用户名: 密码: 验证码:
海洋铁锰氧化物沉积物中常、微量元素的地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成岩型结核和水成型结壳作为海洋铁锰沉积物的两种主要类型,含有丰富的过渡金属元素、碱金属和碱土金属元素以及稀土元素。本文选择了东太平洋赤道附近的系列铁锰结核(壳)样品,应用X-射线衍射仪确定了样品中的矿物相;再用化学上的两种相态分析手段——选择性提取实验和吸附实验,按照海洋铁锰沉积物中的主要矿物相或/和氧化物相,用选择性提取实验把海洋铁锰沉积物中元素分为可溶态、锰氧化物态、非晶态铁氧化物态、结晶态铁氧化物态和硅酸盐态;用等离子体光谱仪和等离子体质谱仪测定了各个相态中的元素;然后利用提取以后的样品吸附特定的离子;借助地球化学、晶体化学和矿物学手段对过渡金属元素、碱金属和碱土金属元素以及稀土元素在海洋铁锰氧化物沉积物中的赋存状态、与沉积物组成矿物之间的关系,以及组成矿物对这些元素的吸附机制进行了系统的研究,以期了解海洋铁锰沉积物与海水中上述元素的相互作用机理并得到如下的结果:
     由于Fe3+和Mn4+之间晶体化学特点差别很大,因此在两种成因的铁锰沉积物中各自形成了自己独立的氧化物而相互之间没有发生广泛的类质同象,即在成岩型结核中形成了10(?)-水锰矿和无定形铁的氧化物/氢氧化物,在水成型结壳中则形成了δ-MnO2和无定形铁的氧化物/氢氧化物。Cu和Ni可以进入10(?)-水锰矿中并使其结构变得稳定,因此成岩型结核中相对富集Mn、Cu和Ni。Ti在水成型结壳中的富集则是由于其中大量的无定形铁的氧化物/氢氧化物的吸附和络合,Co在水成型结壳中的存在则是Co和其中δ-MnO2中Mn之间的类质同象代替,因此水成型结壳相对富集Fe、Ti和Co。
     碱金属和碱土金属在两种成因的海洋铁锰沉积物中的存在都主要与其中的锰氧化物有关。在成岩型结核中,碱金属和碱土金属进入其主要组成矿物―10(?)-水锰矿中并成为其结构的重要组分,虽然由于10(?)-水锰矿的结构原因导致其中的大半径阳离子钠、钙和小半径离子镁、锂在10(?)-水锰矿中占的位置不同,但是碱金属离子特别是钠离子对于10(?)-水锰矿结构的稳定性起到了非常重要的作用,结构中钠离子的缺失会导致10(?)-水锰矿结构的坍塌,在坍塌以后10(?)-水锰矿转变成7(?)-水锰矿。镁离子同过渡金属离子Cu、Ni在支撑10(?)-水锰矿的结构使其结构稳定的方面起到了同等重要的作用,而不仅仅是Cu和Ni等过渡金属元素。锂元素在成岩型结核中不是以锂硬锰矿的形式存在,而是与镁离子相同,存在于10(?)-水锰矿中,10(?)-水锰矿可以看作是锂元素在海水中的吸附剂,并且成岩型结核也许对于锂元素在海水中的平衡起到了重要作用(Jiang et al., 2007)。水成型结壳中的碱金属和碱土金属是由于δ-MnO_2对这两类离子的吸附作用,只是吸附在了δ-MnO_2的表面上,对于δ-MnO_2的结构没有大的影响,推测只是对于δ-MnO_2平衡其自身的电荷有一定的作用。而锂元素在水成型结壳中的存在则可能是由于其中的粘土矿物的吸附作用。
     稀土元素在成岩型结核和水成型结壳中的富集都是由于其中无定形铁的氧化物/氢氧化物对于海水中稀土元素的较强的络合作用。无定形铁的氧化物/氢氧化物对稀土元素的络合作用要强于10(?)-水锰矿、δ-MnO_2对稀土元素的络合作用。无定形铁的氧化物/氢氧化物对稀土元素比碳酸根对稀土元素有着更强烈的络合作用,可以从稀土元素的碳酸盐络合物中争取到稀土元素离子与之络合而形成络合物,而10(?)-水锰矿和δ-MnO_2则只络合海水中稀土元素的络合物,这表明10(?)-水锰矿和δ-MnO_2对稀土元素的络合能力要小于碳酸根对稀土元素的络合。水成型结壳中Ce正异常并不是由δ-MnO_2把可溶性的Ce3+氧化成不溶性的Ce4+而发生沉淀所导致,也不是无定形铁的氧化物/氢氧化物的氧化作用,这可能与水成型结壳生长的氧化环境有关,因此,Ce的异常仍具有一定的指示氧化还原环境的作用。此外,磷酸盐或磷灰石对于REE在海洋铁锰氧化物沉积物中的富集起到的作用也是有限的,远小于铁氧化物的影响。
As the two dominant types of the marine ferromanganese oxide deposits, both diagenetic nodules and hydrogenic crusts are enriched in transitional elements, alkaline metals and alkaline earth metal elements as well as rare earth elements. Distribution of above-mentioned elements in the ferromanganese oxide deposits, relationship between the elements and the compositional minerals of the deposits as well as the factors to control the enrichments of the elements in the deposits were investigated systematically in terms of the selective dissolution experiments and adsorption experiments as well as geochemistry, crystal chemistry and mineralogy by using the ferromanganese oxide deposit samples recovered near the equatorial east Pacific.
     Manganese and iron are present as 10(?)-manganates and ferric oxides in diagenetic nodules, respectively, while they are present asδ-MnO_2 and ferric oxides in hydrogenic crusts, respectively. Little substitution occurred between Fe and Mn in the ferromanganese oxide deposits due to their different crystal chemistry. The diagenetic ferromanganese nodules are relatively rich in Mn, Cu and Ni, because Cu and Ni can enter into the structure of 10(?)-manganates and stabilize the structure. The 10(?)-manganates can be considered as the scavenger of Cu and Ni in the seawater. On the other hand, hdyrogenic crusts are rich in Fe, Co and Ti. The enrichment of Ti in the hdyrogenic crust is attributed to the adsorption and combination of Ti by amorphous ferric oxide/hydroxide, while the enrichment of Co is attributed to the substitution of Co for Mn ofδ-MnO_2. About three factors control the enrichments of Cu, Co, Ni, Ti and Zn in the ferromanganese oxide deposits as follows: 1) chemistry and crystal chemistry of minerals in the marine ferromanganese deposits; 2) states of the transitional elements in the seawater; 3) biological productivity and sedimentation rate of the environments in which the marine ferromanganese oxide deposits formed. The former two factors determine the present phases of the transitional elements in the deposits and the latter one controls the amounts enriched in the deposits.
     Enrichments of alkali elements and alkali earth elements in marine ferromanganese oxide deposits are mainly attributed to the absorbability of manganese oxides. Alkali and alkali earth elements can enter into the structure of 10(?)-manganates of diagenetic nodules as important constituents despite the fact that different ions occupy varying positions in the structure due to their different effective ionic radius. Sodium ions can make the structure of 10(?)-manganates stable because the absence of sodium ions results in the collapse of 10(?)-manganates to turn into 7(?)-manganates. In addition, it is assumed that magnesium ions also play an important role to brace the structure of 10?-manganates as the transitional elements, such as Cu~(2+), Co~(2+) and Ni~(2+) do. Lithium in the diagenetic nodules is present in the 10(?)-manganates phase rather than in the lithiophorite phase. 10(?)-manganates can be considered as the scavenger of lithium in the seawater and it may play a important role in the mass balance of lithium in the oceans. The enrichments of alkali and alkali earth elements in hydrogenic crusts are different from that of diagenetic nodules. It is assumed that alkali and alkali earth elements ions are adsorbed on the surface ofδ-MnO_2 rather than into its structure, therefore the alkali and alkali earth elements ions is unimportant for the structure ofδ-MnO_2. On the other hand, the alkali and alkali earth elements ions may play a role in the charge balance ofδ-MnO_2 to some extent.
     The enrichments of rare earth elements (REE) in marine ferromanganese oxide deposits of different origin are attributed to the strong complexing of amorphous ferric oxide/hydroxide for REE in seawater. Rare earth elements in seawater can be more strongly combined by amorphous ferric oxide/hydroxide than by 10(?)-manganates andδ-MnO_2. The amorphous ferric oxide/hydroxide of marine ferromanganese deposits can combine the REE which are complexed by carbonate and bicarbonate in seawater, while 10(?)-manganates andδ-MnO_2 just combine the complex of REE and carbonate/bicarbonate directly from seawater. The pronounced positive Ce anomalies in hydrogenic crusts are not attribute to the oxidation of Ce from soluble Ce~(3+) to insoluble Ce~(4+) by eitherδ-MnO_2 or amorphous ferric oxide/hydroxide. The oxidative environments in which the hydrogenic crusts are formed may result in the pronounced positive Ce anomalies. Therefore, the Ce anomaly can be can be used to infer redox conditions. Apatite contribute less to the enrichments of REE in marine ferromanganese oxide deposits than amorphous ferric oxide/hydroxide.
引文
Addy S K. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic[J]. Geochim. Comochim. Acta., 1979,43:1105-1115.
    Aplin A C, Cronan D S. Ferromanganese oxide deposits from the Central Pacific OceanⅡ[J].Geochim. Cosmochim. Acta., 1985, 49:437-451.
    Baturin G N, Yemelˊyanov, Ye M. Geochemistry of south Atlantic manganese nodules[J]. Geochem.Int., 1992, 29(6),106-116.
    Baturin, G. N., 1988. The Geochemistry of Manganese Nodules in the ocean, 1-342.
    Bau, M., Koschinsky, A., Dulski, P. and Hein, J., 1996. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Gechimica et Cosmochimica Acta. 60:1709-1725.
    Berger, G., Schott, J. and Christopher, G., 1988. Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: experimental investigation and modeling between 50°and 300℃. Chemical Geology. 71,297-312.
    Bonatti E, Kramer T, Rydell H. Classification and genesis of submarine iron-manganese deposits. In: P.R.Horn(Editor), Ferromanganese Deposits on the Ocean Floor[M]. National Science Foundation, Washington ,DC, 1972,PP.149-166.
    Burns R G, Burns V M, Stockman H W. A review of the Todorokite-buserite problem: implication to the mineralogy of marine manganese nodules[J]. Am. Mineral., 1983,68:972-980.
    Burns R G, Burns V M. Mineralogy of Manganese Nodules. In: G. P. Glasby(Editor). Marine Manganese Deposits[M]. Elsevier, Amsterdam, 1977,PP.185-248.
    Burns R G. The uptake of cobalt into ferromanganese nodules, soils, and synthetics manganese(IV) oxides[J]. Geochim. Cosmochim. Acta., 1976,40:95-102.
    Burns, R. G., 1970. Mineralogical Application of Crystal Field Theory. Cambridge Univ. Press. London. 224pp.
    Byrne, R. H. and Kim, K.-H., 1990. Rare earth element scavenging in seawater. Geochim. Cosmochim. Acta, 54: 2645-2656.
    Byrne, R.H., 2002. Inorganic speciation of dissolved elements in seawater: The independence of pH on concentration ratios.Geochem. Trans. 2002 (2), http://www.rsc.org/CFmuscat/ intermediate_abs- tract. cfm?FURL = /ej/gt/2002/B109732F/ index.htm and TYP=EONLY.
    Calvert S E, Price N B. Geochemical variation in ferromanganese nodules and associated sediment from the Pacific Ocean[J]. Mar. Chem., 1977,5:43-74.
    Chan, L. H. and Edmond, J. M., 1988. Variation of lithium isotope composition in the marine environment: A preliminary report. Geochimica et Cosmochimica Acta., 52: 1711-1717.
    Chan, L. H., Edmond, J. M., Thompson, G. and Gillis, K., 1992. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth & Planetary Science Letters., 108: 151-160.
    Chauhan O S, Gujar A R, Rao,Ch M. On the occurrence of ferromanganese micronodules from the sediments of the Begal Fan: a high terrigenous sediment input region[J]. Earth Planet. Sci. Lett., 1994,128:563-573.
    Chauhan O S, Rao Ch M. Influence of sedimentation on enrichment of manganese and growth of the ferromanganese micronodules, Bengal Fan, India[J]. Mar. Geol. 1999,161:39-47.
    Chen, X., Cheng, H. and Ma, J., 1998. A study on the stability and rheological behavior of concentrated TiO2 dispersions. Powder Technol. 99, 171-176.
    Chukrov, F. V., Gorshkov, A. I., 1980. Reply to Giobvanoli’s comment. Mineral Deposita., 15, 255-257.
    Craig J D, Andrews J E, Meylan M A. Ferromanganese deposits in the Hawiian Archipelago[J]. Mar.Geol., 1982,45:127-157.
    Cronan D S, Hodkinson R A, Miller S. Manganese nodules in the EEZ’s of island countries in the Southwestern equatorial Pacific[J]. Mar. Geol., 1991, 98:425-435.
    Cronan D S. Controls on the nature and distribution of manganese nodules in the western equatorial Pacific Ocean. In: Teleki P.G, Dobson M R, Moore J R, et al (Editors), Marine Minerals: Advances in Research and Resource Assesment. (NATO ASI Series C.) Reidel, Dordrecht, Netherlands,Vol.94, 1987,PP.177-188.
    Cronan D S. Deep-sea nodules.In:G.P.Glasby(Editor),Marine Manganese Deposits[M]. Elsevier, Amsterdam, 1977, PP,11-44.
    Cronan D S. Some control on the geochemical variability of manganese nodules with particular reference to the tropical South Pacific. In: Nicholson, K., Hein, J.R., Bühn, B., Daspugupta, S.(Eds), Manganese Mineralization: Geochemistry and Mineralogy of terrestrial and Marine Deposits[M]. Geol. Soc. London Spec. Publ., 1997,PP. 139-151.
    Davrache, M., Pourret, O., Gruan, G., Dia, A., 2004. Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide. Journal of Colloid Interface Science. 277: 271:279.
    Davranche, M., Pourret, O., Gruau, G.,et al. Adsorption of REE (Ⅲ)-humate complexes onto MnO2:Experimental evidence for cerium anomaly and lanthanidetetrad effect suppression. Geochimica et Cosmochimica Acta,2005,69(20):4825-4835
    De carlo E H. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean[J]. Mar. Geol., 1991a, 98:449-467.
    De Carlo, E. H. and Mcmurty, G. M., 1991b. Rare-earth elements geochemistry of ferromanganese crusts from the Hawaiian Archipelago, Central Pacific. Chem. Geol. 98: 235-250.
    De Carlo, E. H., Wen, X-Y., and Irving, M., 1998. The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles. Aquatic Geochem. 3, 357-389.
    De Villers, J. E., 1983. The manganese deposits of Griqualand West, South Africa: Some Mineralogic Aspects. Economic. Geology. 78, 1108-1118.
    Delaney, M. L. and Boyle, E. A., 1986. Lithium in foraminiferal shells implications for high-temperature hydrothermal circulation fluxes and oceanic crustal generation rates. Earth and Planetary Science Letters. 80, 91-105.
    Dillard J G, Crowther D L. The oxidation states of cobalt and selected metals in Pacific ferromanganese nodules[J]. Geochim. Cosmochim. Acta., 1982, 46:755-759.
    Dymond J, Lyle M, Finney B, et al. Ferromanganese nodules from MANOP sites H,S, and R.-Control o mineralogical and chemical composition by multiple accretionary processes[M]. Geochim. Cosmochim. Acta., 1984,48:931-949.
    Dzombak, D. A., Morel, M. M., 1990. Surface complexation modeling. John Wiley & Sons, New York, N Y, 1990.
    Edmond, J. M., Measures, C., McDuff, R. E., Chan, L . H., Collier, R., Grant, B., Gordon, L. I. and Corliss, J. B., 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth and Planetary Science Letters.46, 1-18.
    Egli, P.,1979. Cycling behavior of dissolved lithium in the oceans. Ph.D. Thesis, Northwestern University, Illinois, 175p.
    Elderfield, H., 1988. The oceanic chemistry of the rare earth elements. Philos. Trans. R. Soc. London, Ser. A. 325: -126.
    Emerson S, Jahake R., Bender M, et al. Early diagenesis in sediments from the eastern equatorial PacificⅠ,Pore water nutrient and carbonate results[J]. Earth Planet. Sci. Lett., 1980, 49:57-80
    Erel, Y. and Stolper, E. M., 1992. Modeling of rare-earth element partitioning between particles and solution in aquatic environments. Geochim. Cosmochim. Acta, 57: 513-518.
    Exon N F. Manganese nodules deposits in the Central Pacific Ocean and their variation with latitude. Mar. Min., 1983,4:79-107.
    Feng, Q., Kanoh, H. and Ooi, K., 1998. Manganese oxide porous crystals. Journal of Materials Chemistry. 9, 319-333.
    Fujimoto, H., 1976. Processing of gravity data at sea and their geophysical interpretation in the redgion o the western Pacific. Bull of the Ocean Research Institute. University of Tokyo. N8, 1-81.
    Gieskes, J. M., Schrag, D., Chan, L. H., Zhang, L. and Murray, J., 1998. Geochemistry of interstitial waters. Proc. ODP, Sci. Results., 152,293-305.
    Giovanoli, R. & Arrhenius, G. (1988) in The Manganese Nodule Belt of the Pacific Ocean, eds. Halbach, P., Friedrich, G. & von Stackelberg, U. (Ferdinand Enke Verlag, Stuttgart), pp. 20–37.
    Giovanoli, R.,1980. Vernadite is a random-stacked birnessite Mineral Deposita 15, 251–253.
    Glasby, G.P., Gwozdz, R., Kunzendorf, H., Friedrich, G., Thijssen, T., 1987. The distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and S.W. Pacific. Lithos, 20: 97-113.
    Grim, R.E., 1968. Clay mineralogy, 2nd edn., McGrawHill.
    Halbach P, Friedrich G, Von Stackelberg V. The Manganese Nodules Belt of the Pacific Ocean. Geological Environment. Nodule Formation and Mining Aspect[M]. Ferdinand Enke, Stuttgart, 1988,254PP.
    Halbach P, Giovanoli R, Von Borstel D. Geochemical processes controlling the relationship between Co, Mn, and Fe in early diagenetic deep-sea nodules[J] . Earth Planet . Sci. Lett., 1982,60.226-236.
    Halbach P, Scherhag C, Hebish U, et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean[J]. Mineral. Deposita., 1981,16:59-84.
    Halbach P, Segl M, Puteanus D,et al. Co-fluxes and growth rates in ferromanganese deposits fromcentral Pacific Seamount areas[J]. Nature, 1983, 304:716-719.
    Heier, N. S. and Billings, G. K., 1978. Lithium. In handbook of Geochemistry (ed. K. H. Wedepohl), pp. 3-G-13-H-1. Springer.
    Hein J R, Kochinsky A, Halbach P, et al. Iron and Manganese Oxide Mineralization in the Pacific. In: Nicholson K, Hein J R, Bühn B, et al.(Eds), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits[M]. Geol. Soc. London Spec. Publ., 1997,PP.123-138.
    Hein, J., 2000. Cobalt-rich Ferromanganese Crusts: Global distribution, composition, origin and research activities. ISA Technical study, 36-89.
    Hodkinson R A, Cronan D S. Regional and depth variability in the composition of cobalt rich ferromanganese crust from the SOPAC area and adjacent Parts of the central equatorial Pacific[J]. Mar. Geol., 1991,98:437-447.
    Huh, Y., Chan, L. H., Zhang, L. B. and Edmond, J, M., 1998. Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta., 62: 2039-2051.
    Jauhari P. Variability of Mn, Fe, Ni, Cu and Co in manganese nodules from the Central Indian Ocean Basin[J]. Mar. Geol., 1989, 86:237-242.
    Jeong K S, Kang J K, Chough S K. Sedimentary process and manganese nodules formation in the Korea Deep Ocean Study (DODOS) area, western part of Clarion-Clipperton fracture zones, northeast equatorial Pacific[J]. Mar.Geol., 1994, 122:125-150.
    Jiang, X. J., Lin, X. H., Yao, D., Zhai, S. K., Guo, W. D., 2007. Geochemistry of lithium in marine ferromanganese oxide deposits. Deep-Sea Research Part I. 54:85-98.
    Jung H S, Lee Ch B, Jeong KS, et al. Geochemical and mineralogical characteristics in two-color core sediments from the Korea Deep Ocean Study(KODOS) area, northeastern equatorial Pacific[J]. Mar.Geol., 1998,144:295-309.
    Jung H S, Lee Ch B. Growth of diagenetic ferromanganese nodules in an oxic deep-sea sedimentary environment, northeast equatorial Pacific[J]. Mar. Geol., 1999,157:127-144.
    Kalhorn S, Emerson S. The oxidation of manganese in surface sediments of the deep sea[J]. Geochimica et Cosmochimica Acta., 1984,48:897-902.
    Kasten S, Glasby G P, Schulz H D, et al. Rare earth elements in manganese nodules from theSouth Atlantic Ocean as indicators of oceanic bottom water flow[J]. Mar. Geol, 1998, 146:33-52.
    Kasten S, Glasby G P, Schulz H D, et al. Rare earth elements in manganese nodules from the South Atlantic Ocean as indicators of Oceanic bottom water flow[J]. Mar. Geol., 1998, 146:33-52.
    Klinkhammer G P. Early diagenesis in sediments from the Eastern Equatorial PacificⅡ, Pore water metal results[J]. Earth Planet. Sci. Lett. 1980,49:81-101.
    Knoop P A, Owen R M, Morgan C L. Regional variability in ferromanganese nodules composition: northeastern tropical Pacific Ocean[J]. Mar. Geol., 1998,147:1-12.
    Koeppenkastrop, D. and De Carlo, E. H., 1988. Adsorption of rare earth elements from seawater onto iron and manganese oxides. Eos. (Trans. Am. Geophys. Union), 69:1254(abstract).
    Koeppenkastrop, D. and De Carlo, E. H., 1990a. Distribution of rare earth elements between seawater and synthetic mineral phase. Eos. (Trans. Am. Geophys. Union), 71: 1417(abstract).
    Koeppenkastrop, D. and De Carlo, E. H., 1990b. Interactions of rare earth elements in seawater with iron and manganese oxides: A kinetic approach. Eos, Trans. Am. Geophys. Union, 71: 89.
    Koeppenkastrop, D. and De Carlo, E. H., 1992. Sorption of rare earth elements from seawater onto synthetic mineral particles: An experimental approach. Chem. Geol., 95:251-263.
    Koschinsky, A. and Halbach, P., 1995. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Gechimica et Cosmochimica Acta. 59:5113-5132.
    Kuss, J., Garbe-Sch?nberg, C-D. and Kremling, K., 2001. Rare earth elements in suspended particulate material of North Atlantic surface waters. Geochim. Cosmochim. Acta, 65: 187-199.
    Kuzin I P, Barash M S. Mechanism of manganese nodules accumulation and their maintenance at the sediments surface(Clarion-Clipperton province, the Pacific). Minerals of the Ocean, International Conference, St. Petersburg, 2002,55-57.
    Lebedev, V.I., 1957. Some factors in the migration of alkali and alkali earth elements in the supergene zone. Geochemistry, 1957,598-608.
    Lee Ch H, Lee S R. Authigenic philipsite in deep-sea manganese nodules from the Clarion-Clipperton area, NE equatorial Pacific[J]. Mar.Geol., 1998,148:125-133.
    LEI Guo-Bin, Bostrom B K. Mineralogical control on the transition metal distributions in marine manganese nodules[J]. Mar. Geol., 1995,123:253-261.
    Lei Guo-Bin. Crystal structure and metal uptake capacity of 10?-manganates: An overview[J]. Mar.Geol., 1996,133:103-112.
    Luo, Y. R. and Byrne, R. H., 2003. Carbonate comlexation of yttrium and the rare earth elements in natural waters. Geochim. Cosmochim. Acta, 68: 691-699.
    Manceau, A., Llorca, S., Calas, G., 1987.Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Valedonia. Geochimica et Cosmochimica Acta., 51,105-113.
    Mangini A, Segl M, Glasby G P, et al. Elenment accumulation rates in and growth histories of manganese nodules from the Southwestern Pacific Basin[J]. Mar. Geol., 1990,94:97-107.
    Matin-Barajas A, Lallier-Verges E, Leclaire L. Characteristics of manganese nodules from the Central Indian Basin: Relationship with the sedimentary environment[J]. Mar. Geol., 1991,101:249-265.
    Mellin T A, LEI Guo-Bin. Stabilization of 10?-manganates by interlayer cations and hydrothermal treatment: Implications for the mineralogy of marine manganese concretions[J]. Mar. Geol., 1993,115:67-83.
    Moore W S, Ku T L, Macdougall J D, et al. Fluxes of metals to manganese nodules: radiochemical, chemical, structural, and mineralogical studies[J]. Earth planet. Sci. Lett., 1981,52:151-171.
    Murray J W, Dillard J G., 1979. The oxidation of cobalt(II) adsorbed on manganese dioxide.Geochim.Cosmochim.Acta, 43:781~787
    Murray J W, Balistrieri L S, Paul B. The oxidation state of manganese in marine sediments and ferromanganese nodules[J]. Geochimica et Cosmochimica Acta., 1984, 48:1237-1247.
    O'Connor, M.V., G. Sposito, and K. Refson. Molecular Modeling Biogenic Manganese Oxides Using ab initio Density Functional Theory. Molecular Biogeochemistry of Manganese.
    American Geophysical Union Fall Meeting, San Francisco, CA, December 8 - 12, 2003.(Eos Trans.AGU 84(46). Fall Meeting Supplement, Abstract B12D-06, 2003). [oral presentation] O'Connor, M.V., G. Sposito, and K. Refson. Molecular Modeling of Biogenic Manganese Oxides by Density Functional Theory. Microbially Mediated Manganese and Iron Oxidation in the Biosphere. 227th American Chemical Society National Meeting, Anaheim, CA. March 28– April 1, 2004. [poster]
    Ohta, A. and Kawabe, I., 2000. REE(Ⅲ) adsorption onto Mn dioxide (δ-MnO2) and Feoxyhydroxide: Ce(Ⅲ) oxidation byδ-MnO2. Geochim. Cosmochim. Acta, 65: 695-703.
    Ostwald J. Ferrugenous vernadite in an Indian Ocean Ferromanganese Nodules[J]. Geol. Mag., 1984,121(5):43-48.
    Ostwald, J., 1988. Mineralogy of the Groote Eylandt manganese oxides: A review. Ore Geology Reviews. 4: 3-45.
    Piper D Z, Basler J R, Bischoff J L. Oxidation states of marine manganese nodules[J]. Geochim. Cosmochim. Acta., 1984, 48:2347-2355.
    Piper D Z, Blueford J R. Distribution, mineralogy, and texture of manganese nodules and their relation to sedimentation at DOMES site A in the equatorial North Pacific[J]. Deep-Sea Research., 1982, 29:927-952.
    Pistiner, J. S. and Henderson, G M., 2003. Lithium-isotope fractionation during continental weathering processes. Earth & Planetary Science Letters., 214: 327-339.
    Post, J. E. and Bish, D., 1988. Rietveld refinement of the todorokite structure. America Mineralogist., 73,861-869.
    Post, J. E., 1999. Manganese oxide minerals: Crystal structure and economic and environmental significance. Proc. Natl. Acad. Sci. USA. Vol. 96, pp. 3447-3454, March. Colloquium Paper. Post, J. E., Appleman, D. E., 1994. Crystal structure refinement of lithiophorite. America Mineralogist., 79,370-374.
    Post, J. E., Heaney, P. J. and Hanson, J., 2003. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. America Mineralogist. 88.,142-150.
    Price N B, Calvert S E. Compositional variation in Pacific Ocean ferromanganese nodules and its relationship to sediment accumulation rates[J]. Mar.Geol., 1970,9:145-171.
    Puteanus D, Glasby G P, Stoffers P, et al. Hydrothermal iron-rich deposits from the Teahitia-Mehitia and Macdonald hot spot areas, Southwest Pacific[J]. Mar. Geol., 1991,98:389-409.
    Quinn, K. A., Byrne, R. H., Schijf, J., 2006a. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of pH and ionic strength. Mar. Chem. 99: 128-150.
    Quinn, K. A., Byrne, R. H., Schijf, J., 2006b. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of solution complexation with carbonate. Geochim Cosmochim. Acta, 70: 4151-4165.
    Rabb W J. Physical and chemical features of Pacific deep sea manganese nodules and their implication to genesis of nodules. In: D.R..Horn(Editor). Ferromanganese Deposits on the Seafloor[M]. Natl. Sci. Found., Washington, 1972,PP.31-49.
    Rao V P. Mineralogy of the polymetallic nodules and associated sediments in the Central India Basin[J]. Mar. Geol., 1987,74:151-157.
    Reyss J L, Lemaitre N, Ku T L, et al. Growth of manganese nodules from Peru Basin: a radiochemical anatomy[J]. Geochim. Cosmochim. Acta., 1985, 49:2401-2408.
    Schindler, P. W., Stumm, W., 1987. The surface chemistry of oxides, hydroxides, and oxides minerals. In: Stumm, W. (Ed), Aquatic Surface Chemistry. Chemical processes at the Particle-Water Interface. Environmental Science and Technology. John Wiley and Sons, New York, NY, pp.83-110.
    Seyfried, W. E., Janecky, D. R. and Mottl, M., 1984. Alteration of the oceanic crust by seawater: implications for the geochemical cycles of boron and lithium. Geochimica et Cosmochimica Acta.,48:557-569.
    Shanno, R. D., Prewitt, C. T., 1969. Revised values of effective ionic radii in oxides ad fluorides. Acta Crystallographica., B25,925-946.
    Shen, Y. F., Zerger, R. P., DeGuzman, R. N., Suib, S., McCurdy., L., Potter, D. I., O’Young, C. L., 1993. Manganese oxide octahedral moleculr sieves: Preparation, characterization, and applications. Science, 260:511-515.
    Skornyakova N S, Murdmaa I O. Local variations in distribution and composition of ferromanganese nodules in the clarion-clipperton Nodule Province[J]. Mar. Geol., 1992,103:381-405.
    Stouff P, Boulégue J. Synthetic 10–? and 7- ? phyllomanganates; their structures as determined by EXAFS[J]. Am. Mineral., 1988,73: 1162-1169.
    Stouffyn-Egli, P., and Machenzie, F. T., 1984. Mass balance of dissolved lithium in the oceans. Geochimica et Cosmochimica Acta. 48:859-872.
    Stumm, W. and Morgan, J. J., 1981. Aquatic Chemistry, 2nd ed., John Wiley & Sons, Inc., p442-502.
    Sudhakar M. Ore grade manganese nodules from the Central Indian Basin[J]. Mar. Min., 1989,8:201-214.
    Sverjensky, D. A. and Sahai, N., 1996. Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water. Geochim. Cosmochim. Acta, 60: 3773-3797.
    Taematsu N, Sato Y, Okabe S. Factors controlling the chemical composition of marine manganese nodules and crusts: a review and synthesis. Mar. Chem., 1989, 26:41-56.
    Takebe, M. and Yamamoto, K., 2003. REE composition of pore water in Pacific pelagic sediments. Goldschmidt Conference Abstract, 2003.
    Tan, W.F., Liu, F., Huang, Q.Y., He, J.Z., 2006. Determination of zero charge of manganese oxides using an improved salt titration method. 18th World Congress of Soil Science. Philadelphia, Pennsylvania, USA.
    Tang, J. W. and Johannesson, K. H., 2005. Adsorption of rare earth elements onto Carrizo sand: Experimental investigations and modeling with surface complexation. Geochim. Cosmochim. Acta, 69: 5247-5261.
    Tckerria, P., 1980. Descriptive Regional Oceanography, Pergamon Press.253.
    Tebo, B. M. and L. M. He (1999). Microbially mediated oxidative precipitation reactions. In: T. Grundl and D. L. Sparks (eds.), Mineral-Water Interfacial Reactions: Kinetics and Mechanisms. ACS Symposium Series #715. P.393-414.
    Tebo, B.M., W.C. Ghiorse, L.G. van Waasbergen, P.L. Siering, and R. Caspi (1997).
    Bacterially-mediated mineral formation: Insights into manganese(II) oxidation from molecular genetic and biochemical studies. In: J.F. Banfield and K.H. Nealson (Eds.) Geomicrobiology: Interactions Between Microbes and Minerals. Reviews in Mineralogy 35:225-266.
    Tokashiki, Y. Hentona, T. Shimo, M. and Vidhana Arachch, L. P.,2003. Improvement of the Successive Selective Dissolution Procedure for the Separation of Birnessite, Lithiophorite, and Goethite in Soil Manganese Nodules. Soil Science Society of America Journal.,67:837-843.
    Usui A, mellin T, Nohara M, et al. Structural stability of marine 10? manganates from the Ogasawara(Bonin) Arc: Implications for low-temperature hydrothemal activity[J]. Mar. Geol., 1989,86: 41-56.
    Usui A, Nishimura A, Mita A. Composition and growth history of surficial and buried manganese nodules in the Penrhyn Basin, Southwestern Pacific[J]. 1993,Mar. Geol., 114:133-153.
    Usui, A., Bau, M., Yamazaki, T., 1997. Manganese microchimneys buried in the Central Pacific Pelagic sediments: evidence of intraplate water circulation?.Marine Geology.,141:269-285.
    Valsangkar A B, Khadge N H, Erwin Desa J A. Geochemistry of polymetallic nodules from the Central Indian Ocean Basin[J]. Mar. Geol., 1992,103:361-371.
    Varentsov I M, Drits V A, Gorshkov A I. Rare earth elements indicators of Mn-Fe oxyhydroxide crust formation on Krylov Seamount. Eastern Atlantic[J]. Mar Geol, 1991,96:71-84.
    Venz, P. A., Frost, R. L. and Kloprogge, J. T., 2000. Chemical properties of modified titania hydrolysates J. Non-Cryst. Solids. 276, 95-112.
    Von Stackelberg U, Beiersdorf H. The formation of manganese nodules between the Clarion and Clipperton fracture zones southeast of Hawaii[J]. Mar. Geol., 1991,98:411-423.
    White, W. M., 1998. Geochemistry: Chapter 15: The Oceans as a Chemical System. John-Hopkins University Press.
    Yao, W., Millero, F. J., 1996. Adsorption of Phosphate on Manganese Dioxide in Seawater. Environmental Science & Technology. 30,536-541.
    Yoshikawa K. The relationship between manganese minerals and metallic elements in deep-sea manganese nodules[J]. Mar. Geol., 1991, 101:267-286.
    Zhang, L. B., Chan, L. H. and Gieskes, J. M., 1998. Lithium isotope geochemistry of pore waters from ocean drilling program Sites 918 and 919, Irminger Basin. Geochimica et Cosmochimica Acta., 62: 2437-2450.
    陈冠球,1994。多金属结核主要元素的地球化学行为。地质出版社,北京。
    许东禹,姚德,梁宏锋等.多金属结核的特征及成因[M].北京:地质出版社, 1993,32.
    许东禹.中太平洋海山区富钴结壳的研究.海洋地质与第四纪地质[J],1986,6(1):65-74.
    许东禹.中太平洋锰结壳地球化学特征.海洋地质与第四纪地质[J],1990,10(4):1-10.
    姚德,梁宏锋,张丽洁.太平洋中部多金属结核稀土元素地球化学[J].海洋地质与第四纪地质,1991,11(4):51-58.
    姚德,张丽洁,John Wiltshire,等.约翰斯顿岛附近海域铁锰结壳矿物学地球化学研究[J]. 海洋地质与第四纪地质,1996,16(1):33-49.
    朱而勤.大洋锰结核矿物学[M].济南:山东大学出版社,1987,129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700