer and TiO_2 nanoparticles, Appl. Phys. Lett, 1999, 74: 1698-1700.
    
    85. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G D. Stucky, Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks, Nature, 1998,396:152-154.
    
    86. K. M. Coakley, Y. X. Liu, M. D. McGehee, K. L. Frindell, G. D. Stucky, Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications, Adv. Func. Mater, 2003,13(4): 301-306.
    
    87. J. Liu, E. N. Kadnikova, Y. Liu, M. D. McGehee, J. M. J. Frechet, Polythiophene Containing Thermally Removable Solubilizing Groups Enhances the Interface and the Performance of Polymer-Titania Hybrid Solar Cells, J. Am. Chem. Soc, 2004,126(31): 9486-9487.
    
    88. N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang,Y. J. Shin, Chemical Sintering of Nanoparticles: Methodology for Low-Temperature Fabrication of Dye-Sensitized TiO_2 films, Adv. Mater, 2005,17: 2394-2353.
    
    89. C. S. Karthikeyan, M. Thelakkat, M. Willert-Porada, Different mesoporous titania films for solid-state dye sensitised solar cells, Thin Solid Films, 2006, 511-512: 187-194.
    
    90. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, N. Wang, Formation mechanism of TiO_2 nanotubes, Appl. Phys. Lett., 2003, 82: 281.
    
    91. Q. Chen, W. Z. Zhou, G. H. Du, L. H. Peng, Trititanate nanotubes made via a single alkali treatment, Adv. Mater, 2002,14: 1208.
    
    92. Z. R. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, H. F. Xu, Biommetic arrays of oriented helical ZnO nanorods and columns, J. Am. Chem. Soc, 2003, 125: 12384.
    93. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir, 1998, 14: 3160-3163.
    
    94. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania Nanotubes Prepared by Chemical Processing, Adv. Mater. 1999, 11: 1307-1311.
    
    95. S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, S. Yoshikawa, Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure, Photochem. Photobio. A: Chemistry, 2004,164: 145-151.
    
    96. M. Wei, Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa, Utilization of Titanate Nanotubes as an Electrode Material in Dye-Sensitized Solar Cells, Journal of The Electrochemical Society, 2006,153(6): 1232-1236.
    
    97. W. Nuansing, S. Ninmuanga, W. Jarernboon, S. Maensiri, S. Seraphin, Structural characterization and morphology of electrospun TiO_2 nanofibers, Mater. Sci. Engi. B,2006,131:147-155.
    
    98. H. Shin, D. K. Jeong, J. Lee, M. M. Sung, J. Y. Kim, Formation of TiO_2 and ZrO_2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness,Adv. Mater., 2004,16(14): 1197-1200.
    
    99. J. H. Lee, I. C. Leu, M. C. Hsu, Y. W. Chung, M. H. Hon, Fabrication of Aligned TiO_2 One-Dimensional Nanostructured Arrays Using a One-Step Templating Solution Approach, J. Phys. Chem. 5,2005,109: 13056-13059.
    
    100. Y. B. Xie, Photoelectrochemical Reactivity of a Hybrid Electrode Composed of Polyoxophosphotungstate Encapsulated in Titania Nanotubes, Adv.Func. Mater., 2006, 16: 1823-1831.
    
    101. A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Ion Implantation and Annealing for an Efficient N-Doping of TiO_2 Nanotubes, Nano Lett., 2006, 6(5): 1080-1082.
    
    102. K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Enhance charge-collection efficiencies and light scattering in Dye-Sensitized solar cells using oriented TiO_2 nanotubes arrays, Nano Lett., 2007, 7(1): 69-74.
    
    103. Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO_2 Nanowires, Nano Lett., 2002, 2(7): 717-720.
    
    
    104. M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripe, Template-Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well-Controlled Dimensions on Substrates, Adv. Mater., 2004,16: 2052-2057.
    
    105. S. Z. Chu, S. Inoue, K. Wada, S. Hishita, K. Kurashima, Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on glass, Adv.Func. Mater., 2005, 15: 1343-1349.
    
    106. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 2001,16:3331-3335.
    
    107. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure, Adv. Mater., 2003, 15: 624.
    
    108. O. K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, N. Mukherjee, A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations, J. Nanosci. Nanotechnol, 2004,4: 733.
    
    109. M. Paulose, O, K. Varghese, G. K. Mor, C. A. Grimes, K. G Ong, Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotech., 2006, 17(2): 398-402.
    
    110.O. K. Varghese., M. Paulose, K. Shankar, G. K. Mor, C. A. Grimes, Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays, J. Nanosci. Nanotechnol, 2005, 5: 1158.
    
    111. C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, Fabrication of highly ordered TiO_2 nanotube arrays using an organic electrolyte, J. Phys. Chem. 5,2005,109:15754.
    
    112. Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation, J. Mater. Res., 2005, 20: 230-233.
    
    113. J. M. Macak, H. Tsuchiya, P. Schmuki, High-aspect-ratio TiO_2 nanotubes by anodization of titanium, Angew. Chem. Int. Ed., 2005, 44: 2100.
    
    114. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Smooth anodic TiO_2 nanotubes, Angew. Chem. Int. Ed., 2005,44: 7463.
    
    115. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano Lett., 2005, 5: 191.
    
    116. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, C. A. Grimes, Anodic Growth of Highly Ordered TiO_2 Nanotube Arrays to 134 urn in Length, J. Phys. Chem. B, 2006, 110(33): 16179-16184.
    
    117. M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai, C. A. Grimes, TiO_2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion, J. Phys. Chem. C, 2007, 111: 14992-14997.
    
    118. O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res., 2003,18: 156-165.
    
    119. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, Fabrication of tapered, conical-shaped titania nanotubes, J. Mater. Res., 2003,18: 2588.
    
    120. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 293: 269.
    
    121. S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO_2, Science, 2002,297: 2243.
    
    122. G. K. Mor, K. Shankar, O. K. Varghese, C. A. Grimes, Photoelectrochemical properties of titania nanotubes, J. Mater. Res., 2004, 19: 2989.
    
    123. R. Vogel, P. Meredith, I. Kartini, M. Harvey, J. D. Riches, A. Bishop, N. Heckenberg, M. Trau, H.R. Dunlop, Chem. Phys. Chem., 2003,4: 595.
    
    124. M. Paulose, G. K. Mor, O. K. Varghese, K. Shankar, C. A. Grimes, Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays, Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178: 8-15.
    
    125. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Use of Highly-Ordered TiO_2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Lett., 2006, 6(2): 215-218.
    
    126. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, C. A Grimes, Application of highly-ordered TiO_2 nanotube-arrays in heterojunction dye-sensitized solar cells, J. Phys. D.Appl. Phys., 2006, 39:2498-2503.
    127. M. Paulose, K. Shankar, 0. K. Varghese, G. K. Mor, B. Hardin, C. A Grimes, Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes, Nanotech., 2006,17: 1446-1448.
    
    128. S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki, Self-Organized, Free-Standing TiO_2 Nanotube Membrane for Flow-through Photocatalytic Applications, Nano Lett., 2007, 7(5): 1286-1289.
    
    129. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. Paulose, C. A. Grimes, A room Temperature TiO_2 Nanotube Hydrogen Sensor Able to Self Clean Photoactively from Environmental Contamination,J. Mater. Res., 2004, 19(2): 628-634.
    
    130. C. A. Grimes, K. G. Ong, O. K. Varghese, X. Yang, G. K. Mor, M. Paulose, C. Ruan, E. C. Dickey, M. V. Pishko, J. W. Kendig, A. J. Mason, A sentinel sensor network for hydrogen sensing, Sensors, 2003, 3: 69.
    
    131. D. S. Xu, X. S. Shi, G. L. Guo, L. L. Gui, Y. Q. Tang, Electrochemical preparation of CdSe nanowire arrays, J. Phys. Chem. B, 2000,104: 5061-5063.
    
    132. M. S. Sander, R. Gronsky, T. Sands, A. M. Stacy, Structure of Bismuth Telluride Nanowire Arrays Fabricated by Electrodeposition into Porous Anodic Alumina Templates, Chem. Mater, 2003, 15(1): 335-339.
    
    133. A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, A. M. Stacy, The Electrodeposition of High-Density, Ordered Arrays of Bil-xSbx Nanowires, J. Am. Chem. Soc., 2003, 125(9): 2388-2389.
    
    134. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, U. Gosele, Highly ordered monocrystalline silver nanowire arrays, J. Appl. Phys., 2002, 91: 3243-3247.
    
    135. F. Favier, E. C. Walter, M. P. Zach, T. Benter, R. M. Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science, 2001, 293:2227-2231.
    
    136. A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu, Fabrication of highly ordered metallic nanowire arrays by electrodeposition, Appl. Phys. Lett., 2001, 79: 1039-1041.
    
    137. M. P. Zach, K. H. Ng, R. M. Penner, Molybdenum nanowires by electrodeposition,Science,2000,290: 2120-2123.
    
    138. F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, Z. Xue, An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock-Copolymer-Assisted Hard-Template Method, Adv. Mater., 2006,18: 2161-2164.
    
    139. G. Z. Cao, Growth of oxide nanorod arrays through sol electrophoretic deposition, J. Phys. Chem. 5,2004,108: 19921-19931.
    
    140. G. H. A. Therese, P. V. Kamath, Electrochemical Synthesis of Metal Oxides and Hydroxides, Chem. Mater., 2000, 12: 1195.
    
    141. S. J. Limmer, G. Cao, Sol-Gel Electrophoretic Deposition for the Growth of Oxide Nanorods,Adv. Mater., 2003,15,427.
    
    142. N. Wang, H. Lin, J. Li, X. Yang, B. Chi, Electrophoretic deposition and optical property of titania nanotubes films, Thin Solid Films, 2006,496: 649-652.
    
    143. G. S. Kim, H. K. Seo, V. P. Godble , Y. S. Kim, O. B. Yang, H. S. Shin, Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: Application to dye-sensitized solar cells, Electrochemistry Communications, 2006, 8: 96-966.
    
    144. H. Hasegawa, T. Kubota, S. Mashiko, An electrochemical fabrication of nanowire composed of phthalocyanine, Synthetic Metals, 2003, 135-136: 763-764.
    
    145. H. Z. Chen, L. Cao, H. B. Zhou, Y. Rong, M. Wang, Fabrication of gadolinium biphthalocyanine nano/microwires by electrophoretic deposition, J. Crys. Growth, 2005, 281: 530-537.
    
    146. R. Bai, H. Z. Chen, H. B. Zhou, M. M. Shi, M. Wang, Formation and characterization of europium bisphthalocyanine nanowires by electrophoretic deposition,J. Crys. Growth, 2005, 285: 183-190.
    
    147. R. Bai, M. Ouyang, R. J. Zhou, M. M. Shi, M. Wang, H. Z. Chen, Well-Defined Nanoarrays from N-type Organic Perylene-Diimide Derivative for Photoconductive Devices, Nanotechnology, 2008,19: 055604.
    
    148. M. A. El-Sayed, Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes, Acc Chem. Res., 2001, 34: 257.
    
    149. D. O'Carroll, I. Lieberwirth, G. Redmond, Microcavity effects and optically pumped lasing in single conjugated polymer nanowires, Nature Nanotech., 2007, 2: 180-184.
    
    150. M. A. Zimmler, J. Bao, I. Shalish, W. Yi, V. Narayanamurti, F. Capasso, A two-colour heterojunction unipolar nanowire light-emitting diode by tunnel injection, Nanotechnology, 2007, 18: 395201.
    
    151. R. V. Parthasarathy, C. R. Martin, Template-Synthesized Polyaniline Microtubules, Chem. Mater., 1994, 6: 1627.
    
    152. L. Kim, J. Kim, G. H. Gu, J. S. Suh, Fabrication of well-ordered molecular device arrays, Chem. Phys. Lett., 2006, 427: 137.
    
    153. C. R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science, 1994,266:1961.
    
    154. S. A. Sapp, B. B. Lakshmi, C. R. Martin, Template synthesis of bismuth telluride nanowires, Adv. Mater., 1999, 11: 402.
    
    155. S. A. Miller, V. Y. Young, C. R. Martin, Electroosmotic Flow in Template-Prepared Carbon Nanotube Membranes, J. Am. Chem. Soc, 2001, 123: 12335.
    
    156. S. Zhao, H. Roberge, A. Yelon, T. Veres, New Application of AAO Template: A Mold for Nanoring and Nanocone Arrays, J. Am. Chem. Soc, 2006, 128: 12352.
    
    157. Y. C. Sui, D. R. Acosta, J. A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B. Z. Cui, J. O. Flores, J. M. Saniger, Structure, Thermal Stability, and Deformation of Multibranched Carbon Nanotubes Synthesized by CVD in the AAO Template, J. Phys. Chem. B, 2001,105: 1523.
    
    158. D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates, J. Phys. Chem., 1996,100: 14037.
    
    159. J. I. Sohn, Y. S. Kim, H. Nam, B. K. Cho and T. Y. Seong, Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes, Appl. Phys. Lett., 2005, 87: 123115.
    
    160. Y. C. Sui, J. A. Gonzalez-Leon, A. Bermudez, J. M. Saniger, Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template, Carbon, 2001,39: 1709.
    
    161. M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Nanotubes by Template Wetting: A Modular Assembly System, Angew. Chem. Int. Ed, 2004, 43: 1334.
    162. M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gosele, Polymer Nanotubes by Wetting of Ordered Porous Templates, Science, 2002, 296: 1997.
    
    163. Y. Bisrat, Z. P. Luo, D. Davis, D. Lagoudas, Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization, Nanotechnology, 2007,18:395601.
    
    164. M. Kirkham, X. D. Wang, Z. L. Wang, R. L. Snyder, Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour-liquid-solid process, Nanotechnology, 2007,18: 365304.
    
    165. S. L. Tang, W. Chen, M. Lu, S. G. Yang, F. M. Zhang, Y. W. Du, Nanostructure and magnetic properties of Fe_(69)Co_(31) nanowire arrays, Chemical Physics Letters, 2004, 384: 1-4.
    
    166. N. T. Kemp, J. W. Cochrane, R. Newbury, Patterning of conducting polymer nanowires on gold/platinum electrodes, Nanotechnology, 2007,18: 145610.
    
    167. C. R. Martin, Template Synthesis of Electronically Conductive Polymer Nanostructures, Acc. Chem. Res., 1995,28: 61.
    
    168. D. S. Xu, Y. J. Xu, D. P. Chen, G L. Guo, L. L. Gui, Y. Q. Tang, Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates, Chem. Phys. Lett., 2000, 325: 340-344.
    
    169. Y. Q. Liang, C. G. Zhen, D. C. Zou, D. S. Xu, Preparation of Free-Standing Nanowire Arrays on Conductive Substrates, J. Am. Chem. Soc, 2004, 126: 16338-16339.
    
    170. Y. G. Guo, C. J. Li, L. J. Wan, D. M. Chen, C. R. Wang, C. L. Bai, Y. G. Wang, Well-Defined Fullerene Nanowire Arrays, Adv. Func. Mater., 2003,13: 626-630.
    
    171. Y. G. Guo, L. J. Wan, C. J. Li, D. M. Chen, C. Wang, C. R. Wang, C. L. Bai, Y. G Wang, The effects of annealing on the structures and electrical conductivities of fullerene-derived nanowires, J. Mater. Chem., 2004 , 14: 914-918.
    
    172. Y. Guo, Q. Tang, H. Liu, Y. Zhang, Y. Li, W. Hu, S. Wang, D. Zhu, Light-Controlled Organic/Inorganic P-N Junction Nanowires, J. Am. Chem. Soc, 2008, 130(29): 9198-9199.
    
    173. B. B. Lakshmi, C. J. Patrissi, C. R. Martin, Sol-gel template synthesis of semiconductor oxide micro- and nanostructures, Chem. Mater, 1997, 9: 2544.
    
    
    174. P. Hoyer, Semiconductor nanotube formation by a two-step template process, Adv. Mater., 1994, 8: 857.
    
    175. H. Q. Cao, Y. Xu, J. M. Hong, H. B. Liu, G. Yin, B. L. Li, C. Y. Tie, Z. Xu, Sol-gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template, Adv. Mater, 2001,13: 1393.
    
    176. H. Nakamura, Y. Matsui, Silica Gel Nanotubes Obtained by the Sol-Gel Method, J. Am. Chem. Soc, 1995, 117: 2651.
    
    177. B. Cheng, E. T. Samulski, Fabrication and characterization of nanotubular semiconductor oxides In_2O_3 and Ga_2O_3, J. Mater. Chem., 2001,11: 2901.
    
    178. D. Holzinger, G. Kickelbick, Preparation of Amorphous Metal-Oxide-Core Polymer-Shell Nanoparticles via a Microemulsion-Based Sol-Gel Approach, Chem. Mater., 2003, 15(26): 4944-4948.
    
    179. M. Epifani, E. Carlino, C. Blasi, C. Giannini, L. Tapfer, L. Vasanelli, Sol-Gel Processing of Au Nanoparticles in Bulk 10 B_2O_3-90 SiO_2 Glass, Chem. Mater,2001, 13(5): 1533-1539.
    
    180. S. Sivasankar, S. Chu, Optical Bonding Using Silica Nanoparticle Sol-Gel Chemistry, Nano Lett., 2007,7(10): 3031-3034.
    
    181. S. L. Isley, R. L. Perm, Titanium Dioxide Nanoparticles: Effect of Sol-Gel pH on Phase Composition, Particle Size, and Particle Growth Mechanism, J. Phys. Chem. C, 2008, 112(12): 4469-4474.
    
    182. S. Sivakumar, F. C. J. M. Veggel, M. Raudsepp, Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln~(3+)-Doped LaF_3 Nanoparticles, J. Am. Chem. Soc, 2005, 127(36): 12464-12465.
    
    183. H. Yang, X. Yao, X. Wang, S. Xie, Y. Fang, S. Liu, X. Gu, Sol-Gel Preparation and Photoluminescence of Size Controlled Germanium Nanoparticles Embedded in a SiO_2 Matrix, J. Phys. Chem. B, 2003,107(48): 13319-13322.
    
    184. F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, D. R. Yuan, Photoluminescence Properties of SnO_2 Nanoparticles Synthesized by Sol-Gel Method, J. Phys. Chem. 5,2004,108(24): 8119-8123.
    
    185. T. P. Chou, Q. F. Zhang, B. Russo, G. E. Fryxell, G. Z. Cao, Titania particle- size effect on the overall performance of dye-sensitized solar cells, J. Phys. Chem. C,??2007,111(20): 6296.
    
    186. D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, Room-temperature synthesis of porous nanoparticulate TiO_2 films for flexible dye-sensitized solar cells, Adv. Funct. Mater., 2006,16: 1228.
    
    187. S. Sivakumar, F. C. J. M. Veggel, P. S. May, Near-Infrared (NIR) to Red and Green Up-Conversion Emission from Silica Sol-Gel Thin Films Made with La_(0.45)Yb_(0.50)Er_(0.05)F_3 Nanoparticles, Hetero-Looping-Enhanced Energy Transfer (Hetero-LEET): A New Up-Conversion Process, J. Am. Chem. Soc, 2007, 129(3): 620-625.
    
    188. C. Liu, B. Zou, A. J. Rondinone, Z. J. Zhang, Sol-Gel Synthesis of Free-Standing Ferroelectric Lead Zirconate Titanate Nanoparticles, J. Am. Chem. Soc, 2001, 123: 4344-4345.
    
    189. Y. Kobayashi, M. A. Correa-Duarte, L. M. Liz-Marzan, Sol-Gel Processing of Silica-Coated Gold Nanoparticles, Langmuir, 2001,17: 6375-6379.
    
    190. M. J. Hudson, J. W. Peckett, P. J. F. Harris, Low-Temperature Sol-Gel Preparation of Ordered Nanoparticles of Tungsten Carbide/Oxide, Ind. Eng. Chem. Res., 2005,44: 5575-5578.
    
    191. Y. Hu, J. Ge, Y. Sun, T. Zhang, Y Yin, A Self-Templated Approach to TiO_2 Microcapsules, Nano Lett., 2007, 7(6): 1832-1836.
    
    192. B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Sol-Gel Template Synthesis of Semiconductor Nanostructures, Chem. Mater., 1997, 9: 857-862.
    
    193. V. M. Cepak, J. C. Hulteen, G. Che, K. B. Jirage, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Chemical Strategies for Template Syntheses of Composite Micro- and Nanostructures, Chem. Mater., 1997, 9: 1065-1067.
    
    194. H. Cao, Z. Xu, X. Wei, X. Mab, Z. Xue, Sol-gel synthesis of an array of C_(70) single crystal nano wires in a porous alumina template, Chem. Commun., 2001, 541-542
    
    195. Y. Lei, L. D. Zhang, G. W. Meng, G H. Li, X. Y. Zhang, C. H. Liang, W. Chen, S. X. Wang, Preparation and photoluminescence of highly ordered TiO_2 nanowire arrays,Appl. Phys. Lett, 2001, 78: 1125-1127.
    
    196. C. Goh, K. M. Coakley, M. D. McGehee, Nanostructuring Titania by Embossing with Polymer Molds Made from Anodic Alumina Templates, Nano Lett., 2005, 5(8): 1545-1549.
    
    197. M. Adachi, Y. Murata, M. Harada, Y. Yoshikawa, Formation of titania nanotubeswith high photo-catalytic activity, Chem. Lett., 2000, 29: 942.
    
    198. S. Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda, S. Awatsu, Highly Porous (TiO_2-SiO_2-TeO_2)/Al_2O_3/TiO_2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process, J. Phys. Chem. 5,2003, 107:6586.
    
    199. S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai, Application of Titania Nanotubes to a Dye-sensitized Solar Cell (E), Electrochem., 2002, 70: 418.
    
    200. M. Adachi, Y. Murata, I. Okada, Y. Yoshikawa, Formation of titania nanotubes and applications for dye-sensitized solar cells, J. Electrochem. Soc, 2003, 150: G488.
    
    201. C. H. Weng, W. Y. Lee, Z. Y. Juang, K. C. Leou, C. H. Tsail, Direct synthesis of suspended single-walled carbon nanotubes crossing plasma sharpened carbon nanofibre tips, Nanotechnology, 2006,17: 1.
    
    202. Q. Y. Lu, F. Gao, S. Komarneni, T. E. Mallouk, Ordered SBA-15 Nanorod Arrays Inside a Porous Alumina Membrane,. J. Am. Chem. Soc, 2004,126: 8650-8651.
    
    203. R. Schroeder, B. Ullrich, Photovoltaic hybrid device with broad tunable spectral response achieved by organic/inorganic thin-film heteropairing, Appl. Phys. Lett., 2002, 81(3): 556.
    
    204. D. H. Kim, Y. Jang, Y. D. Park, K. Cho, Controlled One-Dimensional Nanostructures in Poly(3-hexylthiophene) Thin Film for High-Performance Organic Field-Effect Transistors, J. Phys. Chem. B, 2006,110(32): 15763.
    
    205. Y. Liu, M. A. Summers, C. Edder, J. M. J. Frechet, M. D. McGehee, Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells, Adv. Mater., 2005, 17: 2960-2964.
    
    206. S. Konar, Z. R. Tian, Solid-State Transformation from Self-Assembled Nanosheets into Ordered Nanorods, J. Phys. Chem. B., 2006, 110(9): 4054.
    
    207. D. H. Fan, W. Z. Shen, M. J. Zheng, Y. F. Zhu, J. J. Lu, Integration of ZnO Nanotubes with Well-Ordered Nanorods through Two-Step Thermal Evaporation Approach, J. Phys. Chem. C, 2007,111(26): 9116.
    
    208. P. Hoyer, Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides, Langmuir, 1996,12: 1411.
    
    209. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, Direct preparation of anatase TiO_2 nanotubes in porous alumina membranes, J. Mater. Chem., 1999, 9: 2971.
    
    210. A. Michailowski, D. AlMawlwai, G. S. Cheng, M. Moskovits, Highly regular anatase nanotubule arrays fabricated in porous anodic templates, Chem. Phys. Lett., 2001, 349:1.
    
    211. J. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai, T. Shimizu, Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO_2 Structures Using an Organogel Template, Chem. Mater., 2002,14: 1445.
    
    212. S. Kobayashi, N. Hamasaki, M. Suzuki, M. Kimura, H. Shirai, K. Hanabusa, Preparation of Helical Transition-Metal Oxide Tubes Using Organogelators as Structure-Directing Agents, J. Am. Chem. Soc, 2002,124: 6550.
    
    213. R. D. Shannon, Phase Transformation Studies in TiO_2 Supporting Different Defect Mechanisms in Vacuum-Reduced and Hydrogen-Reduced Rutile, J. Appl. Phys., 1965, 35: 3414.
    
    214. P. I. Gouma, P. K. Dutta, M. J. Mills, Structural stability of titania thin films, Nanostruct. Mater., 1999,11: 1231.
    
    215. P. I. Gouma, M. J. Mills, Anatase-to-rutile transformation in titania powders, J. Am. Ceram. Soc, 2001, 84: 619.
    
    216. H. Zhang, J. F. Banfield, Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation, J. Mater. Res., 2000,15:437.
    
    217. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 1991,27: 629.
    
    218. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, A review on highly ordered, vertically oriented TiO_2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 2006, 90: 2011-2075.
    
    219. V. P. Parkhutik, V. I. Shershulsky, Teoretical Modeling of Porous Oxide Growth on Alumunum, J. Phys. D: Appl. Phys., 1992,25: 1258.
    220. A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 1998, 84: 6023.
    
    221. O. Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., 1998, 72: 1173.
    
    222. A. Karlsson, R. Karlsson, F. Ryttsen, O. Orwar, Molecular engineering: Networks of nanotubes and containers, Nature, 2001,409: 150.
    
    223. N. A. Melosh, A. Boukai, F. Diana, Gerardot, B. J. R. Heath, Ultrahigh-Density Nanowire Lattices and Circuits, Science, 2003, 300: 112.
    
    224. Y. Xia, P. Yang, Y. Sun, B. Mayers, B. Gates, Y. Yin, H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater., 2003, 15:353.
    
    225. S. Iijima, Helical micro-tubules of graphitic carbon, Nature, 1991, 354: 56.
    
    226. Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of Semiconducting Oxides, Science, 2001,291:1947.
    
    227. M. S. Gudiksen, L. J. Lauhon, D. C. Smith, C. M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, 2002,415: 617.
    
    228. P. Yang, T. Deng, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Hierarchically Ordered Oxides, Science, 1998, 282: 2244.
    
    229. B. Q. Wei, R. Vajtai, R. Zhang, G. Ramanath, P. M. Ajayan, Microfabrication technology: Organized assembly of carbon nanotubes, Nature, 2002,416: 495.
    
    230. V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Light-Emitting-Diodes Made from Cadmium Selenide Nanocrystals and A semiconducting Polymer, Nature, 1994, 370: 354.
    
    231. T. T. Albrecht, J. Schotter, T. Shibauchi, M. T. Tuominen, T. P. Russell, Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates, Science, 2000, 290: 2126.
    
    232. M. Wirtz, C. R. Martin, Template-Fabricated Gold Nanowires and Nanotubes, Adv. Mater., 2003, 15:455.
    
    233. C. J. Boxley, H. S. White, T. E. Lister, P. J. Pinhero, Electrochemical Deposition and Reoxidation of Au at Highly Oriented Pyrolytic Graphite. Stabilization of Au Nanoparticles on the Upper Plane of Step Edges, J. Phys. Chem. B, 2003, 107: 451.
    
    234. M. S. Sander, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacy, Fabrication of High-Density, High Aspect Ratio, Large-Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates, Adv. Mater., 2002,14: 665.
    
    235. Y. Solomentsev, S. A. Guelcher, M. Bevan, J. L. Anderson, Aggregation Dynamics for Two Particles during Electrophoretic Deposition under Steady Fields, Langmuir, 2000, 16: 9208.
    
    236. E. C. Walter, R. M. Penner, H. Liu, K. H. Ng, M. P. Zach, F. Favier, Sensors from electrodeposited metal nanowires, Surf. Interface Anal, 2002, 34: 409-412.
    
    237. F. Xu, H. Li, Q. Peng, T. F. Guarr, Preparation and properties of conductive metallophthalocyanine films, Synth. Met, 1993, 55: 1668.
    
    238. T. Saji, K. Ebata, K. Sugawara, S. L. Liu, K. Kobayashi, Electroless Plating of Organic Thin Films by Reduction of Nonionic Surfactants Containing an Azobenzene Group, J. Am. Chem. Soc, 1994, 116: 6053.
    
    239. T. Yoshida, M. Tochimoto, D. Schlettwein, D. Wohrle, T. Sugiura, H. Minoura, Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition, Chem. Mater., 1999, 11: 2657.
    
    240. G. Ilangovan, J. L. Zweier, P. Kuppusamy, Electrochemical Preparation and EPR Studies of Lithium Phthalocyanine: Evaluation of the Nucleation and Growth Mechanism and Evidence for Potential-Dependent Phase Formation, J. Phys. Chem. 5,2000,104:4047.
    
    241. F. Cataldo, Synthesis and study of electronic spectra of planar polymeric phthalocyanines, Dyes and Pigments, 1997, 34: 75.
    
    242. B. Bottger, U. Schindewolf, D. Mobius, J. L. Avila, R. R. Amaro, Preparation and Polymorphism of Thin Films of Unsubstituted Cobalt Phthalocyanine, Langmuir, 1998, 14:5188.
    
    243. K. Ogawa, H. Yonehara, Monolayers and Multilayers of Unsubstituted Copper Phthalocyanine, Langmuir, 1994,10: 2068.
    
    244. M. Kasha, Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates, Radiation Research, 1963,20: 55-70.
    
    245. E. A. Lucia, F. D. Verderame, Spectra of Polycrystalline Phthalocyanines in the Visible Region, J. Chem. Phys., 1968,48: 2674.
    
    246. J. H. Sharp, M. Abkowitz, Dimeric structure of a copper phthalocyanine polymorph, J. Phys. Chem., 1973, 77: 477.
    
    247. M. K. Debe, K. K. Kam, Effect of gravity on copper phthalocyanine thin films II: Spectroscopic evidence for a new oriented thin film polymorph of copper phthalocyanine grown in a microgravity enviroment, Thin Solid Film, 1990, 186: 289.
    
    248. J. M. Assour, On the Polymorphic Modifications of Phthalocyanines, J. Phys. Chem., 1965, 69: 2295.
    
    249. M. Brinkmann, J. C. Wittmann, M. Barthel, M. Hanack, C. Chaumont, Highly Ordered Titanyl Phthalocyanine Films Grown by Directional Crystallization on Oriented Poly(Tetrafluoroethylene) Substrate, Chem. Mater., 2002,14: 904.
    
    250.I. Biswas, H. Peisert, T. Schwieger, D. Dini, M. Hanack, M. Knupfer, T. Schmidt, T. Chasse, Tetra-t-butyl magnesium phthalocyanine on gold: Electronic structure and molecular orientation, J. Chem. Phys., 2005, 122: 064710.
    
    251. P. K. Jain, S. Eustis, M. A. El-Sayed, Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model, J. Phys. Chem. 5,2006, 110: 18243-18253.
    
    252. O. Valdes-Aguilera, D. C. Neckers, Aggregation phenomena in xanthene dyes, Acc. Chem. Res., 1989,22: 171-177.
    
    253. B. Z. Packard, D. D. Toptygin, A. Komoriya, L. Brand, Intramolecular Resonance Dipole-Dipole Interactions in a Profluorescent Protease Substrate, J. Phys. Chem. B, 1998,102: 752.
    
    254. R. Boistelle, J. P. Astier, Crystallization mechanisms in solution, J. Cryst. Growth, 1988, 90: 14.
    
    255. J. D. Ng, The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening, J. Cryst. Growth, 1996, 168: 50.
    
    256. H. Z. Chen, R. S. Xu, M. Wang, Synthesis and photoconductivity study of phthalocyanine polymers. VI. Ethylenediamine bridged polymeric MnPc, J. Appl. Polym.Sci., 1998,69: 2609.
    257. L. Cao, H. Z. Chen, M. Wang, J. Z. Sun, Photoconductivity Study of Modified Carbon Nanotube/Oxotitanium Phthalocyanine Composites, J. Phys. Chem. B, 2002,106:8971.
    
    258. H. B. Xu, H. Z. Chen , W. J. Xu, M. Wang, Fabrication of organic copper phthalocyanine nanowire arrays via a simple AAO template-based electrophoretic deposition ,Chem. Phys. Lett., 2005,412: 294-298.
    
    259. K. O. Sylvester-Hvid, M. A. Ratner, Simplified Charge Separation Energetics in a Two-Dimensional Model for Polymer-Based Photovoltaic Cells, J. Phys. Chem. 5,2005,109:200-208.
    
    260. Y. Lei, M. Wang, J. Z. Sun, R. S. Xu, Preparation and Photoconductivity of a Single-Layer Organic Photoreceptor Based on AZO/TiOPc Composites, Mater. Sci.Eng., 2001,19(4): 24-28.
    
    261. B. Z. Tang, H. Z. Chen, R. S. Xu, J. W. Y. Lam, K. K. L. Cheuk, H. N. C. Wong, M. Wang, Structure-Property Relationships for Photoconduction in Substituted Polyacetylenes, Chem. Mater., 2000,12: 213-221.
    
    262. X. H. Huang, L. Li, X. Luo, X. G. Zhu, G. H. Li, Orientation-Controlled Synthesis and Ferromagnetism of Single Crystalline Co Nanowire Arrays, J. Phys. Chem. C, 2008, 112: 1468.
    
    263. J. M. Baik, M. Schierhorn, M. Moskovits, Fe Nanowires in Nanoporous Alumina: Geometric Effect versus Influence of Pore Walls, J. Phys. Chem. C, 2008, 112: 2252.
    
    264. J. J. Shyue, N. P. Padture, Template-directed, near-ambient synthesis of Au-TiO_2-Au heterojunction nanowires mediated by self-assembled monolayers (SAMs), Mater. Lett., 2007, 61; 182.
    
    265. H. P. Liang, Y. G Guo, J. S. Hu, C. F. Zhu, L. J. Wan., C. L Bai, Ni-Pt multilayered nanowire arrays with enhanced coercivity and high remanence ratio, Inorg. Chem., 2005,44: 3013.
    
    266. L. Wang, Y. Liu, X. Jiang, D. Qin, Y Cao, Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells, J. Phys. Chem. C, 2007, 111 : 9538-9542.
    
    267. M. Ouyang, R. Bai, L. G. Yang, Q. Chen, Y. G. Han, M. Wang, Y. Yang, H. Z. Chen, High Photoconductive Vertically-Oriented TiO_2 Nanotube Arrays and their
    ??Composites with Copper Phthalocyanine, J. Phys. Chem. C, 2008, 112: 2343-2348.
    
    268. Y. Hamasaki, S. Ohkubo, K. Murakami, H. Sei, G Nogami, Photoelectrochemical Properties of Anatase and Rutile Films Prepared by the Sol-Gel Method,J. Electrochem. Soc, 1994,141: 660-663.
    
    269. S. J. Limmer, S. Seraji, Y. Wu, T. P. Chou, C. Nguyen, G Z. Cao, Template-based growth of various oxide nanorods by sol-gel electrophoresis, Adv. Fund. Mater., 2002,12: 59.
    
    270. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina, Science, 1995, 268: 1466-1468.
    
    271. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science, 2001, 294:1313.
    
    272. M. Takada, H. Yoshioka, H. Tada, K. Matsushige, Electrical Characteristics of Phthalocyanine Films Prepared by Electrophoretic Deposition, Jpn. J. Appl. Phys., 2002,41: 73-75.
    
    273. R. Bai, H. Z. Chen, H. B. Zhou, M. M. Shi, M. Wang, Formation and characterization of europium bisphthalocyanine nanowires by electrophoretic deposition, J. Cryst. Growth, 2005,285,183-190.
    
    274. C. J. Brown, Crystal structure of P-copper phthalocyanine, J. Chem. Soc, 1968, 2488-2493.
    
    275. L. Cao, H. Z. Chen, H. B. Zhou, L. Zhu, J. Z. Sun, X. B. Zhang, J. M. Xu, M. Wang, Carbon-nanotube-templated assembly of rare-earth phthalocyanine nanowires, Adv. Mater., 2003,15: 909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700