用户名: 密码: 验证码:
覆盖旱种对水稻产量与品质的影响及其生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪的全球农业面临两大挑战:一是为满足人口的增长需要不断增加粮食产量,二是在不断增加粮食产量的同时需要应对水资源的日益减少。覆膜或覆草旱种是近年来发展起来的水稻节水栽培技术,具有明显的节水效果。但对于在不同旱种方式下水稻品质形成特点的研究很少,在旱种条件下产量和稻米品质形成的生理机制尚不清楚。本研究以粳稻镇稻88、籼稻扬稻6号和杂交籼稻汕优63为材料,进行裸地旱种(NM),地膜覆盖旱种(PM)和麦秸秆覆盖旱种(SM),以常规水种(TF)为对照,分析了覆盖旱种对水稻产量和品质的影响及其生理机制。主要结果如下:
     1、与TF相比,旱种水稻产量均有不同程度的下降,NM、PM和SM的减产率分别为37% ~ 49%,8.5% ~ 17%和0.3% ~ 0.7%,NM和PM的产量与TF有显著差异,SM的产量与TF差异不显著。NM的穗数、每穗粒数、结实率和千粒重均较TF显著降低,因而表现为严重减产;PM减产的原因主要在于总颖花量和千粒重的下降;SM的每穗粒数较TF显著减少,但结实率和粒重较TF显著提高;PM和NM处理的最大灌浆速率和平均灌浆速率较TF显著降低,SM处理则显著增加。表明SM处理粒重的增加与灌浆速率的增大有关,而PM和NM处理粒重降低,籽粒灌浆速率减小是重要原因。
     2、在整个水稻生长期各处理的平均灌溉用水量,PM为206 mm,SM为233 mm,NM为258 mm,分别为TF(953 mm)的22%、24%和27%。所有旱种处理均较TF显著提高了灌溉水的利用效率(单位灌溉水生产的稻谷),增加的幅度PM为267% ~ 367%,SM为278% ~ 321%,NM为98% ~ 138%。表明SM在保持较高产量的同时可以大幅度地提高水分利用效率。3、SM改善了稻米的加工品质、外观品质和蒸煮品质,NM和PM则降低了稻米品质;SM提高了稻米的最高粘度和崩解值,降低了稻米的热浆粘度、最终粘度和消减值,NM和PM的结果则相反,说明SM可以改善稻米的品质。
     4、与TF相比,SM提高了籽粒灌浆期的根系氧化力、光合速率和籽粒中蔗糖合成酶(SuSase),腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、淀粉合成酶(StSase)和淀粉分枝酶(SBE)活性,NM和PM则降低了上述生理参数。
     5、结实期籽粒吲哚-3-乙酸(IAA)、赤霉酸(GA1+GA4)、玉米素(Z)+玉米素核苷(ZR)含量在灌浆早期处理间差异很小,在灌浆中、后期则表现为SM > TF > PM > NM,乙烯释放速率则表现为NM > PM > TF > SM。PM和SM增加了籽粒脱落酸(ABA)浓度,但与TF无显著差异,NM则显著增加了籽粒ABA含量。灌浆中后期籽粒IAA和GA1+GA4、灌浆前中期籽粒ABA及灌浆各期籽粒Z+ZR浓度与粒重、出糙率、精米率和崩解值呈显著或极显著的正相关(r = 0.71*~ 0.96**),与消减值呈显著或极显著负相关(r = -0.76* ~ -0.91**)。灌浆后期籽粒IAA和Z+ZR浓度与垩白米率和垩白度呈显著或极显著负相关(r = -0.73* ~ -0.85**)。灌浆各期籽粒乙烯释放速率与粒重、出糙率、精米率、碱解值和崩解值呈显著或极显著的负相关(r = -0.71* ~ -0.96**),与垩白米率、垩白度和消减值呈显著或极显著的正相关(r = 0.73* ~ 0.93**)。
     6、SM增加了ABA与1-氨基环丙烷-1-羧酸(ACC)的比值(ABA/ACC),NM和PM则降低了ABA/ACC值,表明在NM和PM条件下乙烯的增加超过了ABA的增加。籽粒ABA含量与籽粒灌浆速率呈渐近线函数关系,乙烯释放速率与籽粒灌浆速率呈衰减的指数函数关系,ABA/ACC比值与灌浆速率则呈直线相关。在抽穗后7~10 d对TF或PM稻穗喷施乙烯合成抑制物质氨基-乙氧基乙烯基甘氨酸(AVG)或ABA,显著地降低了籽粒中乙烯的释放速率,提高了籽粒中SuSase、AGPase和可溶性StSase活性,增加了灌浆速率和粒重;喷施乙烯合成促进物质乙烯利或ABA合成抑制物质氟草酮,结果则相反。表明ABA和乙烯的相互作用调控了籽粒灌浆。
     上述结果说明,覆膜旱种和覆草均可显著地提高水分利用效率。覆草旱种不仅能获得较高的产量,而且还可以改善稻米品质。覆膜旱种则降低了产量和品质。在覆草旱种条件下结实期根系活力、光合速率和籽粒中蔗糖-淀粉代谢途径关键酶活性的提高以及激素间的平衡特别是ABA与乙烯比值(ABA/ACC)的增加是其高产优质的重要生理基础。在水分短缺或易发生季节性干旱而温度不是限制水稻生长的地区,覆草旱种是较覆膜旱种更好的水稻高产优质水分高效利用的栽培技术。
Global agriculture in the 21st century faces two major challenges. Total food production needs to increase to feed a still growing world population, and this increase needs to be accomplished under increasing scarcity of water resources. Plastic film or straw mulching cultivation under non-flooded condition has been considered as a new water-saving technique in rice (Oryza sativa L.) production. This study aimed to investigate the yield performance in terms of quality and quantity, water use efficiency (WUE) and their physiological mechanism under such practices. A field experiment was conducted with three high-yielding rice cultivars, Zhendao 88 ( a japonica cultivar), Yangdao 6 (an indica cultivar) and Shanyou 63 (an indica hybrid cultivar) and four cultivation treatments imposed from transplanting to maturity: traditional flooding as control (TF), non-flooded plastic film mulching (PM), non-flooded wheat straw mulching (SM), and non-flooded no mulching (NM). Grain yield and quality, WUE and physiological parameters, such as plant hormones, activities of key enzymes involved in sucrose-starch conversion, were determined. The main results are as follows:
     1. Compared with that under TF, grain yield showed some reduction under all the non-flooded cultivations, but differed largely among the treatments. The reduction was 37%-49%, 8.5%-17%, and 0.3%-0.7%, respectively, for NM, PM, and SM. The difference in grain yield was significant between NM and TF or between PM and TF, and was not significant between SM and TF. The yield reduction under NM was attributed to decreases in panicle number, spikelets per panicle, percentage of filled grains, and grain weight. The reduction in the total number of spikelets and grain weight contributed to the decrease in grain yield under PM. SM significantly reduced number of spikelets per panicle but significantly increased percentage of filled grains and grain weight. Both NM and PM significantly reduced, whereas SM significantly increased the maximum and mean grain filling rate, indicating that an increase in grain weight under SM is associated with the enhancement in grain filling rate, and decreases in grain filling rates under NM and PM result in the reduction in grain weight.
     2. Water application during the growing season across the study years, on average, was 206 mm to the PM, 233 mm to the SM, and 258 mm to the NM, which was only 22%, 24%, and 27%, respectively, of that (953 mm) applied to the TF. Compared with that under the TF, irrigation water use efficiency (grain yield per unit irrigation water) was markedly increased under all the non-flooded treatments, and by 267%-367% under the PM, 278%-321% under the SM, and 98%-138% under the NM treatments. The results suggest that SM could maintain a high grain yield and markedly increase WUE.
     3. SM significantly improved milling, appearance, and cooking qualities, whereas PM or NM decreased these qualities. SM also significantly increased the peak viscosity and breakdown value, and reduced hot viscosity, final viscosity, and setback value, and PM or NM had the opposite effect. Such results suggest that SM could improve the quality of rice.
     4. Compared with TF, SM significantly increased root oxidation activity, photosynthetic rate, and activities of sucrose synthase (SuSase), adenosine diphosphate glucose pyrophosphorylase (AGPase), starch synthase (StSase) and starch branching enzyme (SBE) in grains during the grain filling period, whereas NM and PM significantly reduced these parameters.
     5. Contents of indole-3-acetic acid (IAA), gibberellins (GA1 + GA4) and zeatin (Z) + zeatin riboside (ZR) in grains differed little among the treatments at the early grain filing stage, and showed SM > TF > PM > NM at the mid and late filling stages. Ethylene evolution rate of grains exhibited NM > PM > TF > SM. Abscisic acid (ABA) contences in grains were increased under both PM and SM, but showed no significant differences among TF, PM and SM treatments. NM significantly increased ABA in grains. Contents of IAA and GA1 + GA4 at the mid and late filling stages, ABA contents at the early and mid filling stage, and Z + ZR contents during the whole grain filling period significantly or very significantly and positively correlated with grain weight, brown rice, milled rice and breakdown value (r = 0.71* to 0.96**), and negatively correlated with setback value (r = -0.76* to -0.91**). Contents of IAA and Z + ZR at the late filling stage significantly or very significantly and negatively correlated with the percentage of chalky kernels and chalkiness (r = -0.73* to -0.85**). The ethylene evolution rates at each filling stage significantly or very significantly and negatively correlated with grain weight, brown rice, milled rice, alkali spreading value and breakdown value (r = -0.71* to -0.96**), and positively correlated with the percentage of chalky kernels, chalkiness and setback value (r = 0.73* to 0.93**).
     6. SM increased the ratio of ABA to 1-aminocylopropane -1-carboxylic acid (ACC) in the grains, and both NM and PM reduced it (ABA/ACC), implying that there is a greater enhancement of ABA concentration than ethylene production in the SM treatment, whereas the increase in ethylene outweighs the increase in ABA under PM and NM treatments. The content of ABA correlated with grain filling rate with a hyperbolic curve, whereas the ethylene evolution rate correlated with grain filling rate with an exponential decay equation. The ratio of ABA to ACC significantly correlated with grain filling rate with a linear relationship. Application of amino-ethoxyvinylglycine (AVG, inhibitor of ethylene synthesis by inhibiting ACC synthase) or ABA to panicles under TF and PM at the early grain filling stage significantly increased activities of the key enzymes involved in sucrose to starch conversion in the grains, SuSase, AGPase and soluble StSase, grain filling rate and grain weight. Application of ethephon (ethylene-releasing agent) or fluridone (inhibitor of ABA synthesis) had the opposite effect. The results suggest that antagonistic interactions between ABA and ethylene may be involved in mediating the effect of non-flooded mulching cultivation on grain filling.
     Collectively, both non-flooded plastic mulching cultivation (PM) and non-flooded wheat straw mulching cultivation (SM) could significantly increase WUE. SM not only maintained a high grain yield, but also improved quality of rice. Under the PM, quality of rice was decreased and grain yield differed with cultivars. Increases in photosynthetic rate, root activity, and activities of the key enzymes involved in the sucrose-starch metabolic pathway in grains, and the balance between hormones especially increase in the ratio of ABA to ethylene (ABA/ACC) under SM contributed to the high grain yield and the improvement in rice quality. SM would be a better practice than PM in areas where water is scarce but temperature is favorable to rice growth, such as the case in Southeast China.
引文
1. Bouman BAM. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems, 2007, 93: 43-60
    2. Fageria NK. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Communication in Soil Science and Plant Analysis, 2003, 34: 259-270
    3. Fageria NK. Yield physiology of rice. Journal of Plant Nutrition, 2007, 30: 843-879
    4. Belder P, Bouman BAM,Cabangon R,Guoan L,Quilang EJP,Li Y,Spiertz JHJ,Tuong TP. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 2004, 65: 193-210
    5. Bouman BAM, Toung TP. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management, 2001, 49: 11-30
    6. Belder P, Spiertz JHJ, Bouman BAM, Lu G,Tuong TP. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research, 2005, 93: 169-185
    7. Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Research, 1997, 52: 231-248
    8. Bouman BAM, Peng S, Casta?eda AR, Visperas RM. Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 2005, 74: 87-105
    9. Ockerby SE, Fukai S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Research, 2001, 69: 215-226
    10.张亚洁,许德美,孙斌,刁广华,林强森,杨建昌.种植方式对陆稻和水稻籽粒灌浆及垩白的影响.中国农业科学,2006,39(2):257-264
    11. Liu XJ, Wang JC, Lu SH, Zhang FS, Zeng XZ, Ai YW, Peng SB, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Research, 2003, 83: 297-311
    12. Tao HB, Brueck H, Ditter K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research, 2006, 95: 1-12
    13.黄义德,张自立,魏凤珍,李金才.水稻覆膜旱作的生态生理效应.应用生态学报,1999,10(3):305-308
    14.张让康,刘本坤.旱种水稻生产概况及栽培技术.湖南农业科学,1988,(2):30-32
    15.梁永超,胡锋,杨茂成,朱遐亮,王广平,王永乐.水稻覆膜旱作高产节水机理研究.中国农业科学,1999,32(10):26-32
    16.吴文革,陈周前,沈绪波.水稻旱作栽培技术及其节本效益探讨.安徽农业科学,1998,(1):8-9,24
    17.董全才,易杰忠.水稻覆膜旱种的生育特性与高产栽培技术.中国农学通报, 1999,15(4):17-20
    18. Fan MS, Liu XJ, Jiang RF, Zhang FS, Lu SH, Zeng XZ, Christie P. Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant and Soil, 2005, 277: 265-276
    19. Lu X, Wu L, Pang L, Li Y, Wu J, Shi C, Zhang F. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. Journal of the Science of Food and Agriculture, 2007, 87: 334-339
    20. Ponnamperuma FN. Straw as a source of nutrients for wetland rice. In: Organic Matter and Rice. IRRI, Los Banos, Philippines, 1984. pp 117-136
    21.刘天学,纪秀娥.焚烧秸杆对土壤有机质和微生物的影响研究.土壤,2003,35(4):347-348
    22. Miura Y, Kanna T. Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Science and Plant Nutrition, 1997, 43: 849-854
    23.杨守仁.论水稻的半水生性,水稻专题讨论文集.北京:农业出版社,1989. pp 1-12
    24.李广敏,关军锋.小麦根冠关系的基因型差异及其与产量的关系.华北农学报,2001,16(4):20-22
    25.陶汉之,黄文江,张玉屏,胡焱,黄义德,方一平,蔡永萍.水稻对旱作环境的响应和适应性研究.干旱地区农业研究,2002,20(2):42-48
    26.杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29(4):58-66
    27.梁森,韩莉.水稻旱作节水高产技术的可行性及季节性干旱的综合防治措施.江苏农业科学, 2001,(6):7-10
    28.陈进红.水稻不同时期干旱的产量损失指标研究.浙江农业学报,1998,10(2):101-103
    29.杨建刚,袁增玉,李淑华,陈力.旱作水稻生理特性及合理灌溉的研究初报.黑龙江农业科学,1988,(2):11-14
    30.巫伯舜.水稻的旱种技术.北京:农业出版社,1985. pp 12-20
    31.樊小林,石卫国,曹新华,郭立彬,沈磊,李玲.根系提水作用的土壤水分变异及养分有效性,谷子根系提水作用及根系吸收对土壤水分变异的影响.水土保持学报,1995,9(4):36-42
    32.许旭旦,诸涵素.植物根部的水分倒流现象.植物生理学通讯,1995,31(4):241-245
    33.张亚洁,陈海继,刁少华,林强森,杨建昌.种植方式对陆稻(中旱3号)和水稻(武香粳99-8)生长特性和产量形成的影响.江苏农业学报,2006,22(3):205-211
    34.艾应伟,刘学军,张福锁,毛达如,曾祥忠,吕世华,潘家荣.旱作与覆盖方式对水稻吸收利用氮的影响.土壤学报, 2004,43(4):152-155
    35.路兴花,吴良欢,刘铭,杨联丰.覆膜旱作对水稻生长发育及某些生理特性的影响.浙江大学学报,2002,28(6):609-614
    36.沈康荣,李家军,汪晓春,沈熙,刘军,徐兴汉,官玉范,曹峻,尉光俊.水稻覆膜直播湿润栽培示范效果及机理分析.湖北农业科学,2005,(5):28-32
    37.陈叶平,林昌庭,叶礼水,吴文景.单季杂交稻覆膜栽培技术应用研究.浙江农业科学,2000,(1):9-11
    38.赵步洪,张洪熙,陈新红,杨建昌,朱庆森,夏广宏,刘晓斌.不同旱种方式水稻的生长发育与产量形成特性.江苏农业学报,2003,19(4):211-217
    39.杨建昌,王志琴,刘立军,郎有忠,朱庆森.旱种水稻生育特性与产量形成的研究.作物学报,2002,28(1):11-17
    40.王志琴,李国生,杨建昌,刘立军,郎有忠,朱庆森.江苏现用主要粳稻品种对氮素的反应.江苏农业研究,2000,21(4):22-26
    41.石英,沈其荣,茆泽圣,李伟.旱作条件下水稻的生物效应及表层覆盖的影响.植物营养与肥料学报,2001,7(4):271-277
    42.李宏,樊小林,周少川.覆草旱作和常规水作对水稻品种产量及构成因素的影响.仲恺农业技术学院学报,2006,9(3):17- 21
    43.秦江涛,胡锋,李辉信,王一平,黄发泉,黄花香.覆草旱作对水稻主要农艺性状的影响及节水效应.中国水稻科学,2006,20(2):171-176
    44. Lim SJ, Kim DU, Sohn JK, Lee SK. Varietal variation of amylogram properties and its relationship with other eating quality characteristics in rice. Korean Journal of Breeding, 1995, 27 (3): 268-275
    45.郭咏梅,穆平,刘家富,卢义宣,李自超.水、旱栽培条件下稻米主要品质性状的比较研究.作物学报,2005,31(11):1443-1448
    46.袁继超,丁志勇,赵超,朱庆森,李俊青,杨建昌.高海拔地区水稻遮光、剪叶和疏花对米质影响的研究.作物学报,2005,31(11):1429-1436
    47. Gomez KA. Effect of environment on protein and amylose content of rice. In: Proceeding of the Workshop on Chemical Aspects of Rice Grain Quality, Manila : IRRI , 1979. pp 59-68
    48. Cheong JI.Effects of slow release fertilizer application on rice grain quality at different culture methods. Korean Journal of Crop Science,1996,41(3): 286-294
    49.蔡一霞,朱庆森,王志琴,杨建昌,郑雷,钱卫成.结实期土壤水分对稻米品质的影响.作物学报,2002,28(5):601-608
    50.李小湘.外界环境对巴西陆稻穗粒结构和米质的影响.作物研究,1999,(2):18-19
    51.董明辉,唐成.不同栽培环境对稻米品质的影响.耕作与栽培,2005,(3):20-22
    52.孟亚利,高如嵩,张嵩午.影响稻米品质的主要气候生态因子研究.西北农业大学学报,1994,22(1):40-43
    53.吴永常,张蒿午,程方民.齐穗30天温度对稻米品质形成的影响.西北农大学报,1996,24(5): 21-24
    54.徐国伟,王朋,唐成,王志琴,刘立军,杨建昌.旱种方式对水稻产量与品质的影响.作物学报,2006,32(1):112-117
    55.杨建昌,王志琴,陈义芳,蔡一霞,刘立军,朱庆森.旱种水稻产量与米质的初步研究.江苏农业研究,2000,21(3):1-5
    56.盛海君,沈其荣,周春霖.旱作水稻产量和品质的研究.南京农业大学学报,2003,26(4):13-16
    57.蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,2000,14(4):219-224
    58.杨建昌,徐国伟,王志琴,陈新红,朱庆森.旱种水稻结实期茎中碳同化物的运转及其生理机制.作物学报,2004,30(2):108-114
    59.王福荣,何绍桓,于万利.旱作水稻生理特性与栽培技术研究.吉林农业大学学报,1982,( 2):1-10
    60.汤美玲,程旺大,姚海根,徐民.早稻直播覆膜旱作对灌浆成熟期根叶生理特性及产量的影响.中国水稻科学,2004,19(5):475-478
    61.张玉屏,黄义德,李金才,黄文江,黄文国.旱作条件对水稻根系生长发育和产量的影响.安徽农业科学,2000,28(5):605-606,637
    62.王熹,陶龙兴,黄效林,闵绍楷,程式华.灌溉稻田水稻旱作法研究–水稻的生育与生理特性.中国农业科学,2004,37(9):1274-1281
    63.杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响.作物学报,1995,21(1):110-114
    64.杨建昌,王国忠,王志琴,刘立军,朱庆森.旱种水稻灌浆特性与灌浆期籽粒中激素含量的变化.作物学报,2002,28(5):615-621
    65.程旺大,赵国平,张国平,姚海根.水稻和陆稻籽粒灌桨特性的比较.中国水稻科学,2002,16(4):335-340
    66. Yosguda S. Phyiological aspects of grain yield. Annual Review of Physiology, 1972, 23: 437-464
    67.潘晓华,李木英,曹黎明,刘水英.水稻发育胚乳中淀粉的积累及淀粉合成的酶活性变化.江西农业大学学报,1999,21(4):456-462
    68. Nakamura Y, Yuki K, Park SY. Carbohydrate metabolism in the developing endosperm of rice grains. Plant and Cell Physiology , 1989, 30: 833-839
    69. Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism duringdevelopment of rice endosperm. Plant Science, 1992, 82: 15-20
    70.程方民,蒋德安,吴平,石春海.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报,2001,27(2):201-206
    71.程方民,钟连进,孙宗修.灌浆结实期对早籼水稻籽粒淀粉合成代谢的影响.中国农业科学,2003,36(5):492-501
    72.程方民,钟连进.水稻籽粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异.作物学报,2003,29(3):452-456
    73. Nakamura Y, Umemoto T, Takahata Y, Aaao E. Characteristics and roles of key enzymes associated with starch biosynthesis in rice endosperm. Gamma Field Symposia, 1992, 31: 25-44
    74. Nakamura Y, Kazuhiro. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Science, 1992, 82: 15-20
    75.张亚洁,周然,孙斌,刁广华,林强森,杨建昌.种植方式对陆稻中旱3号和水稻武香粳99- 8米质的影响.作物学报,2007,33(1):31-37
    76.杨建昌,彭少兵,顾世梁,R. M. Visperas,朱庆森.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27(2):157-167
    77. Brenner ML, Cheikh N. The role of hormones in photosynthate partitioning and seed filling.in Davies PJ eds. Plant hormones, physiology, biochemistry and molecular biology. The Netherlands: Kluwer Academic Publishers, 1995. pp 649-670
    78. Davies PJ. introduction in: Davies PJ eds. Plant Hormones Biosynthesis Signal Transduction, Action!The Netherlands: Kluwer Academic Publishers,2004. pp 1-35
    79. Yang J, Peng S, Visperas RM, Sanico AL, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regulation,2000, 30: 261-270
    80. Cheikh N, Jones RJ, Gengenbach BG. The effect of heat stress on carbohydrate metabolism and hormonal levels of developing maize kernels. Agronomy Abstracts, 1993, 110
    81. Morris RD, Blevins DC, Dietrich JT, Durly RC, Gelvin SB, Gray J, Hommes NG, Kaminek M, Mathews LJ, Meilan R, Reinbott TM, Sayavedra SL. Cytokins in plant pathogenic bacteria and developing cereal grains. Australian Journal of Plant Physiology, 1993, 20: 621-637
    82. Karssen CM. The role of endogenous hormones during seed development and the onset of primary dormancy. in PF Wareing, ed, Plant Growth Substances. London: Academic Press, 1982. pp 623-632
    83. Davies PJ. The plant hormones: their nature, occurrence, and functions.In PJ Davies, ed, The Plant Hormonal and their role in plant growth and development.Dordrecht, The Netherlands: Martinus Nijhoff Publishers, 1987. pp 649-670
    84. Kende H , Zeevaart JAD. The five”clssical”plant hormones. Plant Cell, 1997, 9: 1197-1210
    85. Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiology, 2000, 124: 1437-1448
    86. Eeuwens CJ, Schwabe WW. Seed and pod wall development in Pisum sativum L. in relation to extracted and applied horones. Journal of Experimental Botany, 1975, 26: 1-14
    87. Kurogochi S, Murofushi N, Ota Y, Takahashi N. Identification of gibberellins in rice plant and quantitative changes of gibberellin A19 throughout its life circle. Planta, 1979, 146: 185-191
    88. Suzuki Y, Kurogochi S, Murofushi N, OtaY, Takahashi N. Seasonal changes of GA1, GA19 and abscisic acid on the transport of assimilates in barley. Planta, 1981, 152: 557-561
    89. Lur HS, Setter TL. Role of auxin in maize endosperm development: timing of nuclear DNA endoreduplication, zein expession, and cytokinins. Plant Physiology, 1993, 103: 273 -280
    90. Cheng CY,Lur HS. Ethylene may be involved in abortion of the maize caryopsis. Physiologia Plantarum, 1996, 98: 245-252
    91. Apelbaum A, Yang SF. Biosynthesis of stress-ethylene induced by water deficit. Plant Physiology, 1981, 68: 594-596
    92. Beltrano J, Ronco MG, Montaldi ER. Drought stress syndrome in wheat is provoked ethylene evolution imbalance and reversed by rewatering, aminoe-thoxyvinylglycine, or sodium benzoate. Journal of Plant Growth Regulation, 1999, 18: 59-64
    93. Mohapatra PK, Naik PK, Patel R. Ethylene inhibitors improve dry matter partitioning and development of late flowering spikelets on rice panicles. Australian Journal of Plant Physiology, 2000, 27: 311-323
    94. Naik PK, Mohapatra PK. Ethylene inhibitors enhanced sucrose synthase activity and promoted grain filling of basal rice kernels. Australian Journal of Plant Physiology, 2000, 27: 997-1008
    95.赵步洪,张洪熙,朱庆森,杨建昌.两系杂交稻籽粒充实不良的成因及其与激素含量的关系.中国农业科学,2006,39(3):477-486
    96.赵春江,康书江,李鸿祥,郭晓维,王纪华.冬小麦主要生育时期乙烯释放规律的研究.华北农学报,1999,14(4):45-49
    97. Rook F, Corke F, Card R, Munz G, Smith C, Bevan W. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. Plant Journal, 2001, 26: 421-433
    98.段俊,田长恩,祝骥,梁承邺.乙烯在水稻结实过程中的作用.植物生理学通讯,1999,35(5):369-370
    99.萧浪涛,王少先,彭克勤,夏石头,曹庸,刘化英.自然干旱胁迫下配方肥增效剂对水稻内源激素的影响.中国水稻科学,2005,19(5):417-421
    100. Kato T, Sakurai N, Kuraishi S. The changes of endogenous abscisic acid in developing grains of two rice cultivars with different grain size. Japanese Journal of Crop Science, 1993, 62: 456-461
    101. Ross GS, McWha JA. The distribution of abscisic acid in Pisum sativum plants during seed development. Journal of Plant Physiology, 1990, 136: 137-142
    102. Schussler JR, Brenner ML, Brun WA. Relationship of endogenous abscisic acid to sucrose level and seed growth rate of soybeans. Plant Physiology, 1991, 96: 1308-1313
    103. Anderson MN, Asch F, Wu Y, Jensen CR, Naested H, Mogensen VO, Koch KE. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young overy development in maize. Plant Physiology, 2002, 130: 591-604
    104.杨建昌,王志琴,朱庆森,苏宝林. ABA与GA对水稻籽粒灌浆的调控.作物学报,1999,25(3):341-347
    105.杨建昌,袁莉民,唐成,王志琴,刘立军,朱庆森.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响.作物学报,2005,31(8):1052 -1057
    106.杨建昌,王维,王志琴,刘立军,丁志家,朱庆森.水稻旱秧大田期需水特性与节水灌溉指标研究.中国农业科学,2000,33 (2) : 34- 42
    107.何钟佩.农作物化学控制实验指导.北京:北京农业大学出版社,1993. pp 60- 68
    108. Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. Journal of Plant Physiology, 1988, 132: 262-265
    109. Weiler EW, Jordan PS, Conrad W. Levels of indole-3-acetic acid in intact and decapitated as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta, 1981, 153: 561-571
    110.国家质量技术监督局.中华人民共和国国家标准:优质稻谷. GB/T17891-1999, 1999
    111.中华人民共和国农业部.食用稻品种品质. NY/T-593–2002
    112.张让康,刘本坤.旱种水稻不同类型产量及其性状的相关分析.湖南农学院学报,1989,15(2):7-11
    113.石英,沈其荣,冉炜.半腐解秸秆覆盖下旱作水稻对15N的吸收和分配.中国水稻科学,2002,16(3):236-242
    114.章骏德,刘国屏,施永宁.植物生理实验法.南昌:江西人民出版社,1982. pp 52-57
    115.朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-193
    116. Richards FJ. A flexible growth function for empirical use. Journal of Experimental Botany, 1959, 10: 290-300
    117. Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ. Activities of enzymes involved in sucrose-to-starchmetabolisn in rice grains subjected to water stess during filling. Field Crop Research, 2003, 81: 69-81
    118. Beltrano J, Carbone A, Montaldi ER, Guiamet JJ. Ethylene as promoter of wheat grain maturation and ear senescence. Plant Growth Regulation, 1994, 15: 107 -117
    119.全国农业技术推广服务中心编.土壤分析技术规范(第二版).北京:中国农业出版社,2006. pp 36-72
    120. Han Y, Xu M, Liu X, Yan C, Korban SS, Chen X, Gu M. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Science, 2004, 166: 357-364
    121. Allahgholipour M, Ali AJ, Alinia F, Nagamine T, Kojima Y. Relationship between rice gain amylase and pasting properties for breeding better quality rice varieties. Plant Breeding, 2006, 125: 357-362
    122.刘立军,袁莉民,王志琴,徐国伟,陈云.旱种水稻倒伏生理原因分析与对策的初步研究.中国水稻科学,2002,16(3):225-230
    123. Hasegawa T,Fujimura S, Shimono H, Iwama K, Jiteuyama Y. Rice growth and developing limited by root zone temperature. In: Morita,S. (Ed.),Proceedings of the Sixth Symposium of the International Society for Root Research. Published by Japanese Society for Root Research (JSRR),Nagoya, Japan, 2001. pp 520-521
    124. Funaba M, Ishibashi Y, Molla AH, Iwanami K, Iwaya-Inoue M. Influence of low/high temperature on water status in developing and maturing rice grains. Plant Production, 2006,9: 347-354
    125. Liu XJ, Ai YW,Zhang FS, Lu SH,Zeng XZ,Fan MS. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotations as affected by non-flooded mulching cultivation (NFMC). Nutrient Cycling in Agroecosystems, 2005, 71: 289-299
    126. Qin J, Hu F, Zhang B, Wei Z, Li H. Role of straw mulching in non-continuously flooded rice cultivation. Agricultural Water Management, 2006, 83: 252-260
    127. Peng S, Shen K, Wang X, Liu J, Luo X, Wu L. A new rice cultivation technology: Plastic film mulching. International Rice Reaearch Institute News Letter, 1999, 24: 9-10
    128. Li YS, Wu LH, Lu XH, Zhao LM, Fan QL, Zhang FS. Soil microbial biomass as affected by non-flooded plastic mulching cultivation in rice. Biology and Fertilizer of Soils , 2006, 43: 107-111
    129. Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science, 1995, 35: 827-831
    130. Ahmadi A, Baker DA. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation, 2001, 35: 81-91
    131. Yang JC, Zhang JH, Wang ZQ, Zhu QS. Hormones in the grains in relation to sink strength andpostanthesis development of spikelets in rice. Plant Growth Regulation, 2003, 41: 185-195
    132. Yang JC, Zhang JH, Huang ZL, Wang ZQ, Zhu QS, Liu LJ. Correlation of cytokinin levels in the endosperm and roots with cell number and cell division activity during endosperm development in rice. Annals of Botany, 2002, 90: 369-377
    133. Yang JC, Zhang JH, Wang ZQ, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany, 2006, 57: 149-160
    134. Walton DC. Biochemistry and physiology of abscisic acid. Annual Review of Plant Physiology, 1980, 31: 453-489
    135. Ackerson RC. Invertase activity and abscisic acid in relation to carbohydrate status in developing soybean reproductive structures. Crop Science, 1985, 25: 615-618
    136. Dewdney SJ, McWha JA. Abscisic acid and the movement of photosynthetic assimilate towards developing wheat (Triticum aestivum L.) grains. Zeitschrift Für Pflanzenphysiologie, 1979, 92: 186-193
    137. Sharp RE, LeNoble ME, Else M A, Thorne ET, Gherardi F. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. Journal of Experimental Botany, 2000, 51: 1575-1584
    138. Lenoble ME, Spollen WG, Sharo RE. Maintenance of shoot growth by endogenous ABA: Genetic assessment of the involvement of ethylene suppression. Journal of Experimental Botany, 2004, 55: 237-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700