用户名: 密码: 验证码:
图像恢复及重建模型设计和算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像是人类获取信息的主要来源.由于航空航天、生物医学工程、工业检测、文化艺术、模式识别、军事等发展需求,图像处理越来越受到关注,已经逐步发展成为一门前景远大的新型学科.就不同的处理目的,数字图像处理主要可以分为几何处理、算术处理、图像编码、图像增强、图像复原、图像重建、图像分割和图像分析等几项内容.本论文主要研究图像复原和图像重建问题,包括图像去噪问题、CT图像重建、核磁共振图像重建和光声图像重建等工作,研究这些问题的数学模型的建立和相应快速算法的设计.
     在医学成像中,非加性泊松噪声干扰居多,研究成果相对较少.Le等人设计了TV正则化下的泊松噪声移除模型,然而一阶的全变差算子产生的不可避免的“分片常数”现象引入了图像假象.而高阶模型又容易导致复原图像边缘的过度光滑.针对这些存在的问题,本论文通过引入边缘控制函数,提出了一种自适应的泊松噪声移除高阶模型,证明了这种模型解存在且唯一,设计了针对此模型的快速算法,讨论了相应算法的收敛性.
     图像重建一般指的是从原始扫描数据经过计算机采用特定的算法处理最后得到能用于诊断的一幅横断面图像.本论文主要研究三种重要的图像重建技术,即基于X-ray的计算机断层成像,核磁共振成像,以及近几年新兴起的光声成像.
     由于X-ray辐射对人体有害,近年来关于如何用尽可能小的X-ray辐射剂量重建适合临床应用的图像受到广泛关注.然而剂量的减少会导致伪影以及噪声等劣质的成像图像,给临床诊断带来困难.本论文本着低剂量X-ray辐射的原则,提出了一种新的自适应的小波稀疏正则化算法用于CT图像重建问题.这种自适应的小波稀疏正则化算法克服了传统的同一小波紧框架稀疏正则化算法不能适合于不同的CT图像的缺点.为了进一步提高重建质量和速度,本论文提出了一种新的自适应的tensor framelet稀疏正则化算法用于CT图像重建问题.新提出的自适应的tensor framelet稀疏正则化算法首先基于事先给定的参考图像,根据UEP条件构造一个tensor framelet,然后将新构建的自适应的tensor framelet用于CT图像重建中,新提出的方法减少了CT图像重建所需要的投影数从而减少了扫描时间降低了X-ray的摄入,另外,算法还采用了GPU并行加速,进一步提高了运算效率.
     核磁共振成像是另外一个研究活跃也更为复杂的领域,而扩散加权成像作为核磁共振成像的新技术是利用MRI观察活体组织水分子弥散运动最理想的成像方法.然而核磁共振成像往往具有扫描时间过长和成像分辨率不高等缺点.为了提高重建图像质量,本文提出了一种新的基于压缩感知的扩散加权成像MRI模型,即相位约束的低秩模型,新的模型考虑了不同扩散方向的相关性.针对这种新模型本文提出了一种基于奇异值分解和部分傅里叶变换的快速算法.进一步地,为了降低采样率从而减少扫描时间,本论文还融合了序列并结合全面自动校准部分并行采集技术(GRAPPA)到新算法中,图像重建所需采样数据明显减少.
     光声成像能够有效的进行生物组织和功能成像,它结合了光学成像的高对比度特性和超声成像的高穿透深度特性,可以提供高对比度和高分辨率组织成像.本文建立了多光源的光声成像(MS-QPAT)小波稀疏正则化模型.由于这种类型的问题通常为非线性、非可微的非凸模型,数值算法研究较少.本文给出了这种问题的快速数值算法和相关的收敛性分析.
Image is the main source for human to obtain information. As the devel-opment of aerospace, biomedical engineering, industrial inspection, culture and art, pattern recognition, and military etc., image processing has been paid more and more attention and has gradually become a new discipline outlook. In terms of the different processing purposes, digital image processing can be divided into geometric processing, arithmetic processing, image coding, image enhancement, image restoration, image reconstruction, image segmentation and image analysis. This paper mainly investigates image restoration and image reconstruction prob-lems, including image denoising, CT image reconstruction, magnetic resonance image reconstruction and photoacoustic tomography image reconstruction. The mathematical models of these problems are proposed and the corresponding fast algorithms are designed.
     In medical imaging field, Poisson noise appears more frequently. Poisson noise is non-additive noise, fewer results for removing Poisson noise can be found at present. Le et al. proposed the Poisson noise removal TV regularization model. However, the second-order total variation regularization model suffers from "piece-wise constant" inevitably and the high order model will easily lead to the over-smooth of the image edge. To avoid these problems, by introducing edge control function, this thesis proposes the adaptive high order Poisson noise removal model and proves that the solution of the proposed adaptive model exists and is unique. In addition, a fast algorithm for this model is presented, and also the corresponding convergence of the proposed algorithm is discussed.
     Image reconstruction generally means to obtain a cross-sectional image for diagnosis by some specific algorithms based on the raw scanning data. This pa-per mainly studies three kinds of important image reconstruction techniques, i.e. Computed tomography based on X-ray (CT), magnetic resonance imaging (MRI), and photoacoustic tomography (PAT).
     Since the X-ray radiation is harmful to the human body, how to reconstruct images used for clinical application with less X-ray dose are paid more and more attention. However, dose reduction will result in poor quality image such as image artifacts and noise etc., which will bring clinical diagnosis difficult. Based on reduc-ing X-ray radiation, a new adaptive wavelet sparse regularization algorithm for CT reconstruction is introduced. The proposed adaptive wavelet sparse regularization algorithm overcomes the problem that the traditional wavelet tight frame sparse regularization algorithm is not suitable for all the different CT images with differ-ent structures and details. In order to further improve the image reconstruction quality and speed, a new adaptive tensor framelet sparse regularization algorithm for CT image reconstruction is presented. In the new adaptive algorithm, adaptive tensor framelet is constructed based on the UEP condition according to the given reference image in advance, then the tensor framelet constructed by the first step is used to reconstruct CT images. The proposed adaptive algorithms reduce the number of projections, which means reducing the scan time so as to reduce X-ray radiation. The new algorithms are accelerated by GPU parallel technology, so the efficiency of algorithms are further enhanced.
     Magnetic resonance imaging is another active research and also more complex. Diffusion-weighted imaging as a new technology for magnetic resonance imaging is the most ideal method to observe the water molecular diffusion in vivo tissue. However, magnetic resonance imaging often suffers from too long scanning time and low imaging resolution. In order to improve the quality of image reconstruc-tion, this thesis presents a new diffusion weighted imaging MRI model based on Compressive Sensing, i.e. phase-constrained low-rank (PCLR) model. Different from the traditional low rank model, the new proposed model takes into account the correlation of different diffusion directions. An efficient and easy-to-implement image reconstruction algorithm, mainly consisting of partial Fourier update and singular value decomposition, was developed for solving PCLR. Further more, generalized autocalibrating partially parallel acquisitions (GRAPPA) was incorpo-rated for better phase estimation while allowing higher undersampling factor. The required sample data for image reconstruction significantly reduced.
     Photoacoustic imaging can be performed effectively for biological tissue and functional imaging. This imaging method combines with the high penetration characteristics of optical imaging and high contrast characteristics of ultrasonic imaging, can provide high contrast and high resolution imaging of tissue. The research results for photoacoustic imaging sparse regularization are less, especially the photoacoustic imaging with multi-source and multi-spectrum. The photoa-coustic imaging multiple light sources (MS-QPAT) wavelet sparse regularization model is established. Since this type of problem is generally non-convex, non-linear and non-differentiable, many existing numerical algorithm can not used for it. So, further studies of fast numerical algorithms and convergence results are established.
引文
[1]Chan T F, Shen J. Image Processing and Analysis, variational, PDE, wavelet and stochastic methods,2005, Philadelphia, Pennsylvania:SI AM
    [2]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法,北京,科学出版社,2008
    [3]冯象初,王卫卫.图像处理的变分和偏微分方程方法,北京,科学出版社,2009
    [4]Tikhonov A N, Arsenin V Y. Solutions of Ill-Posed Problems, Winston and Sons, Washington, DC,1977
    [5]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algo-rithms, Physica D,1992,60,259-268
    [6]Meyer Y. Oscillation patterns in image processing and nonlinear evolution equa-tions. AMS, Providence, RI,2001
    [7]Y. You, M. Kaveh. Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process,2000,9,1723-1730
    [8]S. Didas, J. Weickert, B. Burgeth. Properties of higher order nonlinear diffusion filtering, J. Math. Imaging Vis.,2009,35,208-226
    [9]P. Guidotti, K. Longo. Two enhanced fourth order diffusion models for image denoising, J. Math. Imaging Vis.,2011,40,188-198
    [10]Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial dif-ferential equation with applications to medical magnetic resonance images in space and time, IEEE Tran. Image Process,2003,12,1579-1590
    [11]Hajiaboli M R. A self-governing fourth-order nonlinear diffusion filter for image noise removal, IPSJ Trans.Comput. Vision Appl.,2010,2,94-103
    [12]Hajiaboli M R, An anisotropic fourth-order partial differential equation for noise removal, Lect. Notes Comput. Sci.,2009,5567,356-367
    [13]Liu X, Huang L, Guo Z. Adaptive fourth-order partial differential equation filter for image denosing, Appl. Math. Lett.2011,24,1282-1288
    [14]Kim S, Lim H. Fourth-order partial differential equations for effective image denos-ing, Electron. J. Differ. Equ. Conf.2009,17,107-121
    [15]Chan T F, Esedoglu S, Park F E, Image decomposition combining staircase re-duction and texture extraction, J. Vis. Commun. Image R,2007,18,464-486
    [16]Zhou W, Li Q, Poisson Noise Removal Scheme Based on Fourth-Order PDE by Alternating Minimization Algorithm, ABSTR APPL ANAL, doi:10.1155/2012/965281,2012
    [17]Chan T, Marquina A, Mulet P. High Order total variation-based image restoration, SIAM J. Sci. Comput.2000,22,503-516
    [18]Li F, Shen C, Fan J, Shen C. Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent,2007,18,322-330
    [19]Kindermann S, Osher S, Jones P W. Deblurring and denoising of images by non-local functionals. Multiscale Modeling and Simulation,2005,4,1091-1115
    [20]Zhang X Q, Burger M, Bresson X, etc. Bregmanized nonlocal regularizations for deconvolution and sparse reconstruction. UCLA,2009, CAM Report 09-03
    [21]Gilboa G, Osher S. Nonlocal operators with applications to image processing. Multiscale Modeling and Simulation,2007,7:1005-1028
    [22]Gilboa G, Darbon J, Osher S, etc. Nonlocal convex functionals for image regular-ization, UCLA,2006, CAM Report 06-57
    [23]Buades A, Coll B, Morel J M. Nonlocal image and movie denosing, International Journal of Computer Vision,2008,76(2):123-139
    [24]Kristian Bredies, Karl Kunisch, Thomas Pock, SIAM J. Imaging Sciences,2010, 3,492-526. DOI:10.1137/090769521
    [25]Chambolle A. An algorithm for total variation minimization and applications, J. Math. Imaging Vis.,2004,20,89-97
    [26]Ng M K, Q L, Yang Y F, Huang Y. On semismooth Newton's methods for total variation minimization, J. Math. Imaging Vis.,2007,27,265-276
    [27]Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci.,2008,1,248-272
    [28]Wang Y, Yin W, Zhang Y. A fast algorithm for image deblurring with total vari-ation regularization, CAAM Technical Report,2007
    [29]Huang Y, NG M K, Wen Y W. A fast total variation minimization method for image restoration, Multiscale Model. Simul.,2008,7,774-795
    [30]Chan T F, Golub G H, Mulet P. A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput.,1999,20,1964-1977
    [31]Douglas J, Rachford H H. On the numerical solution of heat conduction problems in two or three space variables. Trans. Amer. Math. Soc.1956,82,421-439.
    [32]Goldstein T, Osher S. The split Bregman algorithm for 11 regularised problems, SIAM J. Imaging Sci.,2009,2,323-343
    [33]Yin W, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for 11-minimization with applications to compressend sensing, SIAM J. Imaging Sci., 2008,1,143-168
    [34]Afonso M, Biouscas-Dias J, and Figueiredo M. Fast image recovery using variable splitting and constrained optimization, IEEE Trans. Image Process,2010,19,2345-2356
    [35]Figueiredo M, Biouscas-Dias J. Restoration of Poissonian image using alternating direction optimization, IEEE Trans. Image Process,2010,19,3133-3145
    [36]Wu C, Zhang J, and Tai X C. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Probl. Imaging.,2011,5,237-261
    [37]Wu C, Tai X. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, UCLA, CAM Report 09-76,2009
    [38]Biouscas-Dias J, Figueiredo M. An augumented Lagrangian approach to the con-strained optimization formulation of imaging inverse problems, IEEE Trans. Image Process.,2011,20,681-695
    [39]Esser E. Applications of Lagrangian-based alternating direction methods and con-nections to split Bregman. Univ. California, Los An-geles, Computational and Applied Math. Tech. Rep.,2009
    [40]Setzer S. Split Bregman algorithm, Douglas-Rachford splitting and frame shrink-age. Scale Space and Variational Methods in Computer Vision Lecture Notes in Computer Science,2009,5567:464-476
    [41]Eckstein J, Bertsekas D. On the Douglas-Rachford splitting method and the prox-imal point algorithm for maximal monotone operators, Math. Program.,1992,5, 293-318
    [42]Combettes P L, Pesquet J C. A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE Journal of Selected Topics in Signal Pro-cessing,2007,1564-574
    [43]Combettes P L, Jean-Christophe Pesquet. Proximal splitting methods in signal processing. Fixed-Point Algorithms for Inverse Problems in Science and Engineer-ing Springer Optimization and Its Applications 2011,185-212
    [44]Donoho D L and Elad M, Maximal sparsity representation via h minimization, Proc. Nat. Aca. Sci.,2003,100,2197-2202
    [45]Elad M, Ahron M. Image denoising via sparse and redundant representations over learned distionaries, IEEE Trans. Image Process,2006,54,3736-45
    [46]Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration, IEEE Trans. Image Process,2007,17,53-69
    [47]曾更生.医学图像重建,北京,高等教育出版社,2010
    [48]Candes E J, Donoho D L. Recovering edges in ill-posed inverse problems:Opti-mality of curvelet frames, Ann. Statist,2002,30784-842
    [49]Candes E J, Donoho D L. New tight frames of curvelets and the problem of ap-proximating piecewise C images with piecewise C edges, Commun. Pure Appl. Math,2004,57,219-66
    [50]Candes E J. Ridgelets:estimating with ridge functions, Ann. Statist,1999,31 1561-99
    [51]Kutyniok G, Labate D. Construction of regular and irregular shearlet frames, J. Wavelet Theory and Appl,2007,1,1-10
    [52]Mallat S, Lepennec E. Sparse geometric image representation with bandelets, IEEE Trans Image Process,2005,14,423-38
    [53]Donoho D L. Wedgelets:Nearly minimax estimation of edges, Ann. Statist,1998, 27,859-97
    [54]张恭庆,林源渠.泛函分析讲义,北京大学出版社,北京,2004
    [55]夏道行,吴卓人,严绍宗,舒五昌.实变函数与泛函分析,高等教育出版社,北京,2010
    [56]Dimitri P B. Convex Optimization Theory,清华大学出版社,北京,2011
    [57]袁亚湘,孙文瑜.最优化理论与方法,北京,科学出版社,2001
    [58]阮秋琦,数字图像处理学.北京:电子工业出版社,2001
    [59]贺兴华,周媛媛,王继阳等.Matlab 7.x图像处理,北京,人民邮电出版社,2007
    [60]Shen Z. Wavelet frames and image restorations, Proceedings of the International Congress of Mathematicians, Hyderabad, India
    [61]Dong B, Shen Z. MRA Based Wavelet Frames and Applications, IAS Lecture Notes Series, Summer Program on "The Mathematics of Image Processing" Park City Mathematics Institute,2010
    [62]Han B, Kutyniok G, Shen Z. Adaptive multiresolution analysis structures and shearlet systems, SIAM J. Numer. Anal,2011,49,1921-46
    [63]Ingrid D. Ten lectures on Wavelets, Society for Industrial and Applied Mathemat-ics,1992,
    [64]李建平.小波十讲,国防工业出版社,北京,2011
    [65]Chan R H, Chan T F, Shen Z. Wavelet algorithms for high-resolution image re-construction, SIAM J. Sci. Comput,2003,24,1408-32
    [66]Chan R H, Riemenschneider S D, Shen L, Shen Z. Tight frame:an efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal.,2004,17, 91-115
    [67]Aubert G, Kornprobst P. Mathematical Prolems in Image Processing:Partial Dif-ferential Equations and Calculus of Variations, New York:Springer,2002
    [68]Chambolle A, Lions P L. Image recovery via total variation minimization and related problems. Numerische Mathematik,1997,76(2),167-188
    [69]Chambolle A. Image segmentation by variational methods:Mumford and Shah functional and the discrete approximations. SIAM Journal on Applied Mathemat-ics,1995,55(3),827-863
    [70]Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffision(II). SIAM Journal on Numerical Analysis,1992,29(3),845-866
    [71]Rahman T, Tai X C, Osher S. A TV-Stokes denoising algorithm Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science Volume 4485,2007,473-483
    [72]Le T, Chartrand R, Asaki T. A variational approach to constructing images cor-rupted by Poisson noise, J. Math. Imaging Vis.,2007,27,257-263
    [73]Strong D M. Adaptive total variation minimizing image restoration (Ph.D. Thesis). UCLA CAM Report 97-38, August,1997
    [74]Chen Y M, Wunderli T. Adaptive total variation for image restoration in BV space, Journal of Mathematical Analysis and Applications.2002,272,117-137
    [75]Thomas J W. Numerical partial differential equations finite difference methods, Springer-Verlag:New York; 1997.
    [76]Samarskii A A. The theory of difference schemes, Marcel Dekker:New York,2001
    [77]Vogel C R, Oman M E. Iterative methods for total variation denoising, SIAM Journal on Scientific and Statistical Computing,1996,17,227-238
    [78]Sawatzky A, Brune C, Wubbeling F, Kosters T, Schafers K, Burger M. Accu-rate EM-TV algorithm in PET with low SNR, IEEE Nuclear Science Symposium Conference Record,2008,5133-5137
    [79]Brune C, Sawatzky A, Kosters T, Wubbeling F, Burger M. An an-alytical view on EM-TV based methods for inverse problems with Poisson noise, Unpublished but available at http://wwwmath.uni-muenster.de/num/publications/2009/BSKWB09/emtv-paper.pdf
    [80]Brune C, Sawatzky A, Burger M. Bregman-EM-TV methods with application to optical nanoscopy, Lecture Notes in Computer Science,2009,5567,235-246,
    [81]Zanella R, Boccacci P, Zanni L, Bertero M. Efficient gradient projection methods for edge-preserving removal of Poisson noise, Inverse Problems,2009,25,045010
    [82]Bonettini S, Zanella R, Zanni L. A scaled gradient projection method for con-strained image deblurring, Inverse Problems,2009,25,015002
    [83]Cai J F, Osher S, Shen Z. Split Bregman methods and frame based image restora-tion, Multiscale Model. Simul,2010,8,337-69
    [84]Setzer S, Steidl G, Teuber T. Deblurring Poissonian images by split Bregman techniques, Journal of visual communication and image representation,2010,21, 193-199
    [85]Biouscas-Dias J, Figueiredo M. A new TwIst:Two step iterative shrink-age/thresholding algorithms for image restoration, IEEE International Conference on Imaging Process,2007,16,2992-3004
    [86]Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction, SI AM Journal on Imaging Sciences,2008,1, 248-272
    [87]Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences,2009,2,183-202
    [88]Guo W, Qin J, Yin W. A new detail-preserving regularity scheme, Rice CAAM technical report 13-01,2013
    [89]Hamidi A El, Menard M, Lugiez M, Ghannam C. Weighted and extended total variation for image restoration and decomposition, Pattern Recognition,2010,43, 1564-1576
    [90]Jia X, Dong B, Lou Y, Jiang S. GPU-based iterative cone-beam CT reconstruction using tight frame regularization Physics in Medicine and Biology,2011,56,3787-3807
    [91]Dong B, Li J, Shen Z. X-ray CT image reconstruction via wavelet frame based regularization and radon domain inpainting Journal of Scientific Computing,2012
    [92]Sidky E Y, Kao C M, Pan X, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, X-Ray Sci. Technol,2006,14,119-139
    [93]Chen G H, Tang J, Leng S. Prior image constrained compressed sensing(PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets, Med. Phys.,2008,35,660-63
    [94]Yu H, Wang G. Compressed sensing based interior tomography Med. Phys. Biol, 2009,54,2791-2805
    [95]Choi K, Wang J, Zhu L, Boyd S, Xing L. Compressed sensing based cone-beam computed tomography reconstruction with a first-order method Med. Phys.,2010, 37,5113-25
    [96]Gao H, Cai J F, Shen Z, Zhao H. Robust principal component analysis-based four-dimensional computed tomography Phys. Med. Biol.,2011,56,3781-98
    [97]Gao H, Yu H, Osher S, Wang G. Multi-energy CT based on a prior rank, intensity and sparsity model(PRISM) Inverse Problems,2011,27,115012
    [98]Zhao B, Gao H, Ding H, Molloi S. Tight-frame based iterative image reconstruction for spectral breast CT, Med. Phys,2013,40,031905
    [99]Gao H, Li R, Lin Y, Xing L.4D cone beam CT via spatiotemporal tensor framelet, Med. Phys,2012,39,6943-46
    [100]Ron A, Shen Z. Affine system in L2(Rd):the analysis of the analysis operator, J. Func. Anal.,1997,148,408-47
    [101]Daubechies I, Han B, Ron A, Shen Z. Framelets:MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal,2003,141-6
    [102]Cai J F, Dong B, Osher S, Shen Z. Image restorations:total variation, wavelet frames and beyond, J. Amer. Math. Soc,2012,25 1033-89
    [103]Gao H, Li R, Lin Y, Xing L.4D cone beam CT via spatiotemporal tensor framelet, Med. Phys.,2012,39 6943-46
    [104]Gao H, Qi X S, Gao Y, Low DA. Low Megavoltage CT imaging quality improve-ment on TomoTherapy via tensor framelet, Med. Phys.,2013,40,081919
    [105]Xu Q, Yu H, Mou X, Lei Z, Jiang H, Wang G. Low-Dose X-ray CT Reconstruction via Dictionary Learning IEEE transactions on medical imaging,2012,31(9) 1682-1695
    [106]Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space Data by Dictionary learning IEEE transactions on medical imaging,2011, 30(5) 1028-1041
    [107]Cai J F, Huang S, Ji H, Shen Z, Ye G B.2013 Data-driven tight frame construction and image Applied and Computational Harmonic Analysis, to appear
    [108]Liang J, Ma J, Zhang X. Seismic Data Restoration via Data-driven Tight Frame, submmit
    [109]Quan Y, Ji H, Shen Z, Data-Driven non-local wavelet frame construction and image restoration, submmit
    [110]Blumensath T, Davies M E. Normalized iterative hard thresholding:Guaranteed stability and performance, IEEE J. selected topics in signal processing,2010,4(2) 298-309
    [111]Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing Appl. Comput. Harmon. Anal,2009,27(3) 265-274
    [112]Zou H, Hastie T, Tibshirani R. Sparse principle component analysis, J Comput Graph Stat,2006,15265-86
    [113]Golub G, Kahan W. Calculating the singular values and pseudoinverse of a matrix, SIAM. J. Numer. Anal. Ser. B,1965,2,205-24
    [114]Osher S, Burger M, Goldfarb D, Xu J, Yin W. An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul,2005,4,460-89
    [115]Gao H. Fast parallel algorithms for the x-ray transform and its adjoint, Medical Physics,2012,39,7110-7120
    [116]Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment:From error visibility to structural similarity, IEEE Trans. Image Process,2004,13(4) 600-612
    [117]Liang Z P. Spatiotemporal imaging with partially separable functions, Proc ISBI, 2007,181-182
    [118]Goud S, Hu Y, Jacob M. Real-time cardiac MRI using low-rank and sparsity penalties, Proc ISBI,2010,988-991
    [119]Gao H, Lin H, Ahn C B. Nalcioglu O, PRISM:A divide-and-conquer low-rank and sparse decomposition model for dynamic MRI, UCLA CAM Report,2011,11-26
    [120]Gao H, Rapacchi S, Wang D, Moriaty J, Meehan C, Sayre J, Laub G, Finn J P, Hu P. Compressed sensing using Prior Rank, Intensity and Sparsity Model (PRISM): applications in cardiac cine MRI. Proc ISMRM,2012,2242
    [121]Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim W Y. k-t PCA:Temporally constrained k-t BLAST reconstruction using principal component analysis, Magn Reson Med,2009,62,706-716
    [122]Bernstein M A, King K F, Zhou X J. Handbook of MRI pulse sequences. Academic Press,2004.
    [123]Cai J F, Candes EJ, Shen Z. A singular value thresholding algorithm for matrix completion, SIAM J Optimization,2010,20,1956-1982
    [124]Combettes P L. Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization,2004,53,475-504
    [125]Griswold M A, Jakob P M, Heidemann R M, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med,2002,47,1202-1210
    [126]Nana R, Zhao T, Heberlein K, LaConte S M, Hu X. Cross-validation-based kernel support selection for improved GRAPPA reconstruction, Magn Reson Med,2008, 59,819-825
    [127]http://www.fmrib.ox.ac.uk/fsl/
    [128]http://www.fil.ion.ucl.ac.uk/spm/
    [129]Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images:application to diffusion tensor imaging. Neuroimage, 2003,20,870-888
    [130]Xu M, Wang L V. Photoacoustic imaging in biomedicine, Review of Scientific Instruments,2006,77,041101
    [131]Li, C H, Wang, L V. Photoacoustic tomography and sensing in biomedicine, Physics in Medicine and Biology,2009,54,59-97
    [132]Wang L V., Multiscale photoacoustic microscopy and computed tomography, Nat. Photonics.,2009,3,503-509
    [133]Beard P. Biomedical photoacoustic imaging Interface Focus,2011,1,602-31
    [134]Cox B T, Arridge S R, Beard P C. Estimating chromophore distributions from multiwavelength photoacoustic images J. Opt. Soc. Am. A.,2009,26,443-455
    [135]Banerjee B, Bagchi S, Vasu R M, Roy D. Quantitative photoacoustic tomography from boundary pressure measurements:noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map, J. Opt. Soc. Am. A,2008, 25,2347-2356
    [136]Yin L, Wang Q, Zhang Q, Jiang H. Tomographic imaging of absolute optical absorption coeffient in turbid media using combined photoacoustic and diffising light measurements. Opt. Lett.,2007,32,2556-2558
    [137]Cox B T, Arridge S R, Beard P C. Estimating chromophore distributions from multiwavelength photoacoustic images. J. Opt. Soc. Am. A,2009,26,443-455
    [138]Gao H, Zhao H. Multilevel bioluminescence tomography based on radiative transfer equation Part 2:total variation and 11 datadelity. Optics Express,2010,18,2894-2912
    [139]Bal G, Ren K. Multiple-source quantitative photoacoustic tomography. Preprint, 2010
    [140]Bal G, Uhlmann, G. Inverse diffusion theory of photoacoustics. Inverse Problems, 2010,26,085010
    [141]Adams, M L, Larsen, E W. Fast iterative methods for discrete-ordinates particle transport calculations. Progress in Nuclear Energy,2002,40,3-159
    [142]Lewis E E, Miller, W F. Computational Methods of Neutron Transport. ANS Inc., La Grange Park, Illinois,1993
    [143]Gao H, Zhao H K. A fast forward solver of radiative transfer equation. Transport Theory and Statistical Physics,2009,38,149-192
    [144]NVIDIA:NVIDIA CUDA Compute Unified Device Architecture, Programming Guide version 2.2.,2009
    [145]Case K M, Zweifel P F. Linear Transport Theory. Addison-Wesley, Massachusetts, 1967
    [146]Arridge S R. Optical tomography in medical imaging. Inverse Problems,15,41-93, 1999
    [147]Johnson C. Numerical Solution of Partial Diffierential Equations by the Finite Element Method. Cambridge University Press, New York,1987
    [148]Bal G, Ren K. Multi-source quantitative photoacoustic tomography in a diffusive regime, Inverse Problems,2011,27,075003
    [149]Cox B, Tarvainen T, Arridge S. Multiple illumination quantitative photoacoustic tomography using transport and diffusion models Tomography and Inverse Trans-port Theory (Contemporary Mathematics 559) ed G Bal, D Finch, P Kuchment, J Schotland, P Stefanov and G Uhlmann (Providence, RI:Americal Mathematical Society) 2011,1-12
    [150]Gao H, Zhao H, Osher S. Bergman methods in quantitative photoacoustic tomog-raphy UCLA CAM Report,2010,10-24
    [151]Shao P, Cox B, Zemp R J. Estimating optical absorption, scattering and Grueneisen distributions with multiple-illumination photoacoustic tomography, Appl. Opt.,2011,50,3145-54
    [152]Tarvainen T, Cox B T, Kaipio J P, Arridge S R. Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography, Inverse prob-lem,2012,28,084009
    [153]Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul.2005,1168-200
    [154]Moreau J. Functions convexes duales et points proximaux dans un espace Hilber-tien C.R.Acad.Sci.Paris Ser A Math 1962,255,2897-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700