用户名: 密码: 验证码:
垮落法残采区上行开采层间岩层移动变形规律数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两层煤之间的层间岩层结构及其移动规律是上行开采可行性判定和制定开采控制措施的重要依据。原有的上行开采研究基本停留在利用层间距判断上行开采可行性的阶段,没有考虑上行开采的动态过程,因此只有对上、下煤层开采共同作用下层间岩层,尤其是控制层的应力及移动变形规律进行研究,才能完整的描述上行开采岩层移动的本质过程,对上行开采可行性进行判定,并在此基础上制定上行开采的岩层控制措施。
     本文在工程实践基础上,应用连续介质快速拉格朗日差分法建立模型,在自重荷载形成初始应力场作用下进行模拟施工,并设置监控点监控模型应力及位移量。模拟结果表明:下层煤采后,控制层形成以两侧实体煤为弹性支承的梁结构,应力沿梁连续传递,形成应力拱,控制层之下岩层所受压应力相对较小,并与控制层间发生离层;上行开采初期,原外应力拱拱脚处应力由上层煤采场上部新形成的梁结构承担,造成上层煤采面前支撑压力集中,并随采面向前移动,该支撑压力由内应力拱承担并转移给拱脚,内应力拱也随采面前移;上行开采过程中,控制层在支撑压力作用下向下移动,而控制层下部的岩层在自重及水平方向应力作用下移动;在垂直方向压应力随上层煤采面向前移动之后,控制层转为横向移动,横向上控制层与下部岩层发生相向错动,与上部岩层发生同向错动,纵向上控制层与下部岩层的离层量进一步扩大;上行开采结束后,控制层下部岩层松散率转小,各岩层之间离层现象变小,最大位移增量点控制层比非控制层更为向前,这其中控制层的位移增量始终最小
     本文在以上工作的基础上,通过对不同的层间岩层组合模型的分析对比发现:层间岩层存在有效控制层时,控制层和其上部岩层的应力较大,位移量较小;层间岩层缺失有效控制层时,岩层移动量明显增大,并导致上层煤顶板岩层整体下移,最大位移量是有控制层存在时的3~4倍。
     为了了解上行开采前后煤层的赋存情况及层间岩层的完整情况,本文应用瞬变电磁法分别在上行开采前后进行了探测尝试。勘探结果表明:未进行上行开采时,下层煤采空区出现明显的高阻反映,控制层、上层煤及采空区两侧实体围岩视电阻率相对较低,结构基本保持完整;上行开采结束后,层间岩层局部在垮塌岩体动载荷作用下出现不同程度的错断,控制层大部分区域与上下采空区相比视电阻率仍较低,保持相对完整,暂时并没有出现大范围的冒落。
     通过钻孔和开采过程中探巷点对层间岩层和围岩进行观测发现:下层煤底板石灰岩(控制层)下部出现采动裂隙,但控制层不失宏观整体性;岩层间有离层现象发生;上层煤因为失去压应力变得比原来要松软,下层煤采空区中央为较平缓的下沉盆地;开采时,工作面未出现大面积的片帮现象,矿压显现不剧烈。钻探结果与勘探结果和数值模拟结果基本一致。
The structure, movement and deformation of rock strata between coal seams are the key factor of the feasibility study in upper mining and working on control measure. Original theory and traditional methods base the feasibility of upper mining mostly on the vertical spacing of coal seams, but not dynamic process of upper mining. Consequently, we should strengthen the study on the movement and deformation of the rock strata between coal seams, only in this way can intrinsic process of upward mining be completely described, and on this basis, the feasibility of upward mining can be judged further, and the control measure can be formulated more fully.
     In this paper, the model is established on the practical mining. Considering the initial stress field formed by the weight load, the upward mining is simulated by numerical simulation software. The monitory points are set up to monitor the movement and stress in model. Based on the results of numerical simulation, the control layer forms a beam structure which is supported by rock strata, and along which the stress deliver as a arch, and under which the stress is smaller, the rock strata separates with the control layer. At the beginning of upward, the stress in outside stress arch feet is bore by new beam structure forms over the roof of upper coal, and it makes the stress concentrate in the front of the upper coal face, and move with the upper coal face. The stress is supported by stress arch which move forward too, and transferred to the arch feet. In the process of upward mining, the control layer moves down under the stress, contrary, the lower rock stratum move under dead weight and horizontal stress. After the vertical stress move forward, the control layer turn to horizontal migration, and occur opposite dislocations with lower lay and coincidental dislocations with upper lay horizontal. The bed separations enlarge more. After upward mining, the diffuse indications of rock stratum under control layer diminish. The maximum displacement increment points of the control layer move forward, and the maximum displacement increment of the control layer is least from beginning to end.
     On the basis of study above, through the research of different models which are created by changing the group of the rock strata between coal seams, the stress of control layer and upper layer is bigger, but movement is lesser when there is control layer in the rock strata between coal seams, contrary, when there is no control layer, the movement of rock stratum increased obviously, and is 3~4 times when there is control layer.
     For further details, the transient electromagnetic method is used to prospect the situation of goaf and integrality of the rock strata between coal seams. Before upward mining, the lower goaf exist high resistance, but the control layer and surrounding rock show lower resistance because the structure of which is whole in the main. After upward mining, the rock strata between coal seams appear varying degrees of fracture in part, but the resistance of it in most part is lower than which of goaf. There is no wide range of collapse in control layer.
     As the results of drilling and tunnel detection, there is mining fissure under control layer which remain macroscopical completeness. There is separation between layers. Upper coal become loose because of leaving stress. The rock stratums appear as a basin in the middle of lower goaf. In the process of upward mining, there is no wide range of collapse and violent pressure stress at the mining face. The results of drilling agree with the results of mathematical model and practical mining.
引文
[1]汪理全,李中颃.煤层(群)上行开采技术[M].北京:煤炭工业出版社,1995.
    [2]冯国瑞.煤矿残采区上行开采基础理论与实践[M].北京:煤炭工业出版社,2010.
    [3]刘天泉.用垮落法上行开采的可能性[J].煤炭学报,1981:1-20.
    [4]蒋洋,陈本华,刘军.上行开采综采面超前支承压力分布规律实测研究[J].山东煤炭科技,2007,3:74-75.
    [5]马立强,汪理全等.近距离煤层群上行开采可行性研究与工程应用[J].湖南科技大学学报(自然科学版),2007,22(4):1-5.
    [6]江凯,王毅,朱育超.浅谈煤炭上行开采技术[J].山西焦煤科技,2009,3:16-19.
    [7]冯国瑞.煤矿残采区上行开采基础理论与实践.[博士学位论文][D],2009.
    [8]С.г.阿威尔辛著,北京矿业学院矿山测量教研组译.煤矿地下开采的岩层移动[M].北京:煤炭工业出版社,1952.
    [9]克拉茨.H著.马维民,王金庄,王绍林译.采动损害及其防护[M].北京,煤炭工业出版社,1984.
    [10]Helmut Kratzsch. Translated by R.F,S Fleming. Mining Subsidence Engineering Springer-Verlag Berlin Heidelberg[M].New York,1983.
    [11]张玉卓,姚建国,仲惟林.断层影响下地表移动规律的统计和数值模拟研究[J].煤炭学报,1989(1):21-23.
    [12]李增琪,计算矿山压力和岩层移动的三维层体模型[J].煤炭学报,1994,4:109-121.
    [13]吴立新,王金庄等.建(构)筑物下压煤条带开采理论与实践[M],中国矿业大学出版社,1994,1.
    [14]麻风海.岩层移劫及动力学过程的理论与实践,煤炭工业出版社[M].1997.
    [15]肖同强,樊克恭.上行开采上覆岩层运动规律及可行性研究[J].煤,2007,16(7):7-9.
    [16]程新明.复杂地质条件下上行开采的研究与实践[J].煤炭科学技术,2004,32(1):44-46.
    [17]许家林,钱鸣高.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,22(5):787-791.
    [18]朱卫兵,许家林,施喜书等.覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J].岩石力学与工程学报,2009,,28(2):404-409.
    [20]煤炭科学研究院北京开采研究所,煤矿地表移动与扭岩破坏规律及其应用[M],煤炭工业出版社,1981,12.
    [21]闫述,陈明生.高分辨自动地电阻率探测地下洞穴[M].北京:地质出版社,1996.
    [22]钟韬,超高密度电法在探测采空区中的应用研究.[硕士学位论文][D],2008.
    [23]祁民,张宝林,梁光河,等.高分辨率预测地下复杂采空区的空间分布特征.地球物理学进展,2006, 21(1):256-262.
    [24]成剑文,瞬变电磁法在煤矿应用中的研究.[硕士学文论文][D],2007.
    [25]Quincy,E.A.and Moore,D.F.Remote sensing of an underground coal-burn cavity with a wind-band induction system.IEEE Transactions on Geoscience Electronics,1976,14(4):236-244.
    [26]李庆明,张军,雷红艳.开采下部厚煤层对上部煤层破坏程度的数值模拟[J].煤矿安全,2010,6:46-48.
    [27]张志康.近距离煤层上行开采矿压显现规律数值模拟研究[J].山西焦煤科技,2009,5:1-3.
    [28]孔令海.近距离煤层条带上行开采煤岩层变形破坏机理及数值模拟研究[D]-[硕士学文论文][D],2007.
    [29]马立强,汪理全,乔京利等.平四矿近距煤层上行开采研究[J].采矿与安全工程学报,2008,25(3):357-360.
    [30]王明立,张华兴,张刚艳.刀柱式老采空区上行长壁开采的采矿安全评价[J].采矿与安全工程学报,2008,25(1):87-90.
    [31]封金权,张东升,马立强等.浅埋近距离煤层群上行开采数值分析[J].煤炭科学技术,2007,35(9):76-78.
    [32]张志康.近距离煤层上行开采矿压显现规律数值模拟研究[J].山西焦煤科技,2009,5:1-3.
    [33]龚纪文,崔建军,席先武,林舸FLAC数值模拟软件及其在地学中的应用[J].大地构造与成矿学,2009,9:321-325.
    [34]Wickham S M and Taylor H P. Stable isotope constrains on the origin and depth of penetration of hydrothermal fluids associated with Hercynia regional metamorphism and crustal anatexis in the Pryenees [J].Mineralogy and Petrology,(95):255-268.
    [35]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [36]王金安,谢和平,M, A, Kwasniewski建筑物下厚煤层特殊开采的三维数值分析[J].岩石力学与工程学报,1998,18(1):12-16.
    [37]谢和平,周宏伟,王金安FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,(4):397-401.
    [38]翟英达.采场上覆岩层中的面接触块体结构及其稳定性力学机理[M].北京:煤炭工业出版社,2006.
    [39]何万龙,康建荣.山区地表移动与变形规律的研究[J].煤炭学报.1992,17(4):1-15.
    [40]吴立新,王金庄,赵士胜等.托板控制下的开采沉陷的阶段性和板裂性[J].矿山测量.1994(4):29-32.
    [41]煤炭科学研究院北京开采所编著.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1982.
    [42]王悦汉,邓喀中,吴侃,郭广礼.采动岩体动态力学模型[J].岩石力学与工程学报,2003,22(3):352-357.
    [43]邓喀中,张东至,周鸣.开采引起的岩体破碎规律研究[J].中国,矿业大学学报,1998,27(3):261-264.
    [44]王悦汉,邓喀中,张东至等.重复采动条件下覆岩下沉特性的研究[J].煤炭学报,1998,23(5):470-475.
    [45]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版社,1999,214,415-416.
    [46]韩万林.平顶山四矿上行开采的观测与研究[J].煤炭学报,1998,23(3):267-270.
    [47]程新明.复杂地质条件下上行开采的研究与实践[J].煤炭科学技术,2004,32(1):44-46.
    [48]黄庆享.近距煤层上行开采底板稳定性分析[J].西安矿业学院学报,1996,16(4):291-294.
    [49]谢海峰.柳海矿井上行开采可行性探讨[J].山东煤炭科技,1996,2:38-41.
    [50]曲华,张殿振.深井难采煤层上行开采的数值模拟[J].矿山压力与顶板管理,2003,4:56-58.
    [51]孙中辉,王怀新,刘端举.深井倾斜近距离煤层上行开采技术探讨[J].矿山压力与顶板管理,2002,3:70-74.
    [52]姜领发.深井倾斜近距离煤层上行开采可行性研究[D].泰安:山东科技大学,2002.
    [53]Gibson, B.St.C.Effects of ground subsidence from longwall coal mining on pole type overhead power lines[J]. Journal of Electrical and Electronics Engineering, Australia,1995,15(2):177-182.
    [54]Morley, Lloyd A; Trutt, Frederick C; Homce, Gerald T. Analysis of overhead-line contact fatalities[C]. Conference Record-1983 Mining Industry Technical Conference, Papers Presented at the Third Conference.1983,21-42.
    [55]Yan, Ronggui; Chen, Shaoyun. Study on-a large-scale overhead cableway on the heavily destructed and cracked surface over a coal[J].Mining and Metallurgical Engineering,1993,13 (2):12-15.
    [56]Sassos, MichaelP. Trolley assist, Computer Dispatching. new Technologies Offer Potential for Significant Reduction in Mining Costs. Engineering and Mining Journal[J].1984,185 (6):74-80.
    [57]MIHIR CHOUDHURY, Pre-fracturing of roof rocks:a possible future strategy for successful longwall mining in India, Journal of Mines, Metals & Fuels;0022-2755; 2002, vol.50, no.6.
    [58]Jiang Fuxing, Zhang Xingmin, Yang Shuhua, Xun Luo.Discussion on overlying strata spatial structures of longwall in coal mine[J]. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, v25, n5, May,2006,979-984.
    [59]冯国瑞,王鲜霞,康立勋.采场上覆岩层面接触块体结构的力学机理分析[J].煤炭学报,2008,33(1):33-37.
    [60]冯国瑞,闫旭,王鲜霞,康立勋,翟英达.上行开采层间岩层控制的关键位置判定[J].岩石力学与工程学报,2009,28(增2):3721-3725.
    [61]钱鸣高,缪协兴,许家林.岩层控制中关键层的理论研究[J].煤炭学报,1996,3,225-230.
    [62]许家林.岩层移动控制的关键层理论及其应用[D].徐州:中国矿业大学,1999.
    [63]蒋建平,高广运.地下工程引起的不均衡地表沉陷分析[J].煤炭学报,2003,28(3):225-229.
    [64]李立波,来兴平,李玉民,林红梅.破碎围岩环境下巷道应力与变形监测[J].西安科技大学学 报,2010.30(1):24-28.
    [65]石永奎,莫技.深井近距离煤层上行开采巷道应力数值分析[J].采矿与安全工程学报,2007,24(4):474-476.
    [66]冯国瑞,闫永敢,杨双锁,张百胜,翟英达,康立勋.长壁开采上覆岩层损伤范围及上行开采的层间距分析[J].煤炭学报,2009,34(8):1032-1036.
    [67]牛之琏.脉冲瞬变电磁法[M].长沙:中南工业大学出版社,1986.
    [68]蒋帮远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998.
    [69]李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002.
    [70]蒋邦远.实用近区磁源瞬变电磁法原理[M].北京:地质出版社,1998.
    [71]Wait J R. Transient excitation of the earth by a line source of current.Proc.IEEE Left.1971,59: 1287-1288.
    [72]高级,崔若飞,刘伍.矿井瞬变电磁数据处理解释及显示技术研究[J].煤炭科学技术,2008,36(7):77-79.
    [73]Oristaglio M L, Hohmann G W. Diffusion of electromagnetic fields into a two-dimensional earth:A finite-difference approach. Geophysics,1984, Vo149 (7):870-894.
    [74]Goldman Y A. finite-element solution for the transient electromagnetic response of an arbitrary two-dimentional resistivity distribution [J].Geophysics,1986,51:1450-1461.
    [75]Yin C, Maurer H M. Electromagnetic induction in a layered earth with arbitrary anisotropy. Geophysics,2001,66(5):1405-1416.
    [76]山西焦煤西山煤电集团公司,太原理工大学.白家庄矿6#煤层蹬空综采技术研究报告[R].太原:太原理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700