切换布尔网络的分析、控制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着系统生物学和医学的快速发展,布尔网络已经成为当前控制领域的研究热点.然而,在实际的布尔网络中,由于存在试图重构给定网络的外部干扰或控制,以及网络进化异步行为的影响,多模态切换现象广泛存在.这些多模态切换行为使得布尔网络的性能分析与控制设计变得异常复杂.本文利用矩阵的半张量积方法研究切换布尔网络的若干分析与控制问题,并将所得结果应用于系统生物学、组合电路的故障诊断和有限域网络的趋同分析.主要研究内容如下:
     1.建立了布尔网络Lyapunov函数的概念和构造方法.利用函数摄动对状态转移矩阵的影响,得到了布尔网络在函数摄动影响下拓扑结构变化的判别准则.利用输出矩阵筛选状态反馈增益矩阵的方法,给出了布尔控制网络输出反馈镇定控制器的设计算法.通过构造一族合适的能达集合,建立了布尔控制网络输出跟踪控制器的设计方法.利用矩阵的列展开技术,给出了一组布尔控制网络可同时镇定控制器的设计方法.
     2.建立了适用于切换布尔网络的共同Lyapunov函数方法,并给出了共同Lyapunov函数的构造方法.为了避免构造共同Lyapunov函数所带来的繁琐计算,通过定义切换布尔网络切换点能达的概念,给出了一个更易验证的判断切换布尔网络任意切换下稳定的充要条件.
     3.研究了切换布尔网络的稳定切换信号设计问题.基于切换点能达建立了切换布尔网络逐点切换可稳的充要条件.给出了仅依赖于时间的稳定切换信号和状态反馈稳定切换信号的设计方法.
     4.为切换布尔控制网络定义了切换-输入-状态关联矩阵并给出该矩阵的结构和意义.基于切换-输入-状态关联矩阵,建立了切换布尔控制网络能控和能达的充要条件,并给出了一个有效的算法来实现切换布尔控制网络在最短时间内能达.
     5.利用冗余变量分离技术研究了切换布尔控制网络的干扰解耦控制器设计问题.通过将切换布尔控制网络转化为合适的输出友好坐标形式,分别为系统关于切换信号的解耦、关于外部干扰的解耦以及关于切换信号和外部干扰的解耦设计了所有状态反馈控制器和输出反馈控制器.
     6.研究了状态和输入受限的切换布尔网络的分析与控制问题.基于受限关联矩阵建立了状态和输入受限的切换布尔网络能控的充分必要条件和Mayer型最优控制的求解方法.通过将受限切换布尔控制网络转化为等价的非受限系统,分别给出了状态和输入受限的切换布尔网络在开环控制和闭环控制作用下可镇定的充分必要条件.
     7.将所得的理论结果分别应用于系统生物学、组合电路的故障诊断和有限域网络的趋同等实际问题.为大肠杆菌乳糖操纵子网络设计了输出反馈镇定控制器和输出跟踪控制器,并利用逻辑矩阵分解技术分析了信号转导子网络的拓扑结构.给出了高阶布尔导数基于矩阵半张量积的计算公式,并据此建立了组合电路多个故障检测向量集合的求解方法.基于切换点能达建立了切换拓扑下有限域网络在任意切换下趋同的充要条件.
With the rapid development of systems biology and medical science, Boolean networks have attracted much attention in the current control field. However, due to the existence of external interventions or control inputs that attempt to re-engineer a given Boolean network, and the effect of asynchronous dynamics in Boolean net-works, the multi-mode switching phenomenon is often encountered in a real Boolean network. These multi-mode switching behaviors make the analysis and control de-sign of Boolean networks more complex. This paper investigates the analysis and control of switched Boolean networks by using the semi-tensor product method, and applies the obtained results to the systems biology, the fault detection of combina-tional circuits and the consensus of finite-field networks. The main contents of this paper are listed as follows:
     1. The concept of Lyapunov function for Boolean networks is defined and a construction method is proposed. Using the effect of function perturbations on the state transition matrix, several necessary and sufficient conditions are obtained for the topological structure analysis of Boolean networks with function perturbations. Based on the selection technique of state feedback gain matrices from the output equation, a general procedure is given for the design of output feedback stabilizers of Boolean networks. By constructing a series of reachable sets, a control design method is established for the output tracking control of Boolean networks. Using the column stacking form of matrices, an effective procedure is proposed to design simultaneous stabilizers for a set of Boolean networks.
     2. The common Lyapunov function method is established for switched Boolean networks, and a constructive procedure is given for constructing common Lyapunov functions. To avoid the tedious computation of constructing common Lyapunov functions, an easily verifiable necessary and sufficient condition is presented for the stability of switched Boolean networks under arbitrary switching signal by defining the concept of switching point reachability.
     3. The switching signal design for the stabilizability of switched Boolean net-works is studied. Based on the switching point reachability, a necessary and suf-ficient condition is given for the point-wise switching stabilizability of switched Boolean networks. Moreover, several methods are proposed to design both time-dependent and state feedback switching signals for the consistent switching stabiliz-ability of switched Boolean networks.
     4. A kind of switching-input-state incidence matrix is proposed for switched Boolean control networks, based on which, a necessary and sufficient condition is presented for the controllability and reachability. Moreover, an effective algorithm is established to realize the reachability in the shortest time.
     5. The disturbance decoupling problem (DDP) of switched Boolean control networks is considered by using the redundant variable separation technique. By converting switched Boolean control networks into a proper output-friendly coordi-nate frame, all the state feedback and output feedback controllers are designed for DDPs with respect to the switching signal, the exogenous disturbances, and both the switching signal and the exogenous disturbances, respectively.
     6. The analysis and control of switched Boolean networks with state and input constraints are investigated. Based on a kind of constrained incidence matrix, a nec-essary and sufficient condition is obtained for the controllability of the constrained system, and a novel design method is proposed for the Mayer-type optimal control. By converting the constrained system into an equivalent unconstrained one, some necessary and sufficient conditions are presented for the design of both open-loop and closed-loop stabilizers.
     7. The obtained results are applied to the systems biology, the fault detec-tion of combinational circuits and the consensus of finite-field networks. Both the output feedback stabilizers and the output tracking controllers are designed for the lac operon in the bacterium Escherichia coli. Using the logical matrix factorization technique, the topological structure of subnetwork of signal transduction networks is analyzed. A general formula is given for the calculation of higher-order Boolean derivative, based on which a new method is proposed to solve the test vector set of multi-fault detection of combinational circuits. Based on the switching point reachability, a necessary and sufficient condition is presented for the consensus of finite-field networks under arbitrary switching signal.
引文
[1]S. Kauffman, Metabolic stability and epigenesis in randomly constructed ge-netic nets[J], J. Theoret. Biol.,1969,22(3):437.
    [2]F. Ay, F. Xu, T. Kahveci, Scalable steady state analysis of Boolean biological regulatory networks[J], PLoS ONE,2009,4(12):e7992.
    [3]Y. Xiao, E. R. Dougherty, The impact of function perturbations in Boolean networks[J], Bioinformatics,2007,23(10):1265-1273.
    [4]A. Saadatpour, I. Albert, R. Albert, Attractor analysis of asynchronous Boolean models of signal transduction networks[J], J. Theoret. Biol.,2010, 266:641-656.
    [5]M. Chaves, E. D. Sontag, R. Albert, Methods of robustness analysis for Boolean models of gene control networks[J], IET Systems Biology,2006, 153:154-167.
    [6]B. Drossel, T. Mihaljev, F. Greil, Number and length of attractors in a criti-cal Kauffman model with connectivity one[J], Phys. Rev. Lett.,2005,94(8): 088701-(1-4).
    [7]I. Shmulevich, E. R. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks:a rule-based uncertainty model for gene regulatory networks[J], Bioinformatics,2002,18(2):261-274.
    [8]Q. Zhao, A remark on "Scalar equations for synchronous Boolean networks with biological applications" by C. farrow, J. Heidel, J. Maloney, J. Rogers[J], IEEE Trans. Neural Networks,2005,16(6):1715-1716.
    [9]G. Karlebach, R. Shamir, Modelling and analysis of gene regulatory net-works[J], Nature Reviews Molecular Cell Biology,2008,9:770-780.
    [10]M. Aldana, Boolean dynamics of networks with scale-free topology[J], Phys-ica D,2003,185(1):45-66.
    [11]T. Ideker, T. Galitski, L. Hood, A new approach to decoding life:Systems biology[J], Annu. Rev. Genomics Hum. Genet.,2001,2:343-372.
    [12]I. Shmulevich, E. R. Dougherty, Probabilistic Boolean Networks:The Mod-eling and Control of Gene Regulatory Networks[M], SIAM Press,2009.
    [13]R. Pal, A. Datta, M. L. Bittner, E. R. Dougherty, Optimal infinite horizon control for probabilistic Boolean networks[J], IEEE Trans. Signal Process., 2006,54(6):2375-2387.
    [14]Q. Liu, X. Guo, T. Zhou, Optimal control for probabilistic Boolean net-works[J], IET Syst. Biol.,2010,4(2):99-107.
    [15]T. Akutsu, M. Hayashida, W. Ching, M. Ng, Control of Boolean networks: Hardness results and algorithms for tree structured networks[J], J. Theoret. Biol.,2007,244(4):670-679.
    [16]程代展,齐洪胜.矩阵的半张量积:理论与应用[M],北京:科学出版社,2007
    [17]D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks:A Semi-tensor Product Approach[M], London:Springer,2011.
    [18]D. Cheng, H. Qi, Y. Zhao, An Introduction to Semi-tensor Product of Matrices and Its Applications[M], Singapore:World Scientific,2012.
    [19]D. Cheng, H. Qi, Controllability and observability of Boolean control net-works[J], Automatica,2009,45(7):1659-1667.
    [20]D. Cheng, Z. Li, H. Qi, Realization of Boolean control networks [J], Automat-ica,2010,46(1):62-69.
    [21]D. Cheng, H. Qi, Z. Li, J. B. Liu, Stability and stabilization of Boolean net-works[J], Int. J. Robust Nonlinear Contr.,2011,21(2):134-156.
    [22]D. Cheng, Y. Zhao, Identification of Boolean control networks[J], Automat-ica,2011,47(4):702-710.
    [23]D. Cheng, H. Qi, A linear representation of dynamics of Boolean networks [J], IEEE Trans. Aut. Contr.,2010,55(10):2251-2258.
    [24]D. Cheng, Disturbance decoupling of Boolean control networks[J], IEEE Trans. Aut. Contr.,2011,56(1):2-10.
    [25]D. Cheng, State space analysis of Boolean networks[J], IEEE Transactions on Neural Networks,2010,24(4):584-594.
    [26]D. Cheng, X. Xu, Bi-decomposition of multi-valued logical functions and its applications[J], Automatica,2013,49(7):1979-1985.
    [27]D. Cheng, Input-state approach to Boolean networks[J], IEEE Transactions on Neural Networks,2009,20(3):512-521.
    [28]D. Cheng, H. Qi, Z. Li, Model construction of Boolean network via observed data[J], IEEE Transactions on Neural Networks,2011,22(4):525-536.
    [29]Y. Zhao, D. Cheng, H. Qi, Input-state incidence matrix of Boolean control networks and its applications[J], Syst. Contr. Letters,2010,59(12):767-774.
    [30]Y. Zhao, J., Kim, M., Filippone, Aggregation algorithm towards large-scale Boolean network analysis[J], IEEE Trans. Aut. Contr.,2013,58(8):1976-1985..
    [31]Y. Zhao, Z. Li, D. Cheng, Optimal control of logical control networks[J], IEEE Trans. Aut. Contr.,2011,56(8):1766-1776.
    [32]Z. Li, Y. Qiao, H. Qi, D. Cheng, Stability of switched polynomial systems[J], Journal of Systems Science and Complexity,2008,21(3):362-377.
    [33]Z. Liu, Y. Wang, Reachability/controllability of high order mix-valued logical networks[J], Journal of Systems Science and Complexity,2013,26(3):341-349.
    [34]Y. Lou, Y. Hong, Multi-agent decision in Boolean networks with private infor-mation and switching interconnection[C], Proc. of the 29th Chinese Control Conference, Beijing,2010,4530-4535.
    [35]F. Li, J. Sun, Controllability of Boolean control networks with time delays in states[J], Automatica,2011,47(3):603-607.
    [36]F. Li, J. Sun, Controllability of probabilistic Boolean control networks[J], Au-tomatica,2011,47(12):2765-2771.
    [37]F. Li, J. Sun, Stability and stabilization of Boolean networks with impulsive effects[J], Syst. Contr. Letters,2012,61(1):1-5.
    [38]F. Li, J. Sun, Q. Wu, Observability of Boolean control networks with state time delays[J], IEEE Trans. Neural Networks,2011,22(6):948-954.
    [39]L. Zhang, K. Zhang, Controllability and observability of Boolean control net-works with time-variant delays in states[J], IEEE Trans. Neur. Netw. Learn. Syst.,2013,24:1478-1484.
    [40]J. Feng, J. Yao, P. Cui, Singular Boolean networks:Semi-tensor product ap-proach[J], Sci. China Inf. Sci.,2012, DOI:10.1007/s11432-012-4666-8.
    [41]E. Fornasini, M. Valcher, Observability, reconstructibility and state observers of Boolean control networks[J], IEEE Trans. Aut. Contr.,2013,58(6):1390-1401.
    [42]E. Fornasini, M. Valcher, On the periodic trajectories of Boolean control net-works[J], Automatica,2013,49(5):1506-1509.
    [43]E. Fornasini, M. Valcher, Optimal control of Boolean control networks[J], 2013, DOI:10.1109/TAC.2013.2294821.
    [44]X. Xu, Y. Hong, Solvability and control design for synchronization of Boolean networks[J], Journal of Systems Science and Complexity,2013,26(6):871-885.
    [45]R. Li, M. Yang, T. Chu, State feedback stabilization for Boolean control net-works[J], IEEE Trans. Aut. Contr.,2013,58(7):1853-1857.
    [46]M. Yang, R. Li, T. Chu, Controller design for disturbance decoupling of Boolean control networks[J], Automatica,2013,49(1):273-277.
    [47]H. Li, Y. Wang, Z. Liu, A semi-tensor product approach to pseudo-Boolean functions with application to Boolean control networks[J], Asian Journal of Control,2013, DOI:10.1002/asjc.767.
    [48]H. Li, Y. Wang, Output feedback stabilization control design for Boolean con-trol networks[J], Automatica,2013,49(12):3641-3645.
    [49]H. Li, Y. Wang, Z. Liu, Simultaneous stabilization for a set of Boolean control networks[J], Syst. Contr. Lett.,2013,62(12):1168-1174.
    [50]Z. Liu, Y. Wang, Disturbance decoupling of mix-valued logical networks via the semi-tensor product method[J], Automatica,2012,48(8):1839-1844.
    [51]D. Laschov, M. Margaliot, Controllability of Boolean control networks via the Perron-Frobenius theory[J], Automatica,2012,48(6):1218-1223.
    [52]D. Laschov, M. Margaliot, A maximum principle for single-input Boolean control networks[J], IEEE Trans. Aut. Contr.,2011,56(4):913-917.
    [53]D. Laschov, M. Margaliot, Minimum-time control of Boolean networks[J], SIAM J. Control Optim.,2013,51(4),2869-2892.
    [54]李志强,宋金利,布尔控制网络的能控性与能观性[J],控制理论与应用,2013,30(6):760-764.
    [55]R. Li, T. Chu, Complete synchronization of Boolean networks[J], IEEE Trans. Neur. Netw. Learn. Syst.,2012,23(5):840-846.
    [56]H. Qi, D. Cheng, Logic and logic-based control[J], Journal of Control Theory and Applications,2008,6(1):123-133.
    [57]段培永,吕红丽,冯俊娥,刘聪聪,李慧,室内热舒适环境的模糊关系矩阵模型控制系统[J],控制理论与应用,2013,30(2):215-221.
    [58]D. Cheng, J. Feng, H. Lv, Solving fuzzy relational equations via semi-tensor product[J], IEEE Transaction on Fuzzy Systems,2012,20(2):390-396.
    [59]葛爱东,王玉振,魏爱荣,刘红波,多变量模糊系统控制设计及其在并行混合电动汽车中的应用[J],控制理论与应用,2013,30(8):998-1004.
    [60]H. Li, Y. Wang, A matrix approach to latticized linear programming with fuzzy-relation inequality constraints [J], IEEE Transactions on Fuzzy Systems, 2013,21(4):781-788.
    [61]Y. Wang, C. Zhang, Z. Liu, A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems[J], Automat-ical 12,48(7):1227-1236.
    [62]D. Cheng, F. He, T. Xu, On networked non-cooperative games-A semi-tensor product approach [C], Proceedings of the 9th Asian Control Conference, Is-tanbul,2013,1-6.
    [63]P. Guo, Y. Wang, H. Li, Algebraic formulation and strategy optimization for a class of evolutionary network games via semi-tensor product method [J], Automatica,2013,49(11):3384-3389.
    [64]X. Xu, Y. Hong, Matrix expression and reachability analysis of finite au-tomata[J], J. Contr. Theory Appl.,2012,10:210-215.
    [65]X. Xu, Y. Hong, Matrix approach to model matching of asynchronous sequen-tial machines[J], IEEE Trans. Aut. Contr.,2013,58(11):2974-2979.
    [66]H. Li, Y. Wang, Z. Liu, Existence and number of fixed points of Boolean transformations via the semi-tensor product method[J], Applied Mathematics Letters,2012,25(8):1142-1147.
    [67]D. Cheng, H. Qi, Y. Zhao, Analysis and control of general logical networks-An algebraic approach[J], Annual Reviews in Control,2012,36:11-25.
    [68]程代展,齐洪胜,赵寅,布尔函数的分析与控制-矩阵半张量积方法[J],自动化学报,2011,37:529-540.
    [69]程代展,赵寅,徐相如,从布尔代数到布尔微积分[J],控制理论与应用,2011,28(10):1513-1523.
    [70]程代展,赵寅,矩阵的半张量积:一个便捷的新工具[J],科学通报,2011,56:2664-2674.
    [71]D. Cheng, H. Qi, A. Xue, A survey on semi-tensor product of matrices[J], Journal of Systems Science and Complexity,2007,20(2):304-322.
    [72]N. H. El-Farra, A. Gani, P. D. Christofides, A switched systems approach for the analysis and control of mode transitions in biological networks[C],2005 American Control Conference, Portland,2005,3247-3252.
    [73]N. H. El-Farra, A. Gani, P. D. Christofides, Analysis of mode Transitions in biological networks[J], AIChE Journal,2005,51(8):2220-2234.
    [74]R. Ghosh, C. Tomlin, Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling:Delta-Notch pro-tein signalling[J],IEE Systems Biology,2004,1(1):170-183.
    [75]K. Kobayashi, K. Hiraishi, Optimal control of asynchronous Boolean net-works modeled by petri nets[C], Proceedings of the 2nd International Work-shop on Biological Process & Petri Nets,2011,7-20.
    [76]V. Hatzimanikatis, K. H. Lee, J. E. Bailey, A mathematical description of reg-ulation of the G1-S transition of the mammalian cell cycle[J], Biotechnology and Bioengineering,1999,65(6):631-637.
    [77]B. Lewin, Genes VII[M], Cambridge:Oxford Univ. Press,2000.
    [78]H. Li, Global stability and controllability of switched Boolean networks[C], Proceedings of the 31st Chinese Control Conference, Hefei,2012,82-88.
    [79]H. Li, Y. Wang, Consistent stabilizability of switched Boolean networks[J], Neural Networks,2013,46:183-189.
    [80]H. Li, Y. Wang, On reachability and controllability of switched Boolean con-trol networks[J], Automatica,2012,48(11):2917-2922.
    [81]F. Li, X. Lu, Complete synchronisation for two coupled logical systems[J], IET Control Theory & Applications,2013,7(14):1857-1864.
    [82]F. Li, X. Lu, Global stability at a limit cycle of switched Boolean networks under arbitrary switching signals[J], Neurocomputing,2014, in press.
    [83]H. Chen, J. Sun, Global stability and stabilization of switched Boolean net-work with impulsive effects[J], Applied Mathematics and Computation,2013, 224:625-634.
    [84]L. Zhang, J. Feng, J. Yao, Controllability and observability of switched Boolean control networks[J], IET Control Theory & Applications,2012, 6(16):2477-2484.
    [85]M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[J], IEEE Trans. Aut. Contr.,1998,43(4):475-482.
    [86]J. P. Hespanha, A. S. Morse, Stability of switched systems with average dwell-time[C],38th IEEE Conference on Decision and Control, Phoenix,1999, 2655-2660.
    [87]D. Cheng, L. Guo, Y. Lin, Y. Wang, Stabilization of switched linear sys-tems[J], IEEE Trans. Aut. Contr.,2005,50(5):661-666.
    [88]郭荣伟,王玉振,一类多平衡点线性切换系统稳定区域的估计[J],控制理论与应用,2012,29(4):409-414.
    [89]A. A. Agrachev, D. Liberzon, Lie-algebraic stability criteria for switched sys-tems[J], SIAM J. Contr. Optim.,2001,40(1):253-269.
    [90]程代展,郭宇骞,切换系统进展[J],控制理论与应用,2005,22(6):954-960.
    [91]X. Dai, Y. Huang, M. Xiao, Criteria of stability for continuous-time switched systems by using Liao-type exponents[J], SIAM J. Contr. Optim.,2010,48(5): 3271-3296.
    [92]M. Dehghan, C. J. Ong, Discrete-time switching linear system with con-straints:characterization and computation of invariant sets under dwell-time consideration[J], Automatica,2012,48(5):964-969.
    [93]D. Liberzon, S. Trenn, Switched nonlinear differential algebraic equations: solution theory, Lyapunov functions, and stability [J], Automatica,2012, 48(5):954-963.
    [94]D. Liberzon, R. Tempo, Common Lyapunov functions and gradient algo-rithms[J], IEEE Trans. Aut. Contr.,2004,49(6):990-994.
    [95]H. Lin, P. J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results[J], IEEE Trans. Aut. Contr.,2009,54(2):308-322.
    [96]T. Monovich, M. Margaliot, Analysis of discrete-time linear switched sys-tems:a variational approach[J], SIAM J. Contr. Optim.,2011,49(2):808-829.
    [97]E. Skafidas, R. J. Evans, A. V. Savkin, I. R. Petersen, Stability results for switched controller systems[J], Automatica,1999,35(4):553-564.
    [98]G. Stikkel, J. Bokor, Z. Szabo, Necessary and sufficient condition for the con-trollability of switching linear hybrid systems[J], Automatica,2004,40(6): 1093-1097.
    [99]P. V. Zhivoglyadov, R. H. Middleton, Stability and switching control design issues for a class of discrete time hybrid systems[J], Automatica,2003,39(6): 981-987.
    [100]高在瑞,沈艳霞,纪志成,非线性切换广义系统的输入-状态稳定性[J],控制理论与应用,2013,30(3):385-391.
    [101]L. C. G. J. M. Habets, P. J. Collins, J. H. van Schuppen, Reachability and control synthesis for piecewise-affine hybrid systems on simplices[J], IEEE Trans. Aut. Contr.,2006,51(6):938-948.
    [102]Z. Ji, L. Wang, On controllability of switched linear systems[J], IEEE Trans. Aut. Contr,2008,53(3):796-801.
    [103]D. Liberzon, Switching in Systems and Control[M], Springer,2003.
    [104]Z. Sun, Stabilizability and insensitivity of switched linear systems[J], IEEE Trans. Aut. Contr.,2004,49(7):1133-1137.
    [105]A. Trofino, D. Assmann, C. C. Scharlan, D. F. Coutinho, Switching rule de-sign for switched dynamic systems with affine vector fields[J], IEEE Trans. Aut. Contr.,2009,54(9):2215-2222.
    [106]Z. Sun, S. Ge, Switched Linear Systems:Control and Design[M], Springer, 2005.
    [107]Z. Sun, Combined stabilizing strategies for switched linear systems [J], IEEE Trans. Aut. Contr.,2006,51(4):666-674.
    [108]Z. Sun, D. Zheng, On reachability and stabilization of switched linear sys-tems[J], IEEE Trans. Aut. Contr.,2001,46(2):291-295.
    [109]Z. Sun, S. Ge, T. H. Lee, Controllability and reachability criteria for switched linear systems[J], Automatica,2002,38(5):775-786.
    [110]G. Xie, L. Wang, Necessary and sufficient conditions for controllability and observability of switched impulsive control systems[J], IEEE Trans. Aut. Contr.,2004,49(6):960-966.
    [111]Z. Ji, X. Guo, X. Xu, L. Wang, Stabilization of switched linear systems with time-varying delay in switching occurrence detection[J], Circuits Systems and Signal Processing,2007,26(30):361-377.
    [112]Z. Sun, S. S. Ge, On stability of switched linear systems with perturbed switching paths[J], Journal of Control Theory & Applications,2006,4(1): 18-25.
    [113]Z. Sun, Robust switching of discrete-time switched linear systems[J], Auto-matica,2012,48(1):239-242.
    [114]M. Newman, Modularity and community structure in networks[J], Proc. Natl. Aacd. Sci. USA,2006,103:2577-2582.
    [115]N. Otsuka, Disturbance decoupling with quadratic stability for switched linear systems[J], Syst. Contr. Letters,2010,59(6):349-352.
    [116]E. Yurtseven, W. P. M. H. Heemels, M. K. Camlibel, Disturbance decoupling of switched linear systems[J], Syst. Contr. Letters,2012,61(1):69-78.
    [117]L. Zhang, D. Cheng, C. Li, Disturbance decoupling of switched nonlinear systems[J], IEE Proc,2005,152:49-54.
    [118]K. H. Kim, Boolean Matrix Theory and Applications[M], New York:Marcel Dekker,1982.
    [119]D. Gizopoulos, Advances in Electronic Testing:Challenges and Methodolo-gies [M], Springer,2006.
    [120]S. Yang, Fault Diagnosis and Reliability Design of Digital System[M], Bei-jing:Tsinghua University Press,2000.
    [121]C. Q. Wang, C. H. Wang, A method for logic circuit test generation based on Boolean partial derivative and BDD[C], World Congress on Computer Sci-ence and Information Engineering,2009,499-504.
    [122]D. Yu, X. Chen, New method testing the double fault of combinational cir-cuits based on Boolean partial derivative[J], Journal of Zhejiang University (Science Edition),2003,30(5):536-538.
    [123]D. Bochmann, Boolean Differential Calculus[M], Karl Marx Stadt:German Democratic Republic,1978.
    [124]S. Agaian, K. Panetta, S. Nercessian, E. Danahy, Boolean derivatives with application to edge detection for imaging systems[J], IEEE Trans. Syst. Man, Cybern. B, Cybern.,2010,40(2):371-382.
    [125]H. Fujiwara, S. Toida, The complexity of fault detection problems for com-binational logic circuits[J], IEEE Transactions on Computers,1982, C-31(6): 555-560.
    [126]F. Pasqualetti, D. Borra, F. Bullo, Consensus networks over finite fields[J], Automatica,2014,50(2):349-358.
    [127]S. Azuma, R. Yoshimura, T. Sugie, Broadcast control of multi-agent sys-tems[J], Automatica,2013,49(8):2307-2316.
    [128]T. Li, M. Fu, L. Xie, J. Zhang, Distributed consensus with limited communi-cation data rate[J], IEEE Trans. Aut. Contr.,2011,56(2):279-292.
    [129]T. Li, L. Xie, Distributed coordination of multi-agent systems with quantized-observer based encoding-decoding[J], IEEE Trans. Aut. Contr.,2012,57(12): 3023-3037.
    [130]Z. Li, W. Ren, X. Liu, L. Xie, Distributed consensus of linear multi-agent systems with adaptive dynamic protocols[J], Automatica,2013,49(7):1986-1995.
    [131]S. Liu, T. Li, L. Xie, M. Fu, J. Zhang, Continuous-time and sampled-data-based average consensus with logarithmic quantizers[J], Automatica,2013, 49(11):3329-3336.
    [132]K. You, L. Xie, Network topology and communication data rate for consen-susability of discrete-time multi-agent systems[J], IEEE Trans. Aut. Contr., 2011,56(10):2262-2275.
    [133]U. Munz, A. Papachristodoulou, F. Allgower, Consensus in multi-agent sys-tems with coupling delays and switching topology[J], IEEE Trans. Aut. Contr.,2011,56(12):2976-2982.
    [134]R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays [J], IEEE Trans. Aut. Contr.,2004, 49(9):1520-1533.
    [135]Y. Sun, L. Wang, G. Xie, Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays[J], Syst. Contr. Letters,2008,57(2):175-183.
    [136]D. Xue, J. Yao, J. Wang, Y. Guo, X. Han, Formation control of multi-agent systems with stochastic switching topology and time-varying communication delays[J], IET Control Theory & Applications,2013,7(13):1689-1698.
    [137]A. Fagiolini, A. Bicchi, On the robust synthesis of logical consensus algo-rithms for distributed intrusion detection[J], Automatica,2013,49(8):2339-2350.
    [138]郭雷,评“矩阵的半张量积:一个便捷的新工具”[J],科学通报,2011,56:2662-2663.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700