用户名: 密码: 验证码:
移动高程平面约束的多视影像可靠匹配方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
影像匹配是摄影测量技术从二维航空/航天影像自动获取三维空间信息的关键。传统的航空影像匹配受限制于传感器的立体成像能力,以“单立体”影像匹配为主,容易出现“病态解”。随着新型数字传感器的日益广泛使用,获得覆盖同一地区大重叠度的数字影像变得越来越容易,从而催生了多视影像匹配技术的发展并成为该领域研究的热点。
     多视影像匹配具有三大显著优势:一是综合利用多视影像信息可以提高匹配的可靠性;二是可以有效解决多视影像匹配中的相对遮挡问题;三是可以根据需要对多视影像进行选择性匹配。现有的多视影像匹配方法仅考虑其中第一个方面的优势,没有对后两种优势进行针对性的研究,匹配方式也较为固定。本文针对城区影像较严重的建筑物遮挡问题,充分发挥多视影像匹配的优势,提出了移动高程平面约束的多视影像可靠匹配方法。该方法利用物方规则格网划分的平面作为约束,分别采用影像上特征点和物方“地面元”作为匹配基元进行了特征点匹配和密集匹配,并根据匹配基元的投影光束,对多视影像进行选择性匹配,避免遮挡对匹配的影响。该方法满足真正的多视影像匹配的概念,可以处理任意数量的影像( n >2),同时可以处理所有待匹配影像上任意重叠度的影像区域。
     本文主要研究内容如下:
     ⑴影像预处理与特征点提取。采用自适应平滑滤波去噪、Wallis滤波增强方法对影像进行预处理,采用本文的实验影像数据,对几种常用的特征点提取算子(Moravec算子、Foerstner算子、Harris算子)从定位精度、特征点提取数量上进行实验比较,最终采用Foerstner算子对所有影像进行特征点提取;
     ⑵特征点匹配。建立一种新的多视影像同时匹配的物方约束模型。通过移动平面到不同高程位置,利用平面上的格网单元位置约束不同影像上特征点投影光束范围,根据格网单元内通过特征点投影光束的数目进行分级匹配,同时根据格网单元内通过的特征点投影光束对多视影像进行选择性匹配,该过程避免由于特征点在一些影像上存在遮挡、特征点提取过程中没有被提取出来产生的匹配漏洞,匹配过程中对每一个成功匹配的格网单元进行高程赋值;
     ⑶密集匹配。将特征点匹配后高程赋值的格网平面看作初始的DSM,并作为物方规则分布的“地面元”的载体。将遮挡检测方法引入到多视影像匹配过程中,提出了基于高度的遮挡检测和物方铅垂线约束相结合的多视影像匹配方法,每个“地面元”在匹配前先进行遮挡检测,根据遮挡检测结果选择未发生遮挡的影像进行匹配,避免遮挡对匹配的影响,在多视影像相对遮挡区域取得理想的匹配结果,同时得到每张影像上的区域遮挡图。
     ⑷提出参考影像不固定的多视影像匹配策略。针对灰度区域相关匹配过程中参考影像的选取,设计新的参考影像选取方法,即根据地底点成像变形最小原理,选择地底点离待匹配格网单元最近的影像作为参考影像,匹配过程中参考影像不固定。实验证明,同等条件下选择地底点最近的影像作为参考影像可以提高灰度窗口间相关系数的最大值。
     基于本文研究提出的多视影像匹配方法,采用某一典型地区同一条航带上的四张UCD数码航空影像,进行了实验分析,并与VirtuoZo系统的结果进行了比较,实验结果证明了本文方法的正确性和有效性。通过对多视影像进行选择性匹配,有效的解决建筑物遮挡的影响,为城区多视影像的可靠匹配提供了一条新的解决途径。
Reliable image matching is an essential and difficult task in digital photogrammetry and computer vision. The traditional image matching is restricted to the imaging abilities of stereo sensors, which based on the matching of“single stereo-pair”, and therefore is a challenging and“ill-posed”problem. Along with the increasing use of new digital sensors, it becomes more and more easier to acquire large overlap digital images covering the same area, the multi-view image matching approach has attracted wide interests in both photogrammetry and computer vision.
     Multi-view image matching has three significant advantages: Firstly, it improves the reliability of matching utilizing the comprehensive multi-view image information; Secondly, it effectively solves the relative-occluded problem of images; and thirdly, it can selectively match the multiple images on-demand. However, up to now the existing multi-view image matching methods only employ the first advantage, there is very few research about another two characteristics, and the matching strategy is also relative inflexible. Focusing on the serious occlusion problem in city images, this dissertation proposes a reliable multi-view image matching method based on the moving Z-Plane constraint. Following a constraint plane of grid partitioning in object space, this method adopts the image interest points and the“groundel”(ground element) in object space as the matching primitives for feature matching and dense matching. Simultaneously, it carries on the selective matching for multi-view images depending on the projection rays of matching primitives to avoid the occlusion effect in the matching. This method suffices the conception of true multi-view image matching, which can deal with any number of images, and any degree overlap areas in to-be-matched images.
     The main contents of this dissertation are as follows:
     ⑴Image pre-processing and extraction of interest points. In image pre-processing, this dissertation adopts the adaptive smoothing filter to reduce the image noise and the Wallis filter to enhance the image features. It also compares several extraction operators of interest points (Moravec operator、Forstner operator、Harris operator) on location accuracy and numbers of interest points through experimental analysis, and finially employs the Forstner operator to extract interest points in overall images.
     ⑵Interest point matching. A new constraint mode in object space for the simultaneously multi-view image matching is introduced. By moving the matching plane to different elevation positions so called Z-Plane, it constraints the range of projection rays from different images based on the positions of grid cells in the Z-Plane , and then a related hierarchical matching according to the number of viewing rays in the grid cells is presented. Simultaneously, it carries on a selective matching depending on the viewing rays in the grid cells, in order to avoid the matching vulnerability caused by occlusions or interest point not be extracted. In the process of matching, it also assigns the evaluation values to successfully matched grid cells.
     ⑶Dense matching. It takes the valued grid plane after interest point matching as the initial DSM, and as the carrier of regular distributing“groundel”in the object space. Introduces the occlusion detection method into the process of“groundel”matching in the object space. Along with the height-based occlusion detection method and the simultaneously multi-image matching based on vertical line constraint in the object space, it carries on the occlusion detection before the matching of each groundel, and selects the images without occlusions to do dense matching according to the result of occlusion detection, in order to avoid the effect of occlusions and to obtain good matching results in relative-occluded areas, even the occlusion map in every image.
     ⑷A multi-view image matching strategy based on the unfixed reference image is proposed. Focusing on the problem of reference image selection in the process of matching based on gray area correlation, a new algorithm for reference image selection is designed, which selects the nearest image from the ground nadir point as reference image according to the principle of minimum image distortion in nadir point. The reference image is unfixed in the process of matching. The experimental results validate which selects the nearest image from the ground nadir point as reference image under the same conditions can improve the maximum of cross correlation coefficient in gray window with different images.
     Based on the multi-view image matching method proposed in this dissertation, it carries on the matching experiment utilizing four large overlap UCD digital airbrone images in the same strip, and compares with the result derived from the VirtuoZo System. The experiment results validate the correctness and effectiveness of this method proposed in this dissertation. Through the selective matching toward multi-view images, this method effectively solves the effect of building occlusion, and provides a new effective solution for reliable multi-view image matching.
引文
IJPRS ISPRS Journal of Photogrammetry and Remote Sensing
    IAPRS International Archives of Photogrammetry and Remote Sensing
    IJCV International Journal of Computer Vision
    GRSL IEEE Geoscience and Remote Sensing Letters
    PAMI IEEE Transactions on Pattern Analysis and Machine Intelligence
    PaREC Pattern Recognition
    CVGIP Computer Vision, Graphics and Image processing
    SPIE The Society of Photo-Optical Instrumentation Engineers
    ECCV European Conference on Computer Vision
    ICFPD Proceedings of the Intercommission Conference on Fast-Processing of photogrammetric Data
    IEEE-CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    WSCG International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision
    [1]张祖勋.数字摄影测量与计算机视觉[J].武汉大学学报:信息科学版, 2004, 29(12): 1035-1105.
    [2] Heipke C., Performance and state-of-the-art of digital stereo processing[J]. Photogrammetric Week’93, 1993, pp. 173-183.
    [3]李德仁,周月琴,金为铣.摄影测量与遥感概论[M].北京:测绘出版社,2001.
    [4]张祖勋.从数字摄影测量工作站(DPW)到数字摄影测量网格(DPGrid)[J].武汉大学学报:信息科学版,2007,32(7):565-571.
    [5] Collins R. T., A space-sweep approach to true multi-image matching[J]. Proc. Conference on Computer Vision and Pattern Recognition, San Francisco, 18–20 June, 1995, pp. 358–363.
    [6] Okutomi M., Kanade T. A Multiple-baseline Stereo[C]. PAMI, Vol. 15, No.4, pp. 353-363, 1993.
    [7] Heipke C., Automation of interior, relative, and absolute orientation[J]. IJPRS, 1997,52: 1-19.
    [8] Hannah, M. J., Digital Stereo Image Matching Techniques[J]. Proceedings of 16th ISPRSC. In ASPRS, 1998, Vol. 27/B3:280-293.
    [9] F?rstner W., Matching strategies for point transfer[J]. In: W. Fritsch & D. Hobbie (Eds.),Photogrammetric Week'95, Wichmann Verlag, Heidelberg, 1995.
    [10] Pilgrim, L., Robust eatimation applied to surface matching. ISPRS Journal of Photogrammetry and Remote Sensing 51, 1996, 243-257.
    [11] Baltsavias E., Multiphoto Geometrically Constrained Matching[D], ETH Zurich, Institute of Geodesy and Photogrammetry, 1991.
    [12]吴波.自适应三角形约束下的立体影像可靠匹配方法[D].武汉大学,2006.
    [13] Heipke C., Overview of image matching techniques [J]. Proceddings of OEEPE Workshop on the Application of Digital Photogrammetric Workstations, Lausanne, Switzerland, 1996, Part 3.
    [14] Ackermann F., Some Considerations about Feature Matching for The Automatic Generation of Digital Elevation Models[J]. In OEEPE Workshop on the Application of Digital Photogrammetric Workstations, Lausanne, Switzerland, March 1996, In: http://phot.epfl.ch/workshop/wks96/art_3_4.html.
    [15] F?rstner W., On the geometric precision of digital correlation[J]. IAPRS, 1982, 24 (3):176-189.
    [16]贺赛先.近景摄影测量中双目立体影像轮廓匹配方法研究及系统实现[D].武汉大学,2005.
    [17] F?rstner W.,Matching strategies for point transfer[J]. In: W. Fritsch&D. Hobbie, Photogrammetric Week’95, Wichmann Verlag, Heidelberg, 1995.
    [18] F?rstner W., A feature based correspondence algorithm for image matching[J]. IAPRS,1986, 26(3): 150-166.
    [19]陈鹰,张宝印,邵永社.用于生成DEM的双重约束最小二乘影像匹配[J].测绘科技,1995,No.2.
    [20]陈鹰,李铁军,熊兴华.带约束条件的特征与最小二乘影像匹配[J].中国图像图形学报,1998,(4):299-302.
    [21] Maas H.G., Automatic DEM generation by multi-image feature based matching[J]. Proceedings of 18th ISPRS Congress, Vienna, 1996, Vol.31, Part-B3, pp. 484-489.
    [22]向登宁,邓文怡,燕必希,董明利,吕乃光.利用极线约束方法实现图像特征点的匹配[J].北京机械工业学院学报,2002,17(4):1-25.
    [23]周骥,石教英,赵友兵.图像特征点匹配的强壮算法[J].计算机辅助设计与图形学学报,2002,14(8):754-758.
    [24] Galo M. and Tozzi C.L., Feature-point based matching: a sequential approach based on relaxation labeling and relative orientation. Journal of WSCG, 2004, 12(1):113-120.
    [25] Baker H. and Binford T., Depth from edge and intersity based stereo[J]. Proceedings of 7th International Conference on Artificial Intelligence, 1981, pp. 631-636.
    [26] Haralick R., Digital step edges from zero crossing of second directional derivatives[J]. PAMI, 1984, 6(1): 58-68
    [27] Medioni G. and Nevatia R., Segment-based stereo matching[J]. CVGIP, 1985, 31: 2-18.
    [28] Horaud R. and Skordas T., Stereo correspondence through feature grouping and maximal clique[J]. PAMI, 1989, 11(7): 1168-1180.
    [29] Kang S. and Ikeuchi K., The complex EGI: a new representation for 3D pose determination. PAMI, 1993, 15(7): 702-721.
    [30]刘小平,彭嘉雄,丁明跃.基于FBM分形向量特征的图象匹配[J].宇航学报,1997,18(1):55-60.
    [31]丁险峰,吴洪,张宏江,马颂德.形状匹配综述[J].自动化学报,2001,27(5):678-694.
    [32] Cooper P. and Woods F., The automatic generation of digital terrain models from satellite images by stereo[J]. Proceedings of SPIE, 1986, Vol.66, pp.124-135.
    [33]郑肇葆.数字影像匹配的动态规划方法[J].测绘学报,1988,27(2).
    [34]仇彤.基于动态规划的整体影像匹配[J].测绘学报,1994,23(3):308-314.
    [35]张祖勋,张剑清,吴晓良.跨接法概念之扩展及整体影像匹配[J].武汉测绘科技大学学报,1991,16(3):1-11.
    [36] Barnard S.T. and Thompson W.B., Disparity analysis of images[J]. PAMI, 1980, 2 (4):333-340.
    [37]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出版社,1997.
    [38]张剑清,潘励,王树根.摄影测量学[M].武汉:武汉大学出版社,2004.
    [39]吴晓良.影像匹配的松弛途径[D].武汉:武汉测绘科技大学,1993.
    [40]仇彤.基于小波变换的松弛法影像匹配[J].武汉测绘科技大学学报, 1998 ,23(3):145-148.
    [41] Christensen G.E., Consistent linear-elastic transformations for image matching[J]. In: A.Kuba et.al. (Eds.), IPMI'99, LNCS 1613, 1999, pp. 224-237.
    [42]江万寿,郑顺义,张祖勋,张剑清,航空影像特征匹配研究。武汉大学学报:信息科学版,2003,28(5):510-513.
    [43]张力,沈未名,张祖勋,张剑清,基于空间约束的神经网络影像匹配。武汉测绘科技大学学报,2000,25(1):55-59.
    [44]郭海涛,刘智,张保明.基于遗传算法的快速影像匹配技术的研究[J].测绘学院学报,2001,18:20-22.
    [45] Kameyama K. and Toraichi K., Image matching based on relaxation and model switching on countour characterization[J]. Proceedings of SCIS, 2002.
    [46]江万寿.航空影像多视匹配与规则建筑物自动提取方法研究[D].武汉大学,2004.
    [47]张祖勋,张剑清,吴晓良.整体松弛影像匹配[J]. Proceeding of the International Colloquim on Photogrammetry, Remote Sensing and Geographic Information System, Wuhan, China, 1992, pp.11-14.
    [48]范永弘.立体影像匹配和DTM自动生成技术的研究与实践[D].解放军信息工程大学,2000.
    [49] Zhang, L., Automatic Digital Surface Model (DSM)Generation from Linear Array Images[D]. Ph.D. Dissertation, No.88, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, 2005.
    [50] Trucco E. and Verri A., Introductory Techniques for 3-D Computer Vision[J]. N.J.:Prentice Hall, 1998.
    [51] Ackermann F. and Krzystek P., New Investigations into the Technical Performance of Automatic DEM Generation[J]. Proceedings of ASPRS/ACSM annual convention, Charlotte NC 1995, Vol.2, pp. 488-500.
    [52]张祖勋,周月琴.用拟合法进行SPOT影像的近似核线排列[J].武汉测绘科技大学学报,1989,(2).
    [53] Baltsavias E. P. and Stallmann D., Advancement in Matching of SPOT Images by Integration of Sensor Geometry and Treatment of Radiometric Differences[J]. IAPRS, 1992, Vol. 29, Part B4, pp. 916-924.
    [54]江万寿,张剑清,张祖勋.三线阵CCD卫星影像的模型研究[J].武汉大学学报:信息科学版,2002,(4).
    [55]黄玉琪.数字摄影测量中若干关键技术的研究与实践[D].解放军信息工程大学,2000.
    [56] Kim, T., A study on the epipolarity of linear pushbroon images[J]. PE&RS. 66(8):961-966.
    [57]范大昭.多线阵影像匹配生产DSM的理论与算法[D].解放军信息工程大学.2007.
    [58]纪松.线阵影像多视匹配自动提取DSM的理论与方法[D].解放军信息工程大学,2008.
    [59] Tang L., Tsui H.T. and Wu C.K., Dense stereo matching based on propagation with a voronoi diagram. Proceedings of India Conference on Computer Vision[J], Graphics and Image Processing III, Ahmedabad, India, 2002, pp. 230-240.
    [60] Cross A.D.J., Wilson R.C, and Hancock E.R., Inexact graph matching using genetic search[J]. PaREC, 1997, 30(6): 953-970.
    [61] Finch A.M., Wilson R.C., and Hancock E.R., Symbolic graph matching with the EM algorithm[J]. PaREC, 1998, 31(11): 1777-1790.
    [62]窦慧丽.基于Delaunay三角剖分的指纹匹配算法[D].吉林大学,2004.
    [63]赵杰,数字地形模型-地形数据获取与数字地形分析研究[D].武汉大学,2004.
    [64] Zhu Q., Zhao J., Lin H. and Gong J.Y., Triangulation of well-defined points as a constraint for reliable image matching. PE&RS, 2005, 71(9): 1063-1069.
    [65] Zhu Q., Wu B. and Xu Z.X., Seed Point Selection Method for Triangle Constrained image Matching Propagation[J]. GRSL, 2006, 3(2): 207-211.
    [66] Hannah, M. J., A system for digital stereo image matching[J]. PE&RS, 1989, (55)12: 1765-1770.
    [67]朱庆,吴波,赵杰.基于自适应三角形约束的可靠影像匹配方法[J].计算机学报,2005,28(10):1734-1739.
    [68] Mayhew J. E. W. and Frisby J. P., Psychophysical and Computational Studies Towards a Theory of Human Stereopsis[J]. Artificial Intelligence, 1981, 17: 349-385.
    [69] Grimson W. E. L., Computational Experiments with a Feature-based Stereo Algorithm[J]. PAMI, 1985, 7(1): 17-34.
    [70] Marr D. and Poggio T., A Computational Theory of Human Stereo Vision[J]. Proceedings of Royal Soc, London, 1979, Vol. B204, pp. 301-328.
    [71] Pateraki M., Adaptive multi-image matching for DSM airborne linear array CCD data[D]. Institute of Echnology Zurich, ETH Zurich, 2005.
    [72] Pateraki M., Baltsavias E., Adaptive multi-image matching algorithm for the airborne digital sensor ADS40[J]. Asian Conference on GIS, GPS, Aerial Photography and Remote Sensing. 2002.
    [73] Pateraki M., Baltsavias E., Analysis and performance of the adaptive multi-image matching algorithm for airborne digital sensor ADS40[J]. ASPRS Annual Conference 2003.
    [74] Pateraki M., Baltsavias E., Analysis of a DSM generation algorithm for the ADS40 Airborne pushbroom sensor[J]. Digital Aerial 2: Advancements in algorithms and processing. 2004, 83-92.
    [75] Zhang B., Miller S. Adaptive Automatic Terrain Extraction[J], Proceedings of SPIE, 1997, Vol. 3072, pp. 27-36.
    [76] Zhang B., Miller S., DeVenecia K. and Walker S. Automatic Terrain Extraction Using Multiple Image Pair and Back Matching[J]. ASPRS 2006 Annual Conference, Reno, Nevada, 12 pp, 2006.
    [77]袁修孝,明洋.一种综合利用像方和物方信息的多影像匹配方法[J].测绘学报,2009.
    [78] Maas H.G., Automatic DEM generation by multi-image feature based matching[J].IAPRS, 1996, 31(Part B3):484-489.
    [79] Maas H.G., Kersten Th., Aerotriangulation and DEM/Orthophoto Generation from High Resolution Stillvideo Imagery[J]. PE&RS, 1997, 63(9): 1079-1084.
    [80] Tao C.V., Semi-Automated Object Measurement Using Multi-Image Matching from Mobile Mapping Image Sequences[J]. PE&RS, 2000, Vol. 67, No. 12, pp. 1347-1357.
    [81] Gruen, A., Zhang L., Automatic DTM Generation from TLS data[J]. In Gruen/Kahman (Eds.) Optical 3-D Measurement Techniques VI, 2003, Vol. I, ISBN: 3-906467-43-0, pp.93-105.
    [82] Zhang, L., Gruen, A., Automatic DSM Generation from Linear Array Imagery Data[J]. IAPRS, 2004, Vol. 35, Part B3, pp. 128-133.
    [83]张永生,范大昭,纪松.用于ADS40传感器的多视觉立体匹配算法模型[J].测绘科学技术学报2007,24(2):83-86.
    [84] Zebedin L., Klaus A., Gruber-Geymayer B., Karner K., Towards 3D map generation from digital aerial images[J]. IJPRS, 2006, 413–427.
    [85] Bauer J., Zach C., Karner K., Bischof H., Efficient sparse 3D reconstruction by space sweeping[J]. 2006.
    [86] Helava, Object space Least-squares correlation [J].Photogrammatris Engineering and Remote Sensing, 1988, Vol. 54(6): 711-714.
    [87] Zhang B. Towards a Higher Level of Automation in Softcopy Photogrammetry: NGATE and LiDAR Processing in SOCET SET[J]. GeoCue Corporation 2nd Annual Technical Exchange Conference, Nashville, Tennessee, 2006.
    [88]刘军.基于数字建筑物模型的线阵推扫影像真正射纠正[J].遥感计算与应用,2009,24(1):88-92.
    [89] Brown, M. Z., Burschka, D., Hager, G. D., Advance in Computational Stereo[J]. PAMI, 2003 Vol. 25, No. 8, pp. 993-1008.
    [90] Kanade T., Okutomi M., A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment[C]. PAMI, 1994, Vol. 16, No. 9, pp. 920-932.
    [91] Fua P. and Leclerc Y., Object-centered surface reconstruction[J].Reconstruction: Combining Multi-Image Stereo and Shading, IJCV 1995. Vol. 16(1): 35-36.
    [92] Zabih R., Woodfill J., Non-parametric Local Transforms for Computing Visual Correspondence[J]. ECCV, Stockholm, 1994, 150-158.
    [93] Bhat D.N., Nayar S.K., Ordinal Measures for Image Correspondence[J], PAMI, 1998, vol. 20, pp. 415-423.
    [94] Okutomi M., Yasuhiro Katayama. A Simple Stereo Algorithm to Recover Precise Object Boundaries and Smooth Surfaces [J]. IEEE-CVPR 2001, 138-144.
    [95] Zhang, L., Gruen A., Multi-image matching for DSM generation from IKONOS imagery[J]. ISPRS Journal of Photogrammetry & Remote Sensing 60, 2006, 195–211.
    [96]张力,张继贤.基于多基线影像匹配的高分辨率遥感影像DEM自动生成[J].会议第三届区域遥感应用国际论坛第三届区域遥感应用国际论坛论文集2008,709-720.
    [97] Zhang, L., Zhang JiXian, Wang ShaoCheng. Multi-Image Matching for DTM Generation from SPOT-5 HRS/HRG and IRS-P5 Imagery for the Project of West China Topographic Mapping at 1:50000 Scale[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing, 2008.
    [98] Saint-Marc, P., Chen, Medioni. Adaptive smoothing: A General tool for early vision [J]. PAMI, 1991, Vol. 13, No. 6, pp.514-560.
    [99]景晓军,李剑锋,熊玉庆.静止图像的一种自适应平滑滤波算法[J].通信学报,2002,23(10):6-14.
    [100]张力,张祖勋,张剑.Wallis滤波在影像匹配中的应用[J].武汉测绘科技大学学报,1999,24(1):24-35.
    [101]张祖勋.数字摄影测量研究30年[M].武汉:武汉大学出版社,2007.
    [102]王智均,李德仁,李清泉. Wallis变化在小波影像融合中的应用[J].武汉测绘科技大学学报,2000,25(4):338-342.
    [103]王密,潘俊.面向无缝影像数据库应用的一种新的光学遥感影像色彩平衡方法[J].国土资源遥感,2006,70(4):20-22.
    [104] Moravec H.P., Towards automatic visual obstacle avoidance[J]. Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, Massachusetts, USA, August 1977, pp. 584.
    [105] Foerstner W., Guelch E., A Fast Operator for Detection and Precise Location of Distinct Points, Corners and Centers of Circular Features[J]. ICFPD, Interlaken, June 2-4, 1987. pp. 281-305.
    [106] F?rstner W., A framework for low level feature extraction[J]. ECCV, Stockholm, Sweden, 1994, pp. 383-394.
    [107] Smith S. and Brady J., SUSAN: A new approach to low-level image processing[J]. IJCV, 1997, 23: 45-78.
    [108] Harris C. and Stephens M., A combined corner and edge detector[J]. Proceedings of 4th Alvey Vision Conference, Manchester, 1988, pp. 147-151.
    [109] Schmid C., Mohr R. and Bauckhage C., Evaluation of Interest Point Detectors[J]. IJCV, 2000, 37(2): 151-172.
    [110] Schmid C. and Zisserman A., The Geometry and Matching of Lines and Curves Over Multiple Views[J]. IJCV, 2000, 40(3): 199-233.
    [111]朱庆,吴波,万能,徐志祥,田一翔.具有良好重复率与信息量的立体影像特征点提取方法[J].电子学报,2006,34(2):205-209.
    [112] Lue Y.,Interest Operator and Fast Implementation[J]. Proc. of 6th ISPRSC. In IAPRS, 1988, Vol. 27/B3, pp. 491-500.
    [113] Amhar F, Josef J, Ries C. The generation of true orthophotos using a 3D building model in conjunction with a conventional DTM[J]. International Archives Photogrammetry, RemoteSensing, 1998, 32 (4): 16–22.
    [114]钟成.机载激光雷达数据辅助高质量真正射影像制作[D].武汉大学,2009.
    [115] Rau J Y, Chen N Y, Chen L C. True orthophoto generation of built-up areas using multi-view images[J], Photogrammetry Engm Remote Sensing, 2002, 68(6):581-588.
    [116] Habib A., Kim E., Kim C.,. New Methodologies for True Ortho-photo Generation[J]. PE&RS, 2007, Vol. 73, No 1.
    [117] Habib. True Ortho-photo Generation from High Resolution Satellite Imagery[J]. Lecture Notes in Geoinformation and Cartography 2007, part 3, 641-656.
    [118]张剑清,胡安文.多基线摄影测量前方交会方法及精度分析[J].武汉大学学报:信息科学版,2007,32(10):847-851.
    [119]宋伟东.稀少控制点下遥感影像纠正模型研究[D].辽宁工程技术大学,2004.
    [120]王伟玺.基于广义立体像对的三维重建方法研究[D].辽宁工程技术大学,2006.
    [121]刘正东.计算机视觉中立体匹配技术的研究[D].南京理工大学,2005.
    [122] McGlone J. C., Manual of Photogrammetry(fifth edition). American Society for Photogrammetry and Remote Sensing[J]. 5410 Grosvenor Lane, Suite 210, Bethesda, Maryland 20814, ISBN 1-57083-071-1, 2004, pp.1151.
    [123] Gong J.Y., Li Z.L., Zhu Q., Sui H.G. and Zhou Y., Effects of Various Factors on the Accuracy of DEMs: An Intensive Experimental Investigation, PE&RS, 2000, 66(9): 1113-1117.
    [124] Li Z.L., A Comparative study of the accuracy of digital terrain models based on various dada models. IJPRS, 1994, 49(1): 2-11.
    [125] USGS, Standards for Digital Elevation Models. U.S. Department of the Interior & U.S. Geological Survey, National Mapping Program Standards, 1998, In: http://rockyweb.cr.usgs.gov/nmpstds/demstds.html.
    [126] Gruen A. and Baltsavias E. P., Geometrically Constrained Multiphoto Matching[J].PE&RS, 1988, 54(5): 633-641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700