用户名: 密码: 验证码:
光合细菌生物膜反应器内传输特性及产氢性能强化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能具有燃烧性能好,清洁,高效等优势,被认为是理想的能源载体之一。光合细菌能利用水和简单的有机物作为底物将太阳能转换成氢能,减少了二氧化碳的排放并实现了废物的处理,是一门新兴的生物能源技术。然而,利用光合细菌产氢过程中存在产氢速率慢与光能转化效率低等问题,因此,该技术现在还处于实验室研究阶段,与工业规模化生产还有很大的差距。为了提高光合细菌的产氢性能,将生物膜技术与光合细菌制氢技术相结合便成为了一条有效的途径。在利用光合细菌生物膜降解有机物制取氢气的过程中,培养液中的有机底物需先从溶液的主流区通过扩散作用进入到生物膜内,之后,有机底物被光合细菌生物膜代谢降解,最终生成的氢气和二氧化碳等代谢产物逆方向传输到溶液的主流区。由此可见,生物膜内的传质过程对光合细菌生物膜产氢性能有着十分显著的影响。
     本课题将以光合细菌生物膜制氢技术为背景,针对光合细菌生物膜复杂的结构形态特性,通过构建的板式光合细菌生物膜反应器产氢系统,研究了不同生长时期、流速和底物浓度等操作条件对光合细菌生物膜形成的影响,应用激光共聚焦显微镜及三维重构技术获取了生物膜的结构形态。通过对由激光共聚焦显微镜技术获取的生物膜孔隙及活性细胞的分布情况,建立了光合细菌生物膜反应器内含有生化反应的底物传输及降解模型,预测了不同操作条件下的生物膜内底物分布情况及反应器的底物降解特性。此外,为提高光合细菌生物膜的产氢性能,本文通过光纤技术的引入,光纤复合粗糙表面的构建及非饱和挂膜方式的应用,对光合细菌生物膜反应器内光分布特性,生物持有量和成膜特性进行了强化研究。主要获得以下结论:
     ①采用激光共聚焦显微镜及三维立体重构技术,研究了光合细菌生物膜在成膜过程中结构形态的变化,探讨了底物浓度和流速对光合细菌生物膜结构形态的影响。实验结果发现:随着挂膜启动时间的增加,光合细菌生物膜的孔隙率不断降低,生物膜的结构越发致密。同时,过低的底物浓度会限制光合细菌生物膜的生长,降低生物膜的生物量浓度;而过高的底物浓度则导致光合细菌生物膜的结构更为疏松。此外,由于剪切力的作用,光合细菌生物膜在高流速下更易产生局部脱落的现象。
     ②采用由激光共聚焦显微镜技术获取的生物膜孔隙及活性细胞的分布情况,建立了光合细菌生物膜反应器内含有生化反应的底物传输及降解模型,获得了不同操作条件下反应器内的底物分布和降解特性。实验结果表明:模型计算结果与实验值有较好的吻合性。在pH值为7,光照强度为6000lx,温度为30C的条件下,光合细菌生物膜活性最高,底物降解性能最好,此时,生物膜内的底物浓度最低,氢浓度最高。
     ③提出了弥散光纤束光合细菌生物膜反应器,应用光纤材料作为光导管,强化反应器内光分布的均匀性,进而提高反应器的产氢性能。实验结果表明:弥散光纤束光合细菌生物膜反应器的产氢性能均随水力停留时间与进口底物浓度的增大呈现出先升高后降低的趋势。在水力停留时间为12h,进口底物浓度为50mmol/L的工况下,反应器的产氢速率和光能转化效率达到最大值,分别为12.1mmol/m~2/h和23.3%。
     ④构建了弥散光纤复合粗糙表面,通过反应器比表面积的增加,提升了反应器单位体积的生物持有量。实验结果表明:复合粗糙表面的构建强化了光合细菌生物膜反应器的产氢性能。同时,20天的连续运行实验还证实了带有弥散光纤复合粗糙表面的光合细菌生物膜反应器产氢系统具有良好的稳定运行性。此外,在进口底物浓度为60mmol/L,流量为30mL/h,进口溶液的pH值为7.0,温度为30℃的最适工况下,反应器的产氢速率,底物降解速率,底物降解效率和光能转化效率分别达到1.75mmol/L/h,10.8mmol/L/h,75.0%和9.3%。
     ⑤利用液相区内微生物迁移到达固体基质表面的概率与液相区厚度成反比的概念,提出了在非饱和液相条件下光合细菌成膜,以期强化成膜特性,缩短成膜时间。实验结果表明:光合细菌在非饱和液相条件下形成光合细菌生物膜是可行的、有效的。同时,与饱和液相中形成的光合细菌生物膜相比,非饱和液相条件下形成的生物膜的结构更为致密,成膜所需的时间更短。在饱和液相条件下进行产氢性能实验时,非饱和液相中形成的光合细菌生物膜由于结构相对致密,产物(氢、二氧化碳和挥发性有机酸等)和底物的传输阻力均相对较大,产氢性能较差;在非饱和液相条件下进行产氢性能实验时,由于饱和液相条件下形成的光合细菌生物膜的结构疏松,使得生物量浓度较低,产氢性能较差。
Hydrogen is one of the ideal energy carriers because it has numerous advantages ofexcellent combustion performance, cleanness and high efficiency. Photosyntheticbacteria can convert solar energy into hydrogen using water and simple organiccompounds as the hydrogen sources, and enable carbon dioxide reduction and wastetreatment, therefore, the technology of hydrogen production by photosynthetic bacteriaas an emerging bio-energy technology. At present, however, this technique is still in thestage of laboratory research and lags behind the industrial scale due to the slowerhydrogen production rate and lower light energy conversion efficiency. In order toimprove the performance of hydrogen production by photosynthetic bacteria, thecombination of biofilm technique and hydrogen production by photosynthetic bacteriais an effective way. In the process of the degradation of organic matter to producehydrogen by biofilm with photosynthetic bacteria, firstly, the organic substrate in theculture solution diffuses into the biofilm from the bulk liquid, and then, the organicsubstrate are degraded by biofilm with photosynthetic bacteria, at last, the generatedmetabolites, such as hydrogen and carbon dioxide, are is transmitted back to the bulkliquid. Thus, the process of mass transfer within the biofilm has a very significant effecton the hydrogen production performance of the biofilm with photosynthetic bacteria.
     In this study, focusing on the technology of hydrogen production by biofilm withphotosynthetic bacteria, the effect of different operational conditions including growthstages, flow rate and substrate concentration on the substrate distribution andmorphology characteristics of biofilm with photosynthetic bacteria were investigatedthrough the developed system with flat plate biofilm photobioreactor for hydrogenproduction. Base on the process of mass transfer in flat plate biofilm photobioreactor,the distribution of the pores and the cells were obtained through the treatment ofmicrostructure images of biofilm with photosynthetic bacteria obtained by the confocallaser scanning microscopy, and then the mass transfer and biochemical reaction kinetictheory were utilized for the development of the transport model of the flat plate biofilmphotobioreactor to predict the characteristics of the substrate degradation of thephotobioreactor and the substrate distribution within the biofilm under differentoperational conditions. In addition, in order to improve the hydrogen production performance of the biofilm with photosynthetic bacteria, in this work, the lightdistribution characteristics, biomass concentration and the biofilm formation propertieswere enhanced through the introduction of optical fiber technology, the development ofcomposite surface and the applications of biofilm formation under the nonsaturatedliquid phase. The main results were summarized as follows:
     ①The change of morphology of biofilm with photosynthetic bacteria wasinvestigated in the biofilm formation stage, and the effect of the operational conditionsincluding the substrate concentration and flow rate on the morphology of biofilm withphotosynthetic bacteria was explored. The experimental results showed that: with theincrease of start-up time, the porosity in the biofilm with photosynthetic bacteriareduced and the structure of biofilm became denser. Moreover, the undersizeconcentration of the substrate limited the growth of biofilm with photosyntheticbacterial, reducing the biomass concentration of the biofilm; the oversize concentrationof the substrate led to looser structure of the biofilm. In addition, due to the influence ofthe shear force, biofilm with photosynthetic bacteria is easy to partial loss inhigh flowvelocity
     ②Based on the process of mass transfer in the flat-panel biofilm photobioreactor,the distribution of pores and cells in the biofilm were found out by the treatment ofmicrostructure images of biofilm with photosynthetic bacteria obtained using confocallaser scanning microscopy, thereby the effects of operational conditions including lightintensity, temperature and pH on the transport and degradation characteristics ofsubstrate in flat-panel biofilm photobioreactor were analyzed using the transport modelof flat-panel biofilm photobioreactor constructed based on theory of mass transfer andbiochemical kinetics. Results showed that the modeling consequence could fitexperimental value well. The biofilm activity of photosynthetic bacterial was the highestand the degradation performance was the best at pH of7, illumination intensity of6000lx and temperature of30℃, at which condition, the substrate concentration wasminimum and hydrogen concentration was maximum.
     ③An optical fiber bundle biofilm photobioreactor was developed. In this design,the optical fiber was used as the light conduit to increase the uniformity of light in thephotobioreactor, enhancing the hydrogen production performance of photobioreactor.The experimental results revealed that the hydrogen production performance of theoptical fiber bundle biofilm photobioreactor first increased and then decreased with the increases of hydraulic retention time and substrate concentration. At the hydraulicretention time of12h and the substrate concentration of50mmol/L, the maximumhydrogen production rate and the light conversion efficiency were12.1mmol/m~2/h and23.3%, respectively.
     ④An optical fiber with additional rough surface was developed to enhance thespecific surface area of photobioreactor, enhancing the biomass per unit volume of thephotobioreactor. The experimental results revealed that the development of additionalrough surface enhanced the performance of hydrogen production of biofilmphotobioreactor with photosynthetic bacteria. Moreover, it was also confirmed that thedevelopment of the additional rough surface in the hydrogen production system causedan excellent stable operation of by the continuous operation experiments. In addition,when the substrate concentration was maintained at60mmol/L,flow rate was at30mL/h,the pH value was at7.0,and the temperature was30℃, the maximum hydrogenproduction rate, substrate degradation rate, substrate degradation efficiency and lightconversion efficiency were1.75mmol/L/h,10.8mmol/L/h,75.0%and9.3%,respectively.
     ⑤The biofilm with photosynthetic bacterial formed in an unsaturated liquidphase condition was proposed to enhance the characteristics of biofilm formation andshorten the time of biofilm formation using the notion that the probability of themicroorganism migration from liquid region to the surface of solid matrix is inverselyproportional to the thickness of the liquid region. The experimental results verified thatthe biofilm with photosynthetic bacteria formed in the unsaturated liquid phasecondition was feasible and effective. In addition, compared with the biofilm withphotosynthetic bacterial formed in the saturated liquid phase condition, the biofilmformed in the unsaturated liquid phase condition possessed the more dense structure andthe relatively short time required for the biofilm formation. When the performance testwas performed in saturated liquid phase conditions, due to the relatively dense structure,the transfer resistance of the substrate and products (hydrogen, carbon dioxide andvolatile organic acids) in the biofilm formed in the unsaturated liquid phase condition islarger, lowering the performance of hydrogen production, however, when theperformance test was performed in unsaturated liquid phase conditions, the relativelyporous structure of the substrate in the biofilm formed in the saturated liquid phasecondition led to the lower biomass concentration, lowering the performance of hydrogen production.
引文
[1] S. Jebaraj, S. Iniyan. A review of energy models [J]. Renewable and Sustainable EnergyReviews,2006,10:281-311.
    [2] J. Rupprecht, B. Hankamer, Jan H. Mussgnug, et al. Perspectives and advances of biological H2production in microorganisms [J]. Applied Microbiology and Biotechnology,2006,72:442-449.
    [3] I. Akkerman, M. Janssen, J. Rocha, et al. Photobiological hydrogen production: photochemicalefficiency and bioreactor design [J]. International Journal of Hydrogen Energy,2002,27:1195-1208.
    [4] D. Das, T. N. Veziroglu. Hydrogen production by biological processes: a survey of literature [J].International Journal of Hydrogen Energy,2001,26(1):13-28.
    [5] Y. Asada, J. Miyake. Photobiological hydrogen production [J]. Journal of Bioscience andBioengineering,1999,88:1-6.
    [6] D.B. Levin, L. Pitt, M. Love. Biohydrogen production: prospects and limitations to practicalapplication [J]. International Journal of Hydrogen Energy,2004,29:173-185.
    [7] A. Majizat, Y. Mitsunor, W. Mitsunori, et a1. Hydrogen gas production from glucose and itsmicrobial kinetics in anaerobic systems [J]. Water Science and Technology,1997,36(6-7):279-286.
    [8] T. Wakayama, J. Miyake. Light shade bands for the improvement of solar hydrogen productionefficiency by Rhodobacter sphaeroides RV [J]. International Journal of Hydrogen Energy,2002,27:1495-1500.
    [9] P.A.M. Claassen, J.B. van Lier, A.M. Lopez Contreras, et al. Utilization of biomass for thesupply of energy carriers [J]. Applied Microbiology and Biotechnology,1999,52:741-755.
    [10] H.P. Fang, T. Zhang, H. Liu. Microbial diversity of mesophilic hydrogen-producing sludge [J].Applied Microbiology and Biotechnology,2002,58:112-118.
    [11] W.M. Chen, Z.J. Tseng, K.S. Lee, et al. Fermentative hydrogen production with Clostridiumbutyricum CGS5isolated from anaerobic sewage sludge [J]. International Journal of HydrogenEnergy,2005,30(10):1063-1070.
    [12] E. Seol, S. Kim, S.M. Raj, et al. Comparison of hydrogen-production capability of fourdifferent Enterobacteriaceae strains under growing and non-growing conditions [J].International Journal of Hydrogen Energy,2008,33(19):5169-5175.
    [13] T.A.D. Nguyen, P.J. Kim, M.S. Kim, et al. Optimization of hydrogen production byHyperthermophilic eubacteria, Thermotoga maritime and Thermotoga neapolitana in batchfermentation [J]. International Journal of Hydrogen Energy,2008,33(5):1483-1488.
    [14] H.W. Morgan, B.K.C. Patel, R.M. Daniel. Comparison of a Thermoanaerobium sp. from a NewZealand hot spring with Thermoanaerobium brockii [J]. FEMS microbiology letters,1985,30(1):121-124.
    [15] N. Ren, B. Wang, J.C. Huang. Ethanol-type fermentation from carbohydrate in high rateacidogenic reactor [J]. Biotechnology and bioengineering,1997,54(5):428-433.
    [16]任南琪,李建政,林明等.产酸发酵细菌产氢机理探讨[J].太阳能学报,2002,23(1):124-127.
    [17] H. Gaffron. Reduction of carbon dioxide with molecular hydrogen in green algae [J]. Nature,1939,143:204-205.
    [18] H. Gaffron, J. Rubin. Fermentative and photochemical production of hydrogen in algae [J].Journal of General Physiology,1942,26:219-240.
    [19] T. Happe, A. Kaminski. Differential regulation of the [Fe]-hydrogenase during anaerobicadaptation in the green alga Chlamydomonas reinhardtii [J]. European Journal of Biochemistry,2002,269:1022-1032.
    [20] R. Wunschiers, H. Senger, R. Schulz. Electron pathways involved in H2-metabolism in thegreen alga Scenedesmus obliquus [J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,2001,1503(3):271-278.
    [21] Y.F. Guan, W. Zhang, M.C. Deng, et al. Significant enhancement of photobiological H2evolution by carbonylcyanide m-chlorophenylhydrazone in the marine green alga Platymonassubcordiformis [J]. Biotechnology Letters,2004,26:1031-1035.
    [22] O. Kruse, J. Rupprecht, J.H. Mussgnug, et al. Photosynthesis: a blueprint for solar energycapture and biohydrogen production technologies [J]. Photochemical&PhotobiologicalSciences,2005,4:957-970.
    [23] D. Das, T.N. Veziroglu. Advances in biological hydrogen production processes [J].International Journal of Hydrogen Energy,2008,33:6046-6057.
    [24] S.I. Allakhverdiev, V. Thavasi, V.D. Kreslavski, et al. Photosynthetic hydrogen production [J].Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2010,11:101-113.
    [25] J. Miyake, M. Miyake, Y. Asada. Biotechnological hydrogen production: research for efficientlight energy conversion [J]. Journal of Biotechnology,1999,70:89-101.
    [26] K. Srirangan, M.E. Pyne, C.P. Chou. Photofermentative hydrogen production from wastes [J].Bioresource Technology,2011,102:8557-8568.
    [27] J.C. Weissman, J.R. Benemann. Hydrogen production by nitrogen-starved cultures ofAnabaena cylindrica [J]. Applied and Environmental Microbiology,1977,33:123-131.
    [28] V. Shah, N. Garg, D. Madamwar. Ultrastructure of the cyanobacterium Nostoc muscorum andexploitation of the culture for hydrogen production [J]. Folia Microbiologica,2003,48:65-70.
    [29] A.K. Kashyap, K.D. Pandey, S. Sarkar. Enhanced hydrogen photoproduction bynon-heterocystous cyanobacterium Plectonema boryanum [J]. International Journal ofHydrogen Energy,1996,21:107-109.
    [30] S. Belkin, E. Padan. Hydrogen metabolism in the facultative anoxygenic cyanbacterialblue-green algae, Oscillatoria limnetica and Aphanothece halophytica [J]. Archives ofMicrobiology,1978,116:109-111.
    [31] D. Dutta, D. De, S Chaudhuri, et al. Hydrogen production by cyanobacteria [J]. Microbial cellfactories,2005,4(1):36.
    [32] F.A. Lopes Pinto, O. Troshina, P. Lindblad. A brief look at three decades of research oncyanobacterial hydrogen evolution [J]. International Journal of Hydrogen Energy,2002,27(11):1209-1215.
    [33] H. Gest, M.D. Kamen. Photoproduction of molecular hydrogen by Rhodospirillum rubrum [J].Science,1949,109:558-559.
    [34] G. Najafpour, H. Younesi, A.R. Mohamed. Effect of organic substrate on hydrogen productionfrom synthesis gas using Rhodospirillum rubrum, in batch culture [J]. Biochemical EngineeringJournal,2004,21:123-130.
    [35] H. Koku, I. Eroglu, U. Gunduz, et al. Aspects of the metabolism of hydrogen production byRhodobacter sphaeroides [J]. International Journal of Hydrogen Energy,2002,27:1315-1329.
    [36] C.Y. Chen, W.B. Lu, J.F. Wu, et al. Enhancing phototrophic hydrogenproduction ofRhodopseudomonas palustris via statistical experimental design [J]. International Journal ofHydrogen Energy,2007,32:940-949.
    [37] M. Suwansaard, W. Choorit, J.H. Zeilstra-Ryalls, et al. Phototropic H2production by a newlyisolated strain of Rhodopseudomonas palustris [J]. Biotechnology letters,2010,32:1667-1671.
    [38] T. Keskin, M. Abo-Hashesh, P.C. Hallenbeck, Photofermentative hydrogen production fromwastes [J]. Bioresource Technology,2011,102:8557-8568.
    [39] N. Basak, D. Das. The prospect of purple non-sulfur (PNS) photosynthetic bacteria forhydrogen production: The present state of the art [J]. World Journal of Microbiology&Biotechnology,2007,23:31-42.
    [40] C.Y. Chen, C.H. Liu, Y.C. Lo, et al. Perspectives on cultivation strategies and photobioreactordesigns for photo-fermentative hydrogen production [J]. Bioresource Technology,2011,102:8484-8492.
    [41] X.Y. Shi, H.Q. Yu. Response surface analysis on the effect of cell concentration and lightintensity on hydrogen production by Rhodopseudomonas capsulata [J]. Process Biochemistry,2005,40:2475-2481.
    [42] C.N. Dasgupta, J.J. Gilbert, P. Lindblad, et al. Recent trends on the development ofphotobiological processes and photobioreactors for the improvement of hydrogen production [J].International Journal of Hydrogen Energy,2010,35:10218-10238.
    [43] S.A. Miron, M.C.C. Garcia, F.G. Camacho, et al. Growth and characterization of microalgalbiomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture [J].Enzyme and Microbial Technology,2002,31:1015-1023.
    [44] K. Aslan, U. Gündüz, M. Yücel, et al. Substrate consumption rates for hydrogen production byRhodobacter sphaeroides in a column photobioreactor [J]. Progress in Industrial Microbiology,1999,35:103-113.
    [45] M. Yetis, U. Gündüz, I. Eroglu, et al. Photoproduction of hydrogen from sugar refinerywastewater by Rhodobacter sphaeroides OU001[J]. International Journal of Hydrogen Energy,2000,25(11):1035-1041.
    [46] B. Zabut, K. El-Kahlout, M. Yücel, et al. Hydrogen gas production by combined systems ofRhodobacter sphaeroides OU001and Halobacterium salinarum in a photobioreactor [J].International journal of hydrogen energy,2006,31(11):1553-1562.
    [47] E. Ero lu, U. Gündüz, M. Yücel, et al. Photobiological hydrogen production by using olive millwastewater as a sole substrate source [J]. International Journal of Hydrogen Energy,2004,29(2):163-171.
    [48] B.N. Wang, C.F. Yang, C.M. Lee. The factors influencing direct photohydrogen production andanaerobic fermentation hydrogen production combination bioreactors [J]. International Journalof Hydrogen Energy,2011,36(21):14069-14077.
    [49] C.U. Ugwa, H. Aoyagi, H. Uchiyama. Photobioreactors for mass cultivation of algae [J].Bioresource Technology,2008,99:4021-4028.
    [50] X.Y. Shi, H.Q. Yu. Continuous production of hydrogen from mixed volatile fatty acids withRhodopseudomonas Capsulate [J]. International Journal of Hydrogen Energy.2006,31:1641-1647.
    [51] J.G. Liu, V.E. Bukatin, A.A. Tsygankov. Light energy conversion into H2by Anabaenavariabilis mutant PK84dense cultures exposed to nitrogen limitations [J]. International Journalof Hydrogen Energy,2006,31:1591-1596.
    [52]张川,廖强,朱恂,等.传质特性对光纤生物制氢反应器性能的影响[J].工程热物理学报.2009,30(11):1931-1933.
    [53] C.Y. Chen, J.S. Chang. Enhancing phototropic hydrogen production by solid-carrier assistedfermentation and internal optical-fiber illumination [J]. Process Biochemistry,2006,41:2041-2049.
    [54] C.Y. Chen, C.M. Lee, J.S. Chang. Feasibility study on bioreactor strategies for enhancedphotohydrogen production from Rhodopseudomonas palustris WP3-5using optical-fiber-assisted illumination systems [J]. International Journal of Hydrogen Energy,2006,31,2345-2355.
    [55] C.Y. Chen, C.M. Lee, J.S. Chang. Hydrogen production by indigenous photosyntheticbacterium Rhodopseudomonas palustris WP3-5using optical fiber-illuminatingphotobioreactors [J]. Biochemical Engineering Journal,2006,32:33-42.
    [56] C.Y. Chen, K.L. Yeh, Y.C. Lo, et al. Engineering strategies for the enhanced photo-H2production using effluents of dark fermentation processes as substrate [J]. International Journalof Hydrogen Energy,2010,35:13356-13364.
    [57] S. Fouchard, J. Pruvost, J. Legrand. Investigation of H2production by microalgae in afully-controlled photobioreactor [J]. International Journal of Hydrogen Energy,2008,33:3302-3310.
    [58] A.P. Carvalho, L.A. Meireles, F.X. Malcata. Microalgal reactors: a review of enclosed systemdesigns and performances [J]. Biotechnology progress,2006,22(6):1490-1506.
    [59] M. Janssen, J. Tramper, L.R. Mur, et al. Enclosed outdoor photobioreactors: Light regime,photosynthetic efficiency, scale‐u p, and future prospects[J]. Biotechnology andBioengineering,2002,81(2):193-210.
    [60] S. Hoekema, M. Bijmans, M. Janssen, et al. A pneumatically agitated flat-panel photobioreactorwith gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfurbacterium [J]. International Journal of Hydrogen Energy,2002,27:1331-1338.
    [61] T. Kondo, M. Arakawa, T. Wakayama, et al. Hydrogen production by combining two types ofphotosynthetic bacteria with different characteristics [J]. International Journal of HydrogenEnergy,2002,27:1303-1308.
    [62] S. Hoekema, R.D. Douma, M. Janssen, et al. Controlling light-use by Rhodobacter capsulatuscontinuous cultures in a flat-panel photobioreactor [J]. Biotechnology and bioengineering,2006,95(4):613-626.
    [63] K. Zhang, S. Miyachi, N. Kurano. Evaluation of a vertical flat-plate photobioreactor for outdoorbiomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiationand cell concentration on the biomass productivity and irradiation utilization efficiency [J].Applied Microbiology and Biotechnology,2001,55:428-433.
    [64] M.R. Tredici, P. Carlozzi, G.C. Zittelli, et al. A vertical alveolar panel (VAP) for outdoor masscultivation of microalgae and cyanobacteria [J]. Bioresoure Technology,1991,38:153-159.
    [65] M. Iqbal, D. Grey, F. Stepan-Sarkissian, et al. A flat-sided photobioreactor for continuousculturing microalgae [J]. Aquacultural Engineering,1993,12:183-190.
    [66] J.J. Gilbert, R. Subhabrata, D. Das. Hydrogen production using Rhodobacter sphaeroides (O.U.001) in a flat panel rocking photobioreactor [J]. International Journal of Hydrogen Energy,2011,36:3434-3441.
    [67] C. Posten. Design principles of photo-bioreactors for cultivation of microalgae [J]. Engineeringin Life Sciences,2009,9:165-77.
    [68] A.H. Scragg, A.M. Illman, A. Carden, et al. Growth of microalgae with increased calorificvalues in a tubular bioreactor [J]. Biomass and Bioenergy,2002,23(1):67-73.
    [69] P. Carlozzi, B. Pushparaj, A. Degl’Innocenti, et al. Growth characteristics ofRhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, andinvestigation on photosynthetic efficiency [J]. Applied microbiology and biotechnology,2006,73(4):789-795.
    [70] C.U. Ugwu, J.C. Ogbonna, H. Tanaka. Improvement of mass transfer characteristics andproductivities of inclined tubular photobioreactors by installation of internal static mixers [J].Applied microbiology and biotechnology,2002,58(5):600-607.
    [71] M. Janssen, J. Tramper, L.R. Mur, et al. Enclosed outdoor photobioreactors: Light regime,photosynthetic efficiency, scale-up, and future prospects [J]. Biotechnology and Bioengineering,2002,81(2):193-210.
    [72] M. Tredici, G. Zittelli, J. Benemann. A tubular integral gas exchange photobioreactor forbiological hydrogen production [J]. BioHydrogen,1999:391-401.
    [73] J. Gebicki, M. Modigell, M. Schumacher, et al. Development of photobioreactors foranoxygenic production of hydrogen by purple bacteria [J]. Chemical Engineering Transactions,2009,18:363-366.
    [74] M. Morita, Y. Watanable, H. Saiki. Investigation of photobioreactor design for enhancing thephotosynthetic productivity of microalgae [J]. Biotechnology and Bioengineering,2000,69:693-698.
    [75] Y.K. Lee, S.Y. Ding, C.S. Low, et al. Design and performance of an α-type tubularphotobioreactor for mass cultivation of microalgae [J]. Journal of Applied Phycology,1995,7:47-51.
    [76] K.Y. Show, D.J. Lee, J.S. Chang. Bioreactor and process design for biohydrogen production.Bioresource Technology [J],2011,102:8524-8533.
    [77] M. Yang, R. Agarwal, G.R. Fleming. The mechanism of energy transfer in the antenna ofphotosynthetic purple bacteria [J]. Journal of Photochemistry and Photobiology A: Chemistry,2001,142:107-119.
    [78] E. Nakada, Y. Asada, T. Arai, et al. Light Penetration into Cell Suspensions of PhotosyntheticBacteria and Relation to Hydrogen Production [J]. Journal of Fermentation and Bioengineering,1995,80:53-57.
    [79] X. Tian, Q. Liao, X. Zhu, et al. Characteristics of a biofilm photobioreactor as applied tophoto-hydrogen production [J]. Bioresource Technology,2010,101:977-983.
    [80] T. Wakayama, A. Toriyama, T. Kawasugi, et al. Photohydrogen production usingphotosynthetic bacterium Rhodobacter sphaeroides RV: simulation of the light cycle of naturalsunlight using an artificial source [J]. Biohydrogen. Plenum Press, New York, NY,1998:375-381.
    [81] N.J. Kim, J.K. Lee, C.G. Lee. Pigment reduction to improve photosynthetic productivity ofRhodobacter sphaeroides [J]. Journal of microbiology and biotechnology,2004,14(3):442-449.
    [82] P. Carlozzi, M. Lambardi. Fed-batch operation for bio-H2production by Rhodopseudomonaspalustris (strain42OL)[J]. Renewable Energy,2009,34:2577-2584.
    [83]杨素萍,赵春贵,刘瑞田,等.沼泽红假单胞菌乙酸光合放氢研究[J].生物工程学报.2002,18(4):486-491.
    [84] Y.Z. Wang, Q. Liao, X. Zhu, et al. Characteristics of hydrogen production and substrateconsumption of Rhodopseudomonas palustris CQK01in an immobilized-cell photobioreactor[J]. Bioresource Technology,2010,101:4034-4041.
    [85] C.H. Sasikala, C.H.V. Ramana, P.R. Rao. Regulation of simultaneous hydrogenphotoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U.001[J].International Journal of Hydrogen Energy,1995,20:123-126.
    [86] R.Y. Li, T. Zhang, H.H.P. Fang. Characteristics of a phototrophic sludge producing hydrogenfrom acetate and butyrate [J]. International Journal of Hydrogen Energy,2008,33:2147-2155.
    [87] H.H.P. Fang, H. Liu, T. Zhang. Phototrophic hydrogen production from acetate and butyrate inwastewater [J]. International Journal of Hydrogen Energy,2005,30:785-793.
    [88] K. Skjanes, G. Knutsen, T. Kallqvist, et al. H2production from marine and freshwater speciesof green algae during sulfur starvation and considerations for bioreactor design [J].International Journal of Hydrogen Energy,2008,33:511-521.
    [89] B.R.S. Genthner, D.J. Wall. Ammoniym uptake in Rhodopseudomonas capsulata [J]. Archivesof microbiology,1985,141(3):219-224.
    [90] M.J. Barbosa, J.M.S. Rocha, J. Tramper, et al. Acetate as a carbon source for hydrogenproduction by photosynthetic bacteria [J]. Journal of Biotechnology,2001,85:25-33.
    [91] C.Y. Chen, W.B. Lu, C.H. Liu, et al. Improved phototrophic H2production withRhodopseudomonas palustris WP3-5using acetate and butyrate as dual carbon substrates [J].Bioresource Technology,2008,99:3609-3616.
    [92]张全国,范振山,王艳锦,等.猪粪污水光合细菌制氢的影响因素[J].化工学报,2004,55(10):85-90.
    [93]孙琦,徐向阳,焦杨文.光合细菌产氢条件的研究[J].微生物学报,1995,35(1):65-73.
    [94] Q. Liao, Y.J. Wang, Y.Z. Wang, et al. Formation and hydrogen production of photosyntheticbacterial biofilm under various illumination conditions [J]. Bioresource Technology,2010,101:5315-5324.
    [95] C. Zhang, X. Zhu, Q. Liao, et al. Performance of a groove-type photobioreactor for hydrogenproduction by immobilized photosynthetic bacteria [J]. International Journal of HydrogenEnergy,2010,35:5284-5292.
    [96] L. Hakobyan, L. Gabrielyan, A. Trchounian. Ni (II) and Mg (II) ions as factors enhancingbiohydrogen production by Rhodobacter sphaeroides from mineral springs [J]. InternationalJournal of Hydrogen Energy,2012,37:7482-7486.
    [97] E. Eroglu, A. Melis. Photobiological hydrogen production: Recent advances and state of the art[J]. Bioresource Technology,2011,102:8403-8413.
    [98] L. Hakobyan, L. Gabrielyan, A. Trchounian. Bio-hydrogen production and the F0F1-ATPaseactivity of Rhodobacter sphaeroides: Effects of various heavy metal ions [J]. InternationalJournal of Hydrogen Energy,2012,37(23):17794-17800.
    [99] Y.Z. Tao, Y.L. He, Y.Q. Wu, et al. Characteristics of a new photosynthetic bacterial strain forhydrogen production and its application in wastewater treatment [J]. International Journal ofHydrogen Energy,2008,33:963-973.
    [100] R. Lakshmi, H. Polasa. Influence of nitrogen source on hydrogen generation by aphotosynthetic bacterium [J]. World Journal of Microbiology and Biotechnology,1991,7(6):619-621.
    [101] E.H. Burrows, F.W.R. Chaplen, R.L. Ely. Optimization of media nutrient composition forincreased photofermentative hydrogen production by Synechocystis sp. PCC6803[J].International Journal of Hydrogen Energy,2008,33:6092-6099.
    [102]杨素萍,赵春贵,曲音波,等.铁和镍对光合细菌生长和产氢的影响[J].微生物学报.2003;43(2):257-263.
    [103] B.F. Liu, N.Q. Ren, J. Ding, et al. The effect of Ni2+, Fe2+and Mg2+concentration onphoto-hydrogen production by Rhodopseudomonas faecalis RLD-53[J]. International Journalof Hydrogen Energy,2009,34(2):721-726.
    [104] G. Kars, U. Gunduz, M. Yucel, et al. Hydrogen production and transcriptional analysis of nifD,nifK and hupS genes in Rhodobacter sphaeroides O.U.001grown in media with differentconcentrations of molybdenum and iron [J]. International Journal of Hydrogen Energy,2006,31:1536-1544.
    [105] X.Y. Shi, H.Q. Yu. Continuous production of hydrogen from mixed volatile fatty acids withRhodopseudomonas capsulata [J]. International Journal of Hydrogen Energy,2006,31:1641-1647.
    [106] N.Q. Ren, B.F. Liu, G.X. Zheng, et al. Strategy for enhancing photo-hydrogen production yieldby repeated fed-batch cultures [J]. International Journal of Hydrogen Energy,2009,34:7579-7584.
    [107] B. Mandal, K. Nath, D. Das. Improvement of biohydrogen production under decreased partialpressure of H2by Enterobacter cloacae [J]. Biotechnology Letters,2006,28:831-835.
    [108] D.H. Kim, S.K. Han, S.H. Kim, et al. Effect of gas sparging on continuous fermentativehydrogen production [J]. International Journal of Hydrogen Energy,2006,31:2158-2169.
    [109] O. Mizuno, R. Dinsdale, F.R. Hawkes, et al. Enhancement of hydrogen production fromglucose by nitrogen gas sparging [J]. Bioresource Technology,2000,73:59-65.
    [110] B.F. Liu, N.Q. Ren, J. Ding, et al. Enhanced photo-H2production of R. faecalis RLD-53byseparation of CO2from reaction system [J]. Bioresource technology,2009,100(3):1501-1504.
    [111] Q. Liao, X.F. Qu, R. Chen, et al. Improvement of hydrogen production withRhodopseudomonas palustris CQK-01by Ar gas sparging [J]. International Journal ofHydrogen Energy,2012,37(20):15443-15449.
    [112]屈晓凡,廖强,朱恂,等.鼓泡式光生物制氢反应器中光合细菌的生长及产氢[J].科学通报,2011,35:006.
    [113] X. Zhu, X. Xie, Q. Liao, et al. Enhanced hydrogen production by Rhodopseudomonas palustrisCQK01with ultra-sonication pretreatment in batch culture [J]. Bioresource technology,2011,102(18):8696-8699.
    [114]谢学旺,朱恂,赵旭,等.超声波光生物制氢反应器启动及产氢特性[J].工程热物理学报,2010,33(2):305-307.
    [115] Y.Z. Wang, X.W. Xie, X. Zhu, et al. Hydrogen production by Rhodopseudomonas palustrisCQK01in a continuous photobioreactor with ultrasonic treatment [J]. International Journal ofHydrogen Energy,2012,37(20):15450-15457.
    [116] P. von Felten, H. Zurrer, R. Bachofen. Production of molecular hydrogen with immobilizedcells of Rhodospirillum rubrum [J]. Applied Microbiology and Biotechnology,1985,23(1):15-20.
    [117]张全国,荆艳艳,李鹏鹏,等.包埋法固定光合细菌技术对光合产氢能力的影响[J].农业工程学报,2008,24(4):190-193.
    [118] J. Fiβler, G.W. Kohring, F. Giffhorn. Enhanced hydrogen production from aromatic acids byimmobilized cells of Rhodopseudomonas palustris [J]. Applied microbiology andbiotechnology,1995,44(1):43-46.
    [119] A. Planchard, L. Mignot, T. Jouenne, et al. Photoproduction of molecular hydrogen byRhodospirillum rubrum immobilized in composite agar layer/microporous membrane structures[J]. Applied Microbiology and Biotechnology,1989,31:49-54.
    [120] L. Mignot, G.A. Junter, M. Labbe. A new type of immobilized-cell photobioreactor withinternal illumination by optical fibres [J]. Biotechnology techniques,1989,3(5):299-304.
    [121] A. Yamada, H. Takano, J.G. Burgess, et al. Enhanced hydrogen production by a marinephotosynthetic bacterium, Rhodobacter marinus, immobilized onto light-diffusing optical fibers[J]. Journal of Marine Biotechnology,1996,4:23-27.
    [122] X. Tian, Q. Liao, W. Liu, et al. Photo-hydrogen production rate of a PVA-boric acid gel granulecontaining immobilized photosynthetic bacteria cells [J]. International Journal of HydrogenEnergy,2009,34:4708-4717.
    [123]廖强,巴淑丽,朱恂,等.固定化细胞的制备以及性能实验研究[J].工程热物理学报,2007,28(z2):115-117.
    [124]廖强,王永忠,田鑫,等.固定化光合细菌光生物制氢填充床产氢特性研究[J].工程热物理学报,2009,30(1):150-152.
    [125] H. Zhu, T. Suzuki, A.A. Tsygankov, et al. Hydrogen production from tofu wastewater byRhodobacter sphaeroides immobilized agar gels. International Journal of Hydrogen Energy,1999,24:305-310.
    [126]田鑫,廖强,张攀,等.光合细菌生物膜反应器葡萄糖降解及产氢特性实验[J].化工学报,2008,59(9):2346-2350.
    [127]田鑫,廖强,张攀,等.生物膜光生物反应器启动及产氢特性[J].工程热物理学报,2008,29(10):1749-1751.
    [128] P.C. Hallenbeck, J.R. Benemann. Biological hydrogen production: fundamentals and limitingprocesses [J]. International Journal of Hydrogen Energy,2002,27:1185-1193.
    [129] A.A. Tsygankov, Y. Hirata, Y. Asada, et al. Immobilization of the purple non-sulfur bacteriumRhodobacter sphaeroides on glass surfaces [J]. Biotechnology Techniques,1993,7:283-286.
    [130] H.Y. Ren, B.F. Liu, J. Ding, et al. Continuous photo-hydrogen production in anaerobic fluidizedbed photo-reactor with activated carbon fiber as carrier [J]. RSC Advances,2012,2:5531-5535.
    [131] G.J. Xie, B.F. Liu, D.F. Xing, et al. Photo-hydrogen production by Rhodopseudomonas faecalisRLD-53immobilized on the surface of modified activated carbon fibers [J]. RSC Advances,2012,2:2225-2228.
    [132] G.J. Xie, B.F. Liu, J. Ding, et al. Hydrogen production by photo-fermentative bacteriaimmobilized on fluidized bio-carrier [J]. International Journal of Hydrogen Energy,2011,36:13991-13996.
    [133]张全国,荆艳艳,周雪花,等.吸附法固定光合细菌技术产氢能力的研究[J].农业工程学报,2008,24(9):199-202.
    [134] D.N. Tekucheva, T.V. Laurinavichene, M. Seibert, et al. Immobilized purple bacteria forlight-driven H2production from starch and potato fermentation effluents [J]. BiotechnologyProgress,2011,27:1248-1256.
    [135] J.W. Costerton, P.S. Stewart, E.P. Greenberg. Bacterial biofilms: A common cause of persistentinfections [J]. Science,1999,284:1318-1322.
    [136]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].中国建筑工业出版社,2000年.
    [137] G.O. Toole, H.B. Kaplan, R. Kolter. Biofilm formation as microbial development [J].Microbiology,2000,54:49-79.
    [138] Y.J. Wang, Q. Liao, Y.Z. Wang, et al. Effects of flow rate and substrate concentration on theformation and H2production of photosynthetic bacterial biofilms [J]. Bioresource Technology,2011,102:6902-6908.
    [139] Q. Liao, Y.J. Wang, Y.Z. Wang, et al. Formation and hydrogen production of photosyntheticbacterial biofilm under various illumination conditions [J]. Bioresource Technology,2010,101:5315-5324.
    [140] A.P. Hunt, J.D. Parry. The effect of substratum roughness and river flow rate on thedevelopment of a freshwater biofilm community [J]. Biofouling,1998,124:287-303.
    [141] T.C. Voice, D. Pak, X. Zhao, et al. Biological activated carbon in fluidized bed reactors for thetreatment of groundwater contaminated with volatile aromatic hydrocarbons [J]. WaterResearch,1992,26(10):1389-1401.
    [142]蔡建安,李俊,钟梅英.三相流化床中混合载体的协同作用[J].环境科学,1995,16(6):50-52.
    [143] S. Ebrahimi, C. Picioreanu, J.B. Xavier, et al. Biofilm growth pattern in honeycomb monolithpackings: Effect of shear rate and substrate transport limitations [J]. Catalysis today,2005,105(3):448-454.
    [144] S.M. Soini, K.T. Koskinen. Effects of fluid-flow velocity and water quality on planktonic andsessile microbial growth in water hydraulic system [J]. Water Research,2002,36:3812-3820.
    [145] A. Roosjen, N.P. Boks, H.C. van der Mei, et al. Influence of shear on microbial adhesion toPEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flowchamber [J]. Colloids and Surfaces B: Biointerfaces,2005,46(1):1-6.
    [146] R.F. Mueller. Bacterial transport and colonization in low nutrient environments [J]. WaterResearch,1996,30(11):2681-2690.
    [147] D. De Beer, P. Stoodley, F. Roe, et al. Effects of biofilm structures on oxygen distribution andmass transport [J]. Biotechnology and Bioengineering,1994,43(11):1131-1138.
    [148] T.C. Zhang, P.L. Bishop. Density, porosity, and pore structure of biofilms [J]. Water Research,1994,28(11):2267-2277.
    [149] E.J. LaMotta. Internal diffusion and reaction in biological films [J]. Environmental Science&Technology,1976,10(8):765-769.
    [150] L. Benefield, F. Molz. Mathematical simulation of a biofilm process [J]. Biotechnology andBioengineering,1985,27(7):921-931.
    [151] L.S Fan, R. Leyva-Ramos, K.D. Wisecarver, et al. Diffusion of phenol through a biofilm grownon activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor [J].Biotechnology and Bioengineering,1990,35(3):279-286.
    [152] H. Horn, D.C. Hempel. Modeling mass transfer and substrate utilization in the boundary layerof biofilm systems [J]. Water Science and Technology,1998,37(4):139-147.
    [153] B. Atkinson, H.W. Towler. The significance of microbial film in fermenters [J]. AdvancedBiochemical Engeering,1974,3:221-277.
    [154] H. Beyenal, Z. Lewandowski. Modeling mass transport and microbial activity in stratifiedbiofilms [J]. Chemical Engineering Science,2005,60:4337-4348.
    [155] V. Saravanan, T. R. Sreekrishnan. Modelling anaerobic biofilm reactors-A review [J]. Journal ofEnvironmental Management,2006,81:1-18.
    [156] S.J. Ergas, L. Shumway, M.W. Fitch, et al. Membrane process for biological treatment ofcontaminated gas streams [J]. Biotechnology and Bioengineering,1999,63(4):431-441.
    [157] C. Picioreanu, J.U. Kreft, M.C.M. van Loosdrecht. Particle-based multidimensionalmultispecies biofilm model [J]. Applied and Environmental Microbiology,2004:3024-3040.
    [158]戚以政,汪叔雄.生化反应动力学与反应器[M].北京:化学工业出版社,2005.
    [159] G.J. Xie, B.F. Liu, J. Ding, et al. Enhanced photo-H2production by Rhodopseudomonas faecalisRLD-53immobilization on activated carbon fibers [J]. Biomass and Bioenergy,2012,44:122-129.
    [160] B.F. Liu, G.J. Xie, W.Q. Guo, et al. Optimization of photo-hydrogen production by immobilizedRhodopseudomonas faecalis RLD-53[J]. Natural Resources,2011,2(1):1-7.
    [161] Z. Lewandowski. Structure and function of biofilms [J]. Biofilms: recent advances in theirstudy and control. Amsterdam: Harwood Academic Publishers,2000:1-17.
    [162] R.M. Donlan, R.M. Donlan. Biofilms: microbial life on surfaces [J]. Emerging infectiousdiseases,2002,8(9):881.
    [163] M.Y. Chen, D.J. Lee, J.H. Tay. Distribution of extracellular polymeric substances in aerobicgranules [J]. Applied Microbiology and Biotechnology,2007,73(6):1463-1469.
    [164] S.S. Adav, D.J. Lee, J.H. Tay. Extracellular polymeric substances and structural stability ofaerobic granule [J]. Water Research,2008,42(6-7):1644.
    [165] S.S. Adav, M.Y. Chen, D.J. Lee, et al. Degradation of phenol by aerobic granules and isolatedyeast Candida tropicalis [J]. Biotechnology and Bioengineering,2007,96(5):844-852.
    [166] S.S. Adav, M.Y. Chen, D.J. Lee, et al. Degradation of phenol by Acinetobacter strain isolatedfrom aerobic granules [J]. Chemosphere,2007,67(8):1566-1572.
    [167] S.S. Adav, C.H. Chang, D.J. Lee. Hydraulic characteristics of aerobic granules using sizeexclusion chromatography [J]. Biotechnology and Bioengineering,2008,99(4):791-799.
    [168] S.S. Adav, D.J. Lee, N.Q. Ren. Biodegradation of pyridine using aerobic granules in thepresence of phenol [J]. Water Research,2007,41(13):2903-2910.
    [169] S.S. Adav, D.J. Lee, K.Y. Show, et al. Aerobic granular sludge: recent advances [J].Biotechnology Advances,2008,26(5):411-423.
    [170] Z.P. Zhang, S.S. Adav, K.Y. Show, et al. Characteristics of rapidly formed hydrogen-producinggranules and biofilms [J]. Biotechnology and Bioengineering,2008,101(5):926-936.
    [171] Z.C. Chiu, M.Y. Chen, D.J. Lee, et al. Oxygen diffusion and consumption in active aerobicgranules of heterogeneous structure [J]. Applied Microbiology and Biotechnology,2007,75(3):685-691.
    [172] Z.C. Chiu, M.Y. Chen, D.J. Lee, et al. Oxygen diffusion in active layer of aerobic granule withstep change in surrounding oxygen levels [J]. Water Research,2007,41(4):884-892.
    [173] S.S. Adav, D.J. Lee, J.H. Tay. Activity and structure of stored aerobic granules [J].Environmental Technology,2007,28(11):1227-1235.
    [174] S.S. Adav, D.J. Lee. Extraction of extracellular polymeric substances from aerobic granule withcompact interior structure [J]. Journal of Hazardous Materials,2008,154(1-3):1120-1126.
    [175] S.S Adav, J.C.T. Lin, Z Yang, et al. Stereological assessment of extracellular polymericsubstances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescenceexperiments [J]. Biotechnology Advances,2010,28(2):255-280.
    [176] D.J. Lee, Y.Y. Chen, K.Y. Show, et al. Advances in aerobic granule formation and granulestability in the course of storage and reactor operation [J]. Biotechnology advances,2010,28(6):919-934.
    [177] Z. Yang, X.F. Peng, M.Y. Chen, et al. Intra-layer flow in fouling layer on membranes [J].Journal of Membrane Science,2007,287(2):280-286.
    [178] L. Liu, G.P. Sheng, W.W. Li, et al. Cultivation of aerobic granular sludge with a mixedwastewater rich in toxic organics [J]. Biochemical Engineering Journal,2011,57:7-12.
    [179] Q Liao, Y.J. Wang, Y.Z. Wang, et al. Two-dimension mathematical modeling of photosyntheticbacterial biofilm growth and formation [J]. International Journal of Hydrogen Energy,2012,37(20):15607-15615.
    [180] Q Liao, D.M. Liu, D.D. Ye, et al. Mathematical modeling of two-phase flow and transport in animmobilized-cell photobioreactor [J]. International Journal of Hydrogen Energy,2011,36(21):13939-13948.
    [181]刘大猛,廖强,朱恂,等.固定化包埋细胞颗粒填充床光生物制氢反应器内的多相传输模型[J].自然科学进展,2009,19(12):1386-1793.
    [182] Y.Z. Wang, Q. Liao, X. Zhu, et al. Effect of culture conditions on the kinetics of hydrogenproduction by photosynthetic bacteria in batch culture [J]. International Journal of HydrogenEnergy,2011,36(21):14004-14013.
    [183]王永忠.固定化光合细菌光生物制氢反应器传输与产氢特性[D].重庆大学博士学位论文.2008.
    [184]屈晓凡.微小空间内光合细菌产氢行为及鼓泡强化产氢实验研究[D].重庆大学博士学位论文.2011.
    [185]赵长伟,马沛生,朱春英等.葡萄糖水溶液扩散系数的测定与关联[J].化工学报,2005,56(1):1-5.
    [186] Y.K. Oh, E.H. Seol, M.S. Kim, et al. Photoproduction of hydrogen from acetate by achemoheterotrophic bacterium Rhodopseudomonas palustris P4[J]. International Journal ofHydrogen Energy,2004,29(11):1115-1121.
    [187] K. Takizawa, J.A. Cruz, A. Kanazawa, et al. The thylakoid proton motive force in vivo.Quantitative, non-invasive probes, energetics, and regulatory consequences of light-inducedpmf [J]. Biochimica et Biophysica Acta,2007,1767(10):1233-1244.
    [188] T. Kondo, T. Wakayama, J. Miyake. Efficient hydrogen production using a multi-layeredphotobioreactor and a photosynthetic bacterium mutant with reduced pigment [J]. InternationalJournal of Hydrogen Energy,2006,31(11):1522-1526.
    [189] J.Y. An, B.W. Kim. Biological desulfurization in an optical-fiber photobioreactor using anautomatic sunlight collection system [J]. Journal of Biotechnology,2000,80(1):35-44.
    [190] K.H. Lee, B.W. Kim. Enhanced microbial removal of H2S using Chlorobium in an optical-fiberbioreactor [J]. Biotechnology Letters,1998,20(5):525-529.
    [191] T. Matsunaga, H. Takeyama, H. Sudo, et al. Glutamate production from CO2by MarineCyanobacterium Synechococcus sp using a novel biosolar reactor employing light-diffusingoptical fibers [J]. Applied Biochemistry and Biotechnology,1991,28(1):157-167.
    [192] R.L. Taylor, J. Verran, G.C. Lees, et al. The influence of substratum topography on bacterialadhesion to polymethyl methacrylate [J]. Journal of Materials Science: Materials in Medicine,1998,9(1):17-22.
    [193] R.D. Boyd, J. Verran, M.V. Jones, et al. Use of the atomic force microscope to determine theeffect of substratum surface topography on bacterial adhesion [J]. Langmuir,2002,18(6):2343-2346.
    [194] T.R. Scheuerman, A.K. Camper, M.A. Hamilton. Effects of substratum topography on bacterialadhesion [J]. Journal of Colloid and Interface Science,1998,208(1):23-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700