用户名: 密码: 验证码:
黄东海上升流机制数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以国家海洋局第一海洋研究所发展的MASNUM (Laboratory of MArine Science and NUmerical Modeling)海浪-潮流-环流耦合模式为主要工具,结合973环流调查、国家126专项调查、部分908专项调查等数据及卫星遥感资料,通过资料分析、数值模拟和数值试验等手段,研究了黄海、东海沿岸和海南西侧海域上升流的形成机制。着重阐述了上升流的锋生机制和潮运动诱发上升流的机理,丰富了前人“潮致上升流”机制的内涵。
     提出我国强潮海区夏季上升流的斜压“潮生机制”。研究发现,在斜压海洋环境下,潮混合对于我国沿岸强潮海区的垂向环流(包括上升流)具有深刻影响,甚至是某些海区沿岸上升流的首要诱发因子。该机制与大洋东边界上升流机制不同,其根本原因在于我国陆架海的强潮特性。黄东海作为世界上潮能耗散最强烈的陆架海区之一,其底边界耗散的大量潮能通过向湍动能转化引发强烈的混合,在近岸的陆坡上形成陆架锋(亦称潮汐锋)。锋面的浅水一侧垂向充分混合,在太阳辐射等作用下具有较高的温度;在深水一侧,上层显著层化,深层则以低温高密为特点。所以,陆架锋一旦形成,由于其两侧底层的密度差异甚强,相应的斜压压力梯度会驱动产生锋区次级环流,在锋区的浅水一侧出现明显的上升流分支。该机制尤其适用于潮混合强烈的黄海沿岸、长江口外等海区。受台湾暖流等多种因素影响,浙江沿岸上升流机制更复杂些。利用该机制,本文在海南西侧海区发现了一处夏季上升流区。
     上述夏季上升流机制与潮混合形成的温度锋相联系,而冬季东海沿岸的盐度锋同样可诱导上升流。温度锋和盐度锋均归结为密度锋,故这两种上升流可统称为锋生上升流。
     潮运动可通过斜压和正压两种过程诱发沿岸上升流。斜压机制上面已给出。在摩擦等非线性作用下,正压潮流经过复杂地形时的“调整”过程(tidal rectification)产生三维余环流:在黄海和浙江沿岸,表层的水平余流往往表现为强的离岸运动,而底层水平余流则由深水区向岸运动,在沿岸海区诱导出上升运动。在长江口外海,由于缺少海岸的支撑,正压潮致余流通过底部爬坡过程产生上升流。可见,与潮运动相联系的斜压和正压过程均可诱发上升流,潮对于我国沿岸上升流的贡献在过去很可能被低估了。
     1.长江口外和浙江沿岸的夏季上升流
     潮、台湾暖流、长江冲淡水是该海区上升流产生的主要驱动力。
     在长江口外海区,潮混合是诱发上升流的主要因子;与长江冲淡水相联系的斜压过程对上升流也有重要作用,其贡献约占三分之一;台湾暖流对上升流也有影响。在浙江沿岸,潮和台湾暖流均为上升流的重要诱因。底层台湾暖流穿越等深线向岸爬升从而产生上升流;潮运动通过斜压与正压过程产生的上升流均呈带状分布。
     地形是研究海区上升流形成的重要前提条件。潮汐锋的出现由地形和潮流振幅共同决定,其位置可通过参数log( H U t3)诊断。
     与大洋东边界流的上升流海区相比,浙江沿岸不存在风生上升流的最佳地形条件。风造成的离岸水体输运有可能通过弱化台湾暖流的爬坡而对上升流造成不利影响。观测得到的浙江沿岸海表低温带一般都不是紧贴海岸的,这与常见的风生埃克曼输运造成的冷水分布特征不同。
     2.浙江沿岸的冬季上升流
     冬季,浙江沿岸存在显著的锋面上升流。与夏季不同的是,锋面两侧的密度差异来自盐度而不是温度。冬季随北风南下的长江冲淡水被限制在狭窄的贴岸范围内,在沿岸的低盐水与外海水之间形成显著的盐度锋。盐度锋与夏季潮混合锋诱发上升流的机理是类似的。
     冬季北风和台湾暖流通过改变盐度锋面的强弱对上升流间接产生影响,这种间接影响与它们各自对上升流的直接作用恰相反。北风是驱动长江冲淡水南下的主要动力,故有利于锋面上升流产生,这与埃克曼输运作用相反;台湾暖流与闽浙沿岸流反向,不利于冲淡水南下,因而对锋面上升流的产生有负面作用,这与海流的爬坡作用相反。
     3.黄海上升流和夏季表层冷水斑块黄海具有夏季潮汐锋产生的有利条件。在黄海冷水团的周围,模拟得到了水平呈带状分布的锋面上升流区,其位置与诊断得到的潮汐锋面相当吻合。
     夏季黄海表层存在若干孤立的冷水斑块。两种因素促使冷水斑块的出现:上升流和垂向混合效应。几乎所有黄海冷水斑块都伴随着强至海表的上升流,意味着上升流对表层冷水的形成具有直接贡献;同时,上升流沿底坡将冷水由深层携带至浅层,然后通过混合作用影响到海表。
     表层冷水斑块的出现具有高度的“地点选择性”,除了苏北浅滩外侧和海州湾以东的冷水以外,其它多出现在半岛顶端的外凸岸线附近。本研究用斜压和正压潮致上升流的观点对此现象做出解释。一方面,在半岛顶端的外凸岸线附近,潮流形成了水平流速的极大值,强混合使得潮汐锋和锋面上升流相应增强;另一方面,正压M2分潮的数值模拟结果表明,多数情况下半岛顶端的垂向余环流是底层向岸、表层离岸的,且在外凸岸线附近形成上升流中心。这可用潮流绕半岛运动的离心力效应来解释(Garrett and Loucks, 1976)。
     4.海南西(南)侧上升流的发现
     将在黄东海研究中提出的潮混合诱发上升流的机制应用于北部湾,在海南岛西(南)侧水域发现了一个新的夏季上升流区。该上升流的存在已经得到了卫星遥感和现场调查的部分证实。
     夏季北部湾盛行偏南季风,相应的埃克曼输运在海南西侧产生的是下降流。研究发现,海南西侧是一个潮流以及潮混合的高值区,在适合的底坡地形上所产生的锋面上升流抵消了风生下降流。在气候平均意义上,海南西侧表现为上升流,并有稳定的海表低温区与之伴随。在静风条件下,上升流约比气候状态增强20%.
The coastal upwelling in the Yellow Sea (YS), East China Sea (ECS), and the western Hainan waters is numerically studied by using the MASNUM (MArine Science and NUmerical Modeling) wave-tide-circulation coupled model, in combination with analysis of the field data obtained from the 973 circulation project, national 126 project, and 908 project, and satellite remotely sensed data. On the basis of successful simulation of the general circulation, numerical experiments have been carried out to explore the formation mechanism of the upwelling, with foci on the frontal upwelling mechanism and the role of tidal movements in inducing upwelling. The study provides new understanding for the traditional mechanism of“tidally induced upwelling (TIU)”.
     A mechanism of TIU in baroclinic mode is proposed in some sea regions with strong tides in China. It is suggested that tidal mixing exerts profound influences on the vertical circulation, as well as coastal upwelling, in some China seas with strong tides, and even serves as the primary inducement for the coastal upwelling. The difference between this mechanism and those responsible for the main eastern boundary upwelling in the world stems from the characteristic of strong tide in China shelf seas. The YS and ECS are among the shelf seas which have the highest tidal energy dissipation rate. The huge tidal energy dissipated in the bottom boundary layer transforms into turbulence, resulting in violent verical mixing which leads to tidal mixing front (TMF) straddling on the sloping bottom in coastal waters. The tidal turbulence is usually strong enough on the shallow side of TMF to homogenize the water from the bottom to the surface, and the whole water column can be fully heated by solar radiation, attaining low density. At the other side of the front, the upper ocean is stratified, and the deep water remains cool and dense. Therefore considerable baroclinic pressure gradient force sets up due to density difference across the TMF, and stimulates a cross-frontal, secondary circulation with apparent upwelling branch occurring usually on the shallow side of the front. Such a mechanism is particularly applicable in the YS, the waters off Yangtze River estuary (YRE) and the western coast of Hainan Island, where strong tidal movement can be found. In the coastal waters off Zhejiang, the upwelling mechanism is somewhat complex because of the relatively weak tidal signals and the influences of the Taiwan Warm Current (TWC). In this dissertation, a summertime upwelling is newly found off the western coast of Hainan by using the baroclinic mechanism of TIU.
     Similarly, the wintertime salinity front off the ECS coast also induces upwelling. The upwelling, induced by either the TMF in summer or the saliity front in winter, can be classified as“frontal upwelling”.
     This study identifies two upwelling mechanisms associated with tidal movements, the baroclinic and the barotropic mechanism. Besides the baroclinic processes which have been delineated above, upwelling and downwelling can also be induced by a tidal rectification process when barotropic tidal currents flow over complex bottom topography. The residual tidal currents (RTC), even in barotropic aspects, have three-dimensional structure. In the YS and Zhejiang coastal waters, the surface RTC tends to flow offshore while the bottom one moves inversely, thus upwelling is generated near the coast. Without the support from the land, the barotropic upwelling off YRE is produced by the naural uplifting when bottom current flows over bathymetric bumps.
     1. The summertime upwelling off YRE and Zhejiang coasts
     Tides, TWC, and Yangtze River diluted water (YRDW) are determained as the main inducements of the upwelling off YRE and Zhejiang coasts.
     In the local region off YRE, tidal mixing plays the the most important role in inducing upwelling, and the baroclinicity resulted from the YRDW also has direct and important effects with a contribution of about 30% to the local upwelling. In Zhejiang coastal waters, both tidal mixing and the encroachment of TWC onto the continent across isobaths are important causations of the upwelling. The TIU resulted from either baroclinic or barotropic process takes in a shape of belt.
     The existence of proper topography is a premise for the formation of upwelling, either in the case of TIU or the TWC-induced upwelling. A glimpse of the mathematic expression of the SH index, log( H U t3), reminds one the importance of topography in locating the TMF and, subsequently, the occurrence of frontal upwelling.
     Experimental results make it necessary to reconsider the role of wind in generating the coastal upwelling off Zhejiang coast. Winds may exert a negative influence on the upwelling by the offshore deflection of TWC, impairing its climbing along the sloping bottom. A tentative argument is proposed here that the Zhejiang coastal region is probably not an ideal sea region for wind-driven upwelling like Oregon or Peruvian coastal waters, and the observed low SST belt off Zhejing usually has a distance away from the land, rather than hugging closely to the coast like most cases in typical wind-driven upwelling area.
     2. The wintertime upwelling off Zhejiang coasts
     Frontal upwelling off Zhejiang coast is very clearly shown in numerical modeling in winter. Different from the summer case, it is the horizontal gradiet of salinity, rather than temperature, that leads to the formation of the front. In winter, the YRDW is confined within a narrow band off the coasts of Zhejiang and Fujian when the northerly monsoon is dominant in winter. The salinity front between the low salinity coastal water and open sea is quite strong, and a remarkable baroclinic pressure gradient sets up. Accordingly, upwelling will be driven by the similar mechanism to that associated with TMF in summer.
     Wind and TWC affect upwelling through altering the intensity of salinity front. The notherly wind plays positive role in enhancing upwelling for its driving the YRDW southward, while the net effects of TWC on upwelling are negative since its direction is opposite to that of the low salinity coastal current.
     3. The upwelling in Yellow Sea and the surface cold patches
     The numerical model produces systematic upwelling belts around the Yellow Sea Cold Water Mass (YSCWM). The highly coincidence between the upwelling belts and TMF in location shows the intrinsic physics of upwelling. As manifested by numerical experiments, the upwelling is mainly induced by tidal motions.
     Surface cold patches (SCPs) are often observed scattering around YSCWM, especially off the convex coastlines of peninsula tips. The formation mechanism of the SCPs is ascribed to both upwelling and vertical mixing. Almost all the SCPs are accompanied by upwelling strong enough to reach the sea surface, implying the direct contribution of upwelling to the generation of the SCPs. The cross-frontal ascending movement of deep water cools down the bottom of the water column in the frontal zone, and pure vertical mixing may continue to homogenize water column.
     Another interesting feature of the SCPs is the site-selectivity, meaning their occurrences off convex coastlines. The tidally induced upwelling, both in baroclinic and barotropic aspect, shed some lights on the physics of such site-selectivity. On the one hand, tidal currents tend to be particularly strong off the peninsula tips, resulting in high vertical mixing and, of course, strong TMF and the resultant frontal upwelling. On the other hand, the“centrifugal upwelling mechanism”suggested by Garrett and Loucks (1976) seems to be valid in the Yellow Sea. Numerical modeling indicates that in most cases, the RTC induced by barotropic M2 constituent flows onshore in the bottom layer and offshore in the upper layer, leading to upwelling concentrations off the convex coastlines.
     4. The detection of the upwelling off Hainan western (southwestern) coast
     A summertime upwelling region is newly detected off the western and southwestern coast of Hainan Island by applying the baroclinic TIU mechanism in the Gulf of Tonkin, and the existence of this upwelling has been partially verified by both remotely sensed SST climatology and the latest cruise observation.
     As a matter of fact, the prevailing wind in the Gulf of Tonkin is downwelling favorable in summer. At the same time, study also shows that the coastal waters off west and southwest Hainan are characterized by the maxima of both tidal current and tidal energy dissipation. The TMF-induced upwelling dominates the wind-driven downwelling in a climatological sense, accompanied by a climatologically stable low SST area. Without wind-driven downwelling, numerical modeling brings about approximately 20% increase of the upwelling.
引文
Aiken, C. M., M. Castillo, and S. A. Navarrete. A simulation of the Chilean coastal current and associated topographic upwelling near Valparaíso, Chile. Continental Shelf Research, 2008, 28(17): 2371–2381.
    Allen, J. T., and D. A. Smeed, Potential vorticity and vertical velocity at the Iceland-F-r-s front. J. Phys. Oceanogr., 1996, 26: 2611–2634.
    Arthur, R. S. On the calculation of vertical motion in Eastern Boundary currents from determinations of horizontal motion, J. Geophys. Res., 1965, 70(12): 2799–2803.
    Backhaus J. O. A three-dimensional model for the simulation of shelf sea dynamics, Dt. Hydrogr. Z., 1985, 38: 165–187.
    Blumberg, A. F., and G. L. Mellor. A description of a three-dimensional coastal ocean circulation model. In Three Dimensional Coastal Ocean Models, Coastal and Estuarine Sci., 1987, vol. 4, edited by N. S. Heaps, pp. 1–16, AGU, Washington, D. C.
    Bower, A. S. Potential vorticity balances and horizontal divergence along particle trajectories in Gulf Stream meanders east of Cape Hatteras, J. Phys. Oceanogr., 1989, 19: 1669–1681.
    Bower, A. S., and T. Rossby. Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data, J. Phys. Oceanogr., 1989, 19: 1177–1190.
    Casey, K. S., and P. Cornillon. A comparison of satellite and in situ-based sea surface temperature climatologies. Journal of Climate, 1999, 12: 1848-1862.
    Charney, J. G. The dynamics of long waves in a baroclinic westerly current. J. Meteor., 1947, 4: 135–163.
    Chavez, F. P., and J. R. Toggweiler. 1995. Physical estimates of global new production: the upwelling contribution, In Upwelling in the Ocean: Modern Processes and Ancient Records, Summerhayes, C.P., Emeis, K.C., Angel, M.V., Smith, R.L., and Zeitzschel, B., (eds.). Chichester: J. Wiley & Sons, 1995. p. 313–320.
    Chen, C., and R. C. Beardsley. A numerical study of stratified tidal rectification over finite-amplitude banks. Part I: Symmetric bank. J. Phys. Oceanogr., 1995, 25: 2090–2110.
    Choi, B. H. Development of fine-grid numerical tidal models of the Yellow Sea and the East China Sea, Journal of Korean Society of Coastal and Ocean Engineers, 1990, 4: 233–244.
    Christensen, J. P. Carbon export from continental shelves, denitrification and atmospheric carbon export. Continental Shelf Research, 1994, 14: 547–576.
    Christian, J. R., R. Murtugudde, J. Ballabrera-Poy, and C. R. McClain. A ribbon of dark water: phytoplankton blooms in the meanders of the Pacific North Equatorial Countercurrent. Deep-Sea Research II, 2004, 51: 209–228.
    Craig, P. D., and M. L. Banner. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 1994, 24: 2546–2559.
    da Silva, A. M., C. C. Young, and S. Levitus. Atlas of surface marine data: anomalies of heat and momentum fluxes. NOAA Atlas NESDIS 8. US Department of Commerce, NOAA, NESDIS, Washington, DC. 1994.
    Diaz R. J., and R. Rosenberg. Spreading Dead Zones and Consequences for Marine Ecosystems. Science, 2008, 321: 926– 929. DOI: 10.1126/science.1156401.
    Dong, C. M., H. W. Ou, D. Chen, and M. Visbeck. Tidally induced cross-frontal mean circulation: Analytical study. J. Phys. Oceanogr., 2004, 34(1): 293–305.
    Egbert, G. D., and R. D. Ray. Significant tidal dissipation in the deep ocean inferred from satellite altimeter data. Nature, 2000, 405: 775–778.
    Egbert, G. D., and R. D. Ray. Estimates of M2 tidal energy dissipation from Topex/Poseidon altimeter data. Journal of Geophysical Research, 2001, 106: 22475–22502.
    Ekman V. W. On the influence of the Earth’s rotation on ocean currents. Arkiv for Matematik, Astronomi, och Fysik. 1905, 2(11): 1–52.
    Ezer, T. On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme. J. Geophys. Res., 2000, 105(C7): 16843–16855.
    Fang, G., Y. Wang, Z. Wei, B. H., Choi, X. Wang, and J. Wang. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. Journal of Geophysical Research, 2004, 109, C11006, doi:10.1029/2004JC002484.
    Feely, R. A., R. Wanninkhof, C. Goyet, D. E. Archer, T. Takahashi. Variability of CO2 distributions and sea-air fluxes in the central and eastern equatorial Pacific during the 1991–1994 El Nino. Deep-Sea Research II, 1997, 44 (9–10), 1851–1867.
    Feng Ming, Hu Dunxin, and Li Yongxiang. A theoretical for the thermohaline circulation in the southern Yellow Sea. Chin. J. Oceanol. Limnol., 1992, 10(4): 289–300.
    Fiekas V., H. Leach, K.-J. Mirbach, and J. D. Woods. Mesoscale instability and upwelling. Part 1: Observations at the North Atlantic Intergyre Front. J. Phys. Oceanogr., 1994, 24: 1750–1758.
    Figueroa, D., and C. Moffat. On the influence of topography in the induction of coastal upwelling along the Chilean Coast, Geophys. Res. Lett., 2000, 27(23): 3905–3908.
    Flather, R. A. A tidal model of the north-west European continental shelf. Mem. Soc. R. Sci. Liege, 1976, 6(10): 141–164.
    Fleming, R. H. General features of the ocean. In: J. W. Hedgpeth (ed.) Treatise on Marine Ecology and Paleoecology. Geological Society of America Memoir v.67, 1957, p.87–107.
    Flierl, G. R., Davis, C. S. Biological effects of Gulf Steam meandering. Journal of Marine Research, 1993, 51: 529–560.
    Foreman, M. G. G., W. Callendar, A. MacFadyen, B. M. Hickey, R. E. Thomson, and E. Di Lorenzo. Modeling the generation of the Juan de Fuca Eddy. J. Geophys. Res., 2008, 113, C03006, doi:10.1029/2006JC004082.
    Freeland, H. J., and K. L. Denman. A topographically controlled upwelling center of southern Vancouver Island, J. Mar. Res., 1982, 40: 1069–1093.
    Friederich, G. E., Sakamoto, C. M., Pennington, J. T., Chavez, F. P. On the direction of the air-sea flux of CO2 in coastal upwelling systems. In: Tsunogai, S., Iseki, K., Koike, I., Oba, T. (Eds.), Global Fluxes of Carbon and its Related Substances in the Coastal Sea-Ocean-Atmosphere System. Sapporo Hokkaido, Japan: IGBP. 1994. pp. 438–445.
    Garrett, C. Internal tides and ocean mixing. Science, 2003, 301: 1858–1859.
    Garrett, C., and R. H. Loucks. Upwelling along the Yarmouth shore of Nova Scotia. J. Fish. Res. Board Canada, 1976, 33: 116–117.
    Garrett, C., and L. Maas. Tides and their effects. Oceanus, 1993, 36: 27–37.
    Garrett C., and J. W. Loder. Dynamical aspects of shallow sea fronts. Phil. Trans. R. Soc. Lond., 1981, A302: 563–581.
    Garrett, C., P. MacCready, and P. B. Rhines. Boundary mixing and arrested Ekman layers: rotating,stratified flow near a sloping boundary. Annual Reviews of Fluid Mechanics, 1993, 25: 291–323.
    Gary, E., A. Bennett, and M. Foreman. TOPEX/Poseidon tides estimated using a global inverse model, J. Geophys. Res., 1994, 99: 24821–24852.
    GEOHAB, 2001. Global ecology and oceanography of harmful algal blooms, Science Plan. P. Glibert and G. Pitcher (eds). SCOR and IOC, Baltimore and Paris. 87 pp.
    Gibbs, M. T., J. H. Middleton, and P. Marchesiello. Baroclinic response of Sydney shelf waters to local wind and deep ocean forcing. J. Phys. Oceanogr., 1998, 28: 178–190.
    Grantham, B. A., F. Chan, K. J. Mielsen, D. S. Fox, J. A. Barth, A. Huyer, J. Lubchenco, and B. A. Menge. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 2004, 429: 749–754.
    Guan B., and G. Fang. Winter Counter-wind Currents off the Southeastern China Coast: a review. Journal of Oceanography. 2006, 62: 1–24.
    Guan B., and H. Mao. A note on circulation of the east china sea. Chinese Journal of Oceanology and Limnology, 1982, 1(1): 5–16.
    Haney, R. L. Surface thermal boundary condition for ocean circulation models. Journal of Physical Oceanography, 1971, 1: 241–248.
    Hidaka, K. A. contribution to the theory of upwelling on coastal currents. Trans. Amer. Geophys. Un., 1954, 35 (3): 431–444.
    Hoskins, B.J., I. Draghici, and H.C. Davies. A new look at the omega-equation. Quart. J. Roy. Meteor. Soc., 1978, 104:31–38
    Hsueh, Y. and J. J. O'Brien. Steady coastal upwelling induced by an alongshore current. Journal of Physical Oceanography, 1971, 1: 180–186.
    Hsueh, Y., and Kenney III, R. N. Steady coastal upwelling in a continuously stratified ocean. Journal of Physical Oceanography, 1972, 2: 27–33.
    Hu, J. Y., H. Kawamura, and D. L. Tang. Tidal front around the Hainan Island, northwest of the South China Sea. J. Geophys. Res., 2003, 108(C11), 3342, doi:10.1029/2003JC001883.
    Hua, B.L., and F. Thomasset. A numerical study of the effects of coastline geometry on wind-induced upwelling in the Gulf of Lions. Journal of Physical Oceanography, 1983, 13: 678–694.
    Ichikawa, H., and R. C. Beardsley. The current system in the Yellow and East China Seas, J. Oceanogr., 2002, 58, 77–92.
    James, I D. A note on the circulation induced by a shallow-sea front. Estuarine and Coastal Marine Science, 1978, 7: 197–202.
    Janowitz, G. S., and L. J. Pietrafesa. The effects of alongshore variation in bottom topography on a boundary current—(topographically induced upwelling). Continental Shelf Research, 1982, 1: 123–141.
    Jeffreys H. Tidal Friction in Shallow Seas. Philosophical Transactions of the Royal Society of London, Series A, 1920, 221: 239–264.
    Jennings, S., M.J. Kaiser, J. D. Reynolds. Marine Fisheries Ecology. Oxford: Blackwell Science Ltd. 2001. 417 pp.
    Johnson, D. R., T. Fonseca, and H. Sievers. Upwelling in the Humboldt coastal current near Valparaiso, Chile, J. Marine Res., 1980, 38(1): 1–16.
    Kondo, M. Oceanographic investigations of fishing grounds in the East China Sea and the Yellow Sea—I, Characteristics of the mean temperature and salinity distributions measured at 50 m and near the bottom, Bull. Seikai Reg. Fish. Res. Lab., 1985, 62: 19–55.
    LaFond, E. C. Upwelling. In: R. W. Fairbridge (Ed.): The encyclopedia of oceanography. New York. 1966. 957–959.
    Lee, S.-H., and R. C. Beardsley, Influence of stratification on residual tidal currents in the Yellow Sea, J. Geophys. Res., 1999, 104: 15679–15701.
    Lee, H-J., S-Y. Chao, K-L. Fan and T-Y. Kuo. Tide-induced eddies and upwelling in a semi-enclosed basin: Nan Wan. Estuarine, Coastal and Shelf Science, 1999, 49: 775–787.
    Leendertse, J. J., C. A. Richard, and S. K., Liu. A three-dimensinal model for estuaries and coastal seas. Santa Monica, CA, U.S.A.: Rand Corp., 1973, Vol. I–II.
    Lentz, S. J. U.S. contributions to the physical oceanography of continental shelves in the early 1990’s. Rev. Geophys., 1995, 33 (Suppl.), 1225–1236.
    Lentz, S. J., and J. H. Trowbridge. The bottom boundary layer over the northern California shelf. Journal of Physical Oceanography, 1991, 21:1186–1201.
    Lentz, S. J, and D.C. Chapman. The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 2004, 34(11): 2444–2457.
    Levitus, S. Climatological Atlas of the World Ocean, NOAA Professional Paper No. 13, Washington, D.C.: U.S. Govt. Printing Office, 1982. 173 pp.
    Lie, H.-J. Summertime hydrographic features in the southeastern Hwanghae. Progress in Oceanography, 1986, 17: 229–242.
    Lima, I. D., D. B. Olson, and S. C. Doney. Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: Biological production and community structure, J. Geophys. Res. 2002, 107 (C8), 10.1029/2000JC000393.
    Liu G., H. Wang, S. Sun, and B. Han. Numerical study on the velocity structure around tidal fronts in the Yellow Sea. Advances in Atmospheric Sciences, 2003, 20(3): 453–460.
    Loder J. W., and D. G. Wright. Tidal rectification and Frontal circulation on the sides of Georges Bank. J Mar Res, 1985, 43: 581–604.
    Luo Y., G. Yu, and Z. Huang. Numerical studies of upwelling in coastal areas of the East China Sea—I. The tide-induced upwelling. Acta Oceanologica Sinica, 1998, 17(1): 15–25.
    Lü, X., F. Qiao, G. Wang, C. Xia, and Y. Yuan. Upwelling off the west coast of Hainan Island in summer: Its detection and mechanisms, Geophys. Res. Lett., 2008, 35, L02604, doi:10.1029/2007GL032440.
    Lü, X., F. Qiao, C. Xia, G. Wang, Y. Yuan. Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation. Continental Shelf Research, 2010, 30: 620–632. doi:10.1016/j.csr.2009.09.002.
    Lü, X., F. Qiao, C. Xia, J. Zhu, and Y. Yuan. Upwelling off Yangtze River estuary in summer, J. Geophys. Res., 2006, 111, C11S08, doi:10.1029/2005JC003250.
    MacCready, P., and P. B. Rhines. Slippery bottom boundary layers on a slope. J. Phys. Oceanogr., 1993, 23: 5–22.
    Manh D., and T. Yanagi. A three-dimensional numerical model of tide and tidal current in the Gulf of Tongking. La mer, 1997, 35: 15–22.
    Marotzke, J. Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J. Phys. Oceanogr., 1998, 8: 1713–1728.
    Martin, P. J. Simulation of the mixed layer at OWS November and Papa with several models, J. Geophys. Res., 1985, 90: 581– 597.
    Matsumoto, K., T. Takanezawa, and M. Ooe. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regionalmodel around Japan. Journal of Oceanography, 2000, 56: 567–581.
    McGillicuddy, D. J., and A. R. Robinson. Eddy induced nutrient supply and new production in the Sargasso Sea, Deep Sea Research, Part I, 1997, 44(8): 1427–1450.
    Mellor G. L., and A. F. Blumberg. Wave breaking and ocean surface layer thermal response. J. Phys. Oceanogr., 2004, 34: 693–698.
    Mellor, G. L., and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 1982, 20(4): 851–875.
    Moon, J.-H., N. Hirose, and J.-H. Yoon. Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea, J. Geophys. Res., 2009, 114, C08016, doi:10.1029/2009JC005314.
    Munk, W., and C. Wunsch. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res., 1998, 45: 1977–2010.
    Nellemann, C., S. Hain, and J. Alder (Eds). In Dead Water– Merging of climate change with pollution, over-harvest, and infestations in the world’s fishing grounds. United Nations Environment Programme, GRID-Arendal, Norway, www.grida.no. 2008, 62 pp.
    Newton, C. W. Fronts and wave disturbances in Gulf Stream and atmospheric jet stream. J. Geophys. Res., 1978, 83(C9): 4697–4706.
    Nitani, H. Beginning of the Kuroshio. In Kuroshio, Its Physical Aspects, edited by H. Stommel and K. Yoshida, Tokyo: Univ. Tokyo Press, 1972. pp. 129–163.
    Oey, L. Y. A model of Gulf Stream frontal instabilities, meanders and eddies along the continental slope. J. Phys. Oceanogr., 1988, 18: 211–229.
    Oey, L.-Y., G. L. Mellor, and R. I. Hires. A three-dimensional simulation of the Hudson- Raritan estuary. Part II: Comparison with observation. J. Phys. Oceanogr., 1985, 15: 1693–1709.
    Oke, P. R., and J. H. Middleton. Topographically induced upwelling off Eastern Australia. Journal of Physical Oceanography, 2000, 30: 512–531.
    Oke, P. R., and J. H. Middleton. Nutrient enrichment off Port Stephens: the role of the East Australian Current. Continental Shelf Research, 2001, 21: 587–606.
    Palma, E. D., and R. P. Matano. Disentangling the upwelling mechanisms of the South Brazil Bight. Continental Shelf Research, 2009, 29: 1525–1534.
    Peffley, M. B., and J. J. O'Brien. A three-dimensional simulation of coastal upwelling off Oregon, J. Phys. Oceanogr., 1976, 6: 164–180.
    Preller, R., and J. J. O'Brien. The influence of bottom topography on upwelling off Peru. J. Phys. Oceanogr., 1980, 10: 1377–1398.
    Pugh, D. T. Tides, surges, and mean sea level: a handbook for scientists and engineers. Hoboken, N. J.: John Wiley, 1987. 472 pp.
    Qiao F., and X. Lü. Coastal upwelling in the South China Sea, in Satellite Remote Sensing of South China Sea, edited by Antony K. Liu, Chung-Ru Ho, and Cho-Teng Liu, Taipei, Taiwan: Tingmao Publish Company, 2008, pp. 135–158.
    Qiao, F., Y. Yuan, Y. Yang, Q. Zheng, C. Xia, and J. Ma. Wave induced mixing in the upper ocean: Distribution and application to a global ocean circulation model, Geophys. Res. Lett., 2004, 31, L11303, doi:10.1029/2004GL019824.
    Qiao, F., Q. Zheng, R. Ge, F. Yu, and G. Fang. Cruise observations of a cold core ring andβ-spiral on the East China Sea continental shelf, Geophys. Res. Lett., 2005, 32, L02601, doi:10.1029/2004GL021591.
    Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax. DailyHigh-Resolution-Blended analyses for sea surface temperature. Journal of Climate, 2007, 20(22): 5473–5496. doi:10.1175/2007JCLI1824.1
    Rhines, P. B., and P. MacCready. Boundary control over the large-scale circulation. Proc. Fifth‘Aha Huliko’a Hawiian Winter Workshop on Parameterization of Small-Scale Processes, Hawaii Institute of Geophysics, Honolulu, 1989, 75–97.
    Rochford, D. J. Nutrient enrichment of East Australian coastal waters. II. Laurieton upwelling. Aust. J. Mar. Freshwater Res., 1975, 26: 233–243.
    Rodrigues, R. R., and J. A. Lorenzzetti. A numerical study of the effects of bottom topography and coastline geometry on the Southeast Brazilian coastal upwelling, Cont. Shelf Res., 2001, 21: 371–394.
    Roughan M., and J. H. Middleton. A comparison of observed upwelling mechanisms off the east coast of Australia. Continental Shelf Research, 2002, 22(17):2551–2572.
    Ryther, J. H. Photosynthesis and fish production in the sea. Science. 1969, 166: 72–76.
    Saito, Y. The theory of the transient state concerning upwelling and coastal current.Trans. Amer. Geophys. Union., 1956, 37: 38–42.
    Samelson, R. M. Large scale circulation with locally enhanced vertical mixing, J. Phys. Oceanogr., 1998, 28: 712–726.
    Sherman, K., and L.M. Alexander (Eds). Variability and management of Large Marine Ecosystems. AAAS Selected Symposium 99. Westview Press, Boulder, Colorado, 1986, 319 pp.
    Shearman, R. K., J. A. Barth, and P. M. Kosro. Diagnosis of the three-dimensional circulation associated with mesoscale motion in the California Current. Journal of Physical Oceanography, 1999, 29(4): 651–670.
    Simpson, J. H. A boundary front in the summer regime of the Celtic Sea. Estuarine and Coastal Marine Science, 1976, 4: 71–81
    Simpson, J. H., C. M. Allen, and N. C. G. Morris. Fronts on the Continental Shelf. J. Geophys. Res., 1978, 83(C9): 4607–4614.
    Simpson, J H., and J. R. Hunter. Fronts in the Irish Sea. Nature, 1974, 250: 404–406.
    Smith, P. C. The mean and seasonal circulation off southwest Nova Scotia. J. Phys. Oceanogr., 1983, 13: 1034–1054.
    Song, Y. T., and Y. Chao. A theoretical study of topographic effects on coastal upwelling and cross-shore exchange. Ocean Modelling, 2004, 6(2): 151–176.
    Stewart R.H. Introduction to physical oceanography (web version). 2006. http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html
    Su, J., and T. Pohlmann. Wind and topography influence on an upwelling system at the eastern Hainan coast, J. Geophys. Res., 2009, 114, C06017, doi:10.1029/2008JC005018.
    Su, J. L. Circulation dynamics of the seas China north of 18N coastal segment, The Sea, 11, ed. A. R. Robinson and K. H. Brink. John Wiley & Sons, Inc. 1998. pp.483–505.
    Taylor G. I. Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society of London, 1919, A220: 1–33.
    Tee, K. T., P. C. Smith, and D. LeFaivre. Topography upwelling off southwest Nova Scotia, J. Phys. Oceanogr., 1993, 23: 1703–1726.
    Tomczak, M. Upwelling dynamics in deep and shallow water. In: Shelf and Coastal Oceanography. http://www.es.flinders.edu.au/~mattom/ShelfCoast/chapter06.html. 1998 (accessed on 26/Mar/2010)
    Tomczak, M., and J. S. Godfrey. Regional Oceanography: an Introduction. Oxford: Pergamon press, 1994. 442 pp.
    Trainer, V. L., B. M. Hickey, and R. A. Horner. Biological and physical dynamics of domoic acid production off the Washington coast, Limnol. Oceanogr., 2002, 47(5): 1438–1446.
    Trowbridge, J. H., and S. J. Lentz. Asymmetric Behavior of an oceanic boundary layer above a sloping bottom. J. Phys. Oceanogr., 1991, 21: 1171–1185.
    Uda, M., 1934. Hydrographical researches on the normal monthly conditions in the Japan Sea, the Yellow Sea, and the Okhotsk Sea. Fisheries Experimental Station Report 5, 191–236 (in Japanese).
    Walker, N. D. Satellite observations of the Agulhas Current and episodic upwelling south of Africa. Deep-Sea Research, 1986, 33: 1083–1106.
    Wang, B.-D., X.-L. Wang, and R. Zhan. Nutrient conditions in the Yellow Sea and the East China Sea, Estuar. Coast. Shelf Sci., 2003, 58: 127–136.
    Wang, W., and R. X. Huang. Wind energy input to the surface waves. J. Phys. Oceanogr., 2004, 34: 1276–1280.
    Ware, D. M., and R. E. Thomson. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science, 2005, 308: 1280–1284.
    Watson A. J. Are upwelling areas sources or sinks of CO2? In: Summerhayes CP, Emeis K-C, Angel MV, Zeitzschel B (eds) Upwelling in the Ocean: modern processes and ancient records. Chichester: J. Wiley & Sons, 1995. p. 321–336.
    Weng, X. C., and C. M. Wang. On the Taiwan Warm Current water, Chin. J. Oceanol. Limnol., 1988, 6(4): 320–329.
    Wu, C.-R., H.-F. Lu, and S.-Y. Chao. A numerical study on the formation of upwelling off northeast Taiwan, J. Geophys. Res., 2008, 113, C08025, doi:10.1029/2007JC004697.
    Wunsch, C. Moon, tides and climate. Nature, 2000, 405: 743–744.
    Xia, C., F. Qiao, Y. Yang, J. Ma, and Y. Yuan. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model, J. Geophys. Res., 2006, 111, C11S03, doi:10.1029/2005JC003218.
    Xia, C, F. Qiao, Q. Zhang, and Y. Yuan. Numerical modelling of the quasi-global ocean circulation based on POM, Journal of Hydrodynamics, 2004, 16(5), 537–543.
    Yang Y., F. Qiao, C. Xia, J. Ma, and Y. Yuan. Wave-induced mixing in the Yellow Sea. Chinese Journal of Oceanology and Limnology, 2004, 22(3): 322–326.
    Yin, F. Preliminary study of cold water mass near N.N.E of Taiwan, Science reports of the National Taiwan University. Acta Oceanographica Taiwanica, 1973, 3: 157–180.
    Yoshida, K. Circulation in the eastern tropical oceans with special reference to upwelling and undercurrents. Japanese Journal of Geophysics, 1967, 4 (2): 1–75.
    Yoshimori, A. Horizontal divergence caused by meanders of a thin jet. J. Phys. Oceanogr., 1994, 24: 345–352.
    Yu, W., F. Qiao, Y. Yuan, and Z. Pan. Numerical modeling of wind and waves for Typhoon Betty (8710). Acta Ocenol. Sin., 1997, 16 (4): 459–473.
    Zhao Jinshan, Qiao Rongzhen, Doung Ruzhou, et al. An analysis of current condition in the investigation area of the East China Sea. Proceedings of International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea. April 12–16, 1983. Hangzhou, China. Beijing: China Ocean Press, 1983, 288–301.
    白涛,杨德周,尹宝树.夏季长江口外海区域上升流现象的数值研究.海洋科学, 2009, 33(11):65–72.
    白学志,王凡.夏季长江冲淡水转向机制的数值试验.海洋与湖沼, 2003, 34(6): 593–603.
    毕亚文,赵保仁.黄海西南部陆架锋区锋断面环流数值模拟.海洋科学, 1993, 6: 61–64.
    曹欣中.浙江近海上升流季过程的初步研究.水产学报, 1986, 10(1): 51–69.
    柴扉,薛惠洁,侍茂崇.海南岛东部上升流研究.中国海洋学文集, 2001, 13: 129–137.
    陈照章,胡建宇,孙振宇,朱佳. 2006年7-8月北部湾海区温、盐度的断面分布特征,北部湾海洋科学研究论文集. 2008. p79?87.
    邓松,钟欢良,王名文,云风娟.琼海沿岸上升流及其与渔场的关系.台湾海峡, 1995, 14(1): 51–56.
    丁宗信.风对浙江沿岸海域夏季温、盐度垂直结构和上升流的影响.海洋与湖沼, 1983, 14(1): 14–21.
    方国洪.黄海潮能的消耗.海洋与湖沼, 1979, 10(3): 200–213.
    管秉贤.黄海冷水团的水温变化以及环流特征的初步分析.海洋与湖沼, 1963, 5(4): 255–284.
    管秉贤,陈上及.中国近海的海流系统,全国海洋综合调查报告(第五册第六章), 1964: 1–85.
    郭炳火,夏综万.潮流绕半岛诱导上升流的解析模式.海洋学报, 1986, 8(3): 272–282.
    郭炳火,黄振宗,李培英,等.中国近海及邻近海域海洋环境.北京:海洋出版社, 2004. pp. 32–101.
    郭飞,侍茂崇,夏综万.琼东沿岸上升流二维数值模型的诊断计算.海洋学报, 1998 , 20 (6): 109–116.
    韩舞鹰,王明彪,马克美.我国夏季最低表层水温海区—琼东沿岸上升流区的研究.海洋与湖沼,1990 , 21 ( 3) : 167–275.
    郝崇本,汪圆祥,雷宗友,徐斯.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼, 1959, 2(1): 11–15.
    胡敦欣.风生沿岸上升流及沿岸流的一个非稳态模式.海洋与湖沼, 1979, 10(2): 93–102.
    胡敦欣,丁宗信,熊庆成.东海北部一个气旋型涡旋的初步分析.科学通报, 1980a, 25(1): 29–31.
    胡敦欣,吕良洪,熊庆成,丁宗信,孙寿昌.关于浙江沿岸上升流的研究.科学通报, 1980b, 25(1): 131–134.
    胡明娜.舟山及邻近海域沿岸上升流的遥感观测与分析.中国海洋大学硕士论文. 2007.
    黄瑞新.论大洋环流的能量平衡.大气科学, 1998, 22(4): 562–574.
    黄祖珂,俞光耀,罗义勇,娄安刚,杜勇.东海沿岸潮致上升流的数值模拟.青岛海洋大学学报(自然科学版), 1996, 26(4): 405–412.
    经志友,齐义泉,华祖林.闽浙沿岸上升流及其季节变化的数值研究.河海大学学报(自然科学版), 2007, 35(4): 464–470.
    经志友,齐义泉,华祖林.南海北部陆架区夏季上升流数值研究.热带海洋学报, 2008, 27(3): 1–8.
    李道季,张经,黄大吉,等.长江口外氧的亏损.中国科学, 2002, 32(8): 686–694.
    李徽翡.夏季东中国海环流及长江口上升流模拟.中国科学院海洋研究所硕士论文. 2000.
    李磊.渤黄东海潮波系统的有限元模拟.中国海洋大学博士论文. 2003.
    李培良,李磊,左军成,陈美香,赵玮.渤黄东海潮能通量与潮能耗散.中国海洋大学学报, 2005, 35(5): 713–718.
    刘先炳,苏纪兰.浙江沿岸上升流和沿岸锋面的数值研究.海洋学报, 1991, 13(3): 305–314.
    刘兴泉,侯一筠,尹宝树.东海沿岸海区垂直环流及其温盐结构动力过程研究I.环流的基本特征.海洋与湖沼, 2004, 35(5): 393–403.
    罗义勇.东海沿岸上升流的数值计算.海洋湖沼通报, 1998, 3: 1–6.
    罗义勇,俞光耀.风和台湾暖流引起东海沿岸上升流数值计算.青岛海洋大学学报, 1998, 28(4):536–542.
    吕新刚.环台湾岛海域潮汐、潮流及正压海流的数值研究.南京:空军气象学院硕士学位论文. 1999.
    毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨.海洋与湖沼, 1963, 5(3): 183–206.
    毛汉礼,任允武,孙国栋.南黄海和东海北部(28°~37°N)夏季的水文特征以及海水类型的初步分析.海洋科学集刊, 1965, 1: 23–77.
    缪经榜,刘兴泉,薛亚.北黄海冷水团形成机制的初步探讨Ⅰ.模式解.中国科学(B辑), 1990, 20(12): 131–132.
    潘玉萍,沙文钰.冬季闽浙沿岸上升流的数值研究.海洋与湖沼. 2004, 35(3): 193–201.
    潘玉球,曹欣中,许建平.浙江沿岸上升流锋区特征及其成因的初步探讨.海洋湖沼通报, 1982, 3: 1–7.
    潘玉球,徐端蓉,许建平.浙江沿岸上升流区的锋面结构、变化及其原因.海洋学报, 1985, 7(4): 401–411.
    戚建华,苏育嵩.黄海潮生陆架锋的数值模拟研究.海洋与湖沼,1998, 29(3): 247–254.
    乔方利,马建,夏长水,杨永增,袁业立.波浪和潮流混合对黄海、东海夏季温度垂直结构的影响研究.自然科学进展, 2004, 14(12): 1434–1441.
    乔方利,赵伟,吕新刚.东海冷涡上升流的环状结构.自然科学进展, 2008, 18(6): 674–679.
    苏纪兰,黄大吉.黄海冷水团的环流结构.海洋与湖沼(增刊), 1995, 26(5): 1–7.
    苏育嵩,苏洁.渤黄海夏季低温带及其形成机制初析.海洋学报, 1996, 18(1):13?20.
    孙文心,刘桂梅,雷坤,江文胜,张平.黄东海环流的数值研究II:潮及潮致环流数值模拟.青岛海洋大学学报, 2001, 31(3): 297?304.
    孙湘平.台湾东北海域冷涡的分析.海洋通报, 1997, 16(2): 1–10.
    孙玉娟,乔方利,王关锁,尹训强,杨永增. MASNUM海浪数值模式业务化预报与检验.海洋科学进展, 2009, 27(3): 281–294.
    汤毓祥.东海海洋锋分类的初步探讨.黄渤海海洋, 1995, 13(2): 16–22
    王保栋.长江口及邻近海域富营养化状况及其生态效应.青岛:中国海洋大学博士学位论文, 2006.
    王辉.东海和南黄海冬季环流的斜压模式.海洋学报, 1995, 17(2): 21–26.
    魏皓,王玉衡,万瑞景,苏健.黄海锋区环流与鳀鱼卵的聚集.中国海洋大学学报, 2007, 37(3): 512–516.
    翁学传,王从敏.台湾暖流深层水变化特征的分析.海洋与湖沼, 1983, 14(4): 357–366.
    吴日升,李立.南海上升流研究概述.台湾海峡, 2003, 22(2): 269–277.
    夏长水.基于POM的浪流耦合模式的建立及其在大洋和近海的应用.中国海洋大学博士论文. 2005.
    夏华永,殷忠斌,郭芝兰,陈明剑.北部湾三维潮流数值模拟.海洋学报, 1997, 19(2): 21–31.
    夏综万,郭炳火.山东半岛和辽东半岛顶端附近水域的冷水现象及上升流.黄渤海海洋, 1983, 1(1): 13–19.
    修树孟,郑全安,孙湘平.中尺度涡诱导的陆架上升流.水动力学研究与进展, 2002, 17(1): 61–68.
    许建平.浙江近海上升流区冬季水文结构的初步分析.东海海洋, 1986, 4(3): 18–24.
    许建平,曹欣中,潘玉球.浙江近海存在沿岸上升流的证据.海洋湖沼通报, 1983, 4: 17–25.
    薛鸿超,谢金赞.中国海岸带水文.北京:海洋出版社, 1996. pp. 154–155.
    颜廷壮.中国沿岸上升流成因类型的初步划分.海洋通报, 1991, 10(6): 1–6.
    颜廷壮.浙江和琼东沿岸上升流的成因分析.海洋学报, 1992, 14(3): 12–18.
    杨永增,乔方利,赵伟,滕涌,袁业立.球坐标系下MASNUM海浪数值模式的建立及其应用.海洋学报, 2005, 27(2): 1–7.
    于文泉.南海北部上升流的初步探讨.海洋科学, 1987 ,6 : 7–10.
    袁业立.黄海冷水团环流I:冷水团中心部分的热结构和环流特征.海洋与湖沼, 1979, 10(3): 187–196.
    袁业立,华锋,潘增弟,孙乐涛. LAGFD-WAM海浪数值模式Ⅱ.区域性特征线嵌入格式及其应用.海洋学报, 1992a, 14(6): 12–24.
    袁业立,李惠卿,黄海冷水团环流结构及生成机制研究I. 0阶解及冷水团的环流结构.中国科学(B辑), 1993, 23(1): 93–103.
    袁业立,潘增弟,华锋,孙乐涛. LAGFD-WAM海浪数值模式Ⅰ.基本物理模型.海洋学报. 1992b, 14(5): 1–7.
    袁业立,乔方利.海洋动力系统与MASNUM海洋数值模式体系.自然科学进展, 2006, 16(10): 1257–1267.
    袁业立,乔方利,华锋,万振文.近海环流数值模式的建立I:海波的搅拌和波流相互作用.水动力学研究与进展(A辑), 1999, 14(4B): 1–8.
    张启龙,王凡.舟山渔场及其邻近海域水团的气候学分析.海洋与湖沼. 2004, 35(1): 48–54.
    赵保仁.黄海冷水团锋面与潮混合.海洋与湖沼,1985, 16(6): 451–460.
    赵保仁.黄海潮生陆架锋的分布.黄渤海海洋, 1987, 5(2): 16–23.
    赵保仁.南黄海西部的陆架锋及冷水团锋区环流结构的初步研究.海洋与湖沼, 1987, 18(3): 217–226.
    赵保仁.长江口外的上升流现象.海洋学报, 1993, 15(2): 108–114.
    赵保仁.北黄海冷水团环流结构探讨──潮混合锋对环流结构的影响.海洋与湖沼, 1996, 27(4): 429–435.
    赵保仁,方国洪,曹德明.渤海黄海和东海的潮余流特征及其与近岸环流输送的关系.海洋科学集刊, 1995, 36: 1–11.
    赵保仁,李徽翡,杨玉玲.长江口海区上升流现象的数值模拟.海洋科学集刊, 2003,45: 64–76.
    中华人民共和国交通部.港口工程技术规范.北京:人民交通出版社, 1987.
    周明江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学, 2001, 13(2): 54–59.
    朱建荣.夏季长江口外水下河谷西侧上升流产生的动力机制.科学通报, 2003, 48(23): 2488–2492.
    朱首贤,朱建荣,沙文钰. M2分潮对夏季长江冲淡水扩展影响的数值研究.海洋与湖沼, 1999, 30(6): 711–718.
    朱耀华,方国洪.一种二维和三维嵌套海洋流体动力学数值模式及其在北部湾潮汐和潮流数值模拟中的应用.海洋与湖沼, 1993, 24(2): 117–125.
    邹娥梅,郭炳火,汤毓祥,李载学,李兴宰.南黄海及东海北部夏季若干水文特征和环流的分析.海洋与湖沼, 2001, 32(3): 340–348.
    俎婷婷.北部湾环流及其机制的分析[D].青岛:中国海洋大学硕士学位论文. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700