用户名: 密码: 验证码:
适于小动物研究的μCT系统开发研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学成像技术是医学图像处理技术和医学图像临床应用技术的基础。该论文是一套医学成像设备的研制。微型CT相对于普通医用CT设备,具有更高的空间分辨率、更低的辐射剂量以及更精确的重建算法。
     该论文是以平板探测器为核心部件,搭建了一套适于活体小动物研究的微型CT系统。与大多数微型CT的区别是在图像采集过程中,该系统的光源和探测器是运动的,而样本保持静止。样本由一个水平位移台托着,固定在旋转中心。整个系统的运行都是通过控制中心控制,控制中心控制光源的开关,负责探测器的数据采集,并向电机驱动器发送控制指令,驱动光源和探测器围绕样本运动。重建算法用的是经典的锥形光束逆投影算法,即FDK算法。
     为了能够更精确地重建样本,新创了一种确定点光源相对探测器平面的空间坐标方法:该方法是通过拍摄同一个标准样本不同方位的投影图,根据立体几何基本定理建立方程,联立多个方程解多个未知数,其中三个未知数就是光源相对探测器的空间坐标。
     为了解决CT拍摄过程中由于射线硬化效应带来的“杯状”伪迹,新创了一种简便的修正方法。结果表明该修正方法的误差不到常用的二阶多项式拟合法的1/3。该硬化效应校正法比经典的多项式拟合法更简便,更容易计算,相对误差更小,能够有效地消除重建时的“杯状”伪迹。
     为了能够全自动提取地提取出样本的外轮廓,提出了一个新的行之有效的方法,通过投影图的分割以及逆投影相乘来实现。解决了直接在切片图里进行分割时,由于切片图模糊而难以自动处理的问题。从仿真和样本实验中都可以看出这是一种有效的CT轮廓提取方法,不但可以节省人力节约时间,还可以节省存储器的空间。
     该系统放大倍率为2.2倍,空间分辨率达到了58微米,有效重建区域为一个直径和高度均为55毫米的圆柱体,旋转系统复位精度达到了0.005度,拍摄步进角为1.8度。用该系统对海螺和SD大鼠进行拍摄和重建,展示了CT在骨结构成像方面的优势。
Medical imaging technology is the foundation of image processing technology and clinical application technology. The thesis is about the development of medical imaging equipment. Micro-CT imaging is an oncoming CT technology. With micron spatial resolution, it can get complex internal structure of the 3D information by completely nondestructive method with lower radiation and more exact reconstruction algorithm.
     The thesis uses Varian flat panel detector PaxScan1313 as the key component to build vivo micro-CT system for small animals. X-ray source and detector are fixed on a rack, which rotates with the electromotor when sampling. And still sample is put on a horizontal table fixed in the center of rotation. The operation of the whole system is controlled by the control center, a workstation. Control Centre controls the X-ray source, the data acquisition of detector. It also sends instructions to the motor driver, driving the X-ray source and detector rotating around the sample. FDK algorithm is utilized to reconstruct the image of specimens.
     In order to determine the relative coordinate between the point x-ray source and the detector plane, we invend a new method: the first step is to facture a tri-cone with transparent material, whose vertex is fixed with a metal ball. The second step is to rotate and to move the sample. So we can get several different projection images. According to each projection, we can list two equations. Through all the projections, we could have enough simultaneous equations including unknown numbers. And three unknowns determine the coordinate in space from the point x-ray source to the detector plane.
     In order to eliminate the cup-like artifacts caused by the effects of beam hardening in CT reconstruction, we find a new method of exponential fitting. The error of the exponential fitting is no more than 1/3 of the traditional two order polynomial fitting. We conclude that this method is more simple and precise than former classical fitting method.
     A new algorithm is presented for contour extraction in fan-beam CT reconstruction based on projection segmentation and backprojection. In most work on this problem, researchers segment two-dimensional slice images directly. Reconstructed slices are fuzzy, especially on the edges. Further segmentations operate on these fuzzy slices to get the contour results in more errors. The advantage of the new algorithm is its simplicity in segmenting projections. The results of simulation and experimental show its accuracy. This contour extraction method can save not only time and manpower, but also memory space.
     The amplification ratio of this micro-CT system is 2.2, so the special resolution is 58 micron. It can reconstruct the volume of a column with the diameter of 55mm and the height of 55mm. The repeat positioning accuracy is 0.005 degree. The step angle of rotation is 1.8 degree. We have used this micro-CT system to sample and reconstruct a trumpet shell and a Sprague Dawley rat. Three-dimensional rendering of results shows the system’s utility.
引文
[1] Lewis R. Medical. Applications of synchrotron radiation x-rays. Phys. Med. Biol., 1997, 42: 1213~1243
    [2] Keall P J, Kini V R, Vedam S S, et al. Motion adaptive x-ray therapy: a feasibility study. Phys. Med. Biol., 2001, 46: 1~10
    [3] Mould R F. The early history of x-ray diagnosis with emphasis on the contribution of phisics 1895-1915. Phys. Med. Biol., 1995, 40: 1741~1787
    [4] Sabel Manfred,Horst Aichinger. Recent developments in breast imaging. Phys. Med. Biol., 1996, 41: 315~368
    [5] Wang Ge, Zhao Shiying, Heuscher Dominic. A knowledge-based cone-beam x-ray CT algorithm for dynamic volumetric cardiac imaging. Med. Phys., 2002, 29(8): 1807~1822
    [6] Dale S, Edholm P E, Hellstrom L G, et al. Ectomography--a tomographic method for gamma camera imaging. Phys. Med. Biol., 1985, 30(11): 1237~1249
    [7] Lu Weiguo, Olivera Gustavo H, Chen Quan, et al. Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy. Phys. Med. Biol., 2006, 51: 4357~4374
    [8] Carlsson Carl A. Imaging modalities in x-ray computerized tomography and in selected volume tomography. Phys. Med. Biol., 1999, 44: R23~R56
    [9] Smeenk Christopher, Gaede Stewart, Battista Jerry J. Delineation of moving targets with slow MVCT scans: implications for adaptive non-gated lung tomotherapy. Phys. Med. Biol., 2007, 52: 1119~1134
    [10] Mori Shinichiro, Kanematsu Nobuyuki, Asakura Hiroshi, et al. Projection-databased temporal maximum attenuation computed tomography: determination of internal target volume for lung cancer against intra-fraction motion. Phys. Med. Biol., 2007, 52: 1027~1038
    [11] Wenzel Ann. Two Decades of Computerized Information Technologies in Dental Radiograpy. DISCOVERY, 2002, 81(9): 590~593
    [12] RUTTIMANN U. E. Computer-based reconstruction and temporal subtraction of radiographs. Adv Dent Res, 1987, 1(1): 72~79
    [13] STELT P.F. VAN DER. MODERN RADIOGRAPHIC METHODS IN THE DIAGNOSIS OF PERIODONTAL DISEASE. Adv Dent Res, 1993, 7(2): 158~162
    [14] Vries Nicholas de, Miller Franklin J., Wojtowycz Myron M., et al. Tomographic Digital Subtraction Angiography: Initial Clinical Studies Using Tomosynthesis. Radiology, 1985, 157: 239~241
    [15] Friedenberg Richard M., Lightfoote Johnson B., Wang S. P., et al. Digital Tomography: Description and Preliminary Clinical Experience. AJR, 1985, 144: 639~643
    [16] Dobbins III James T, Godfrey Devon J. Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys. Med. Biol., 2003, 48: R65~R106
    [17] Zhang Quan, Brukilacchio Thomas J., Li Ang, et al. Coregistered tomographic x-ray and optical breast imaging: initial results. Journal of Biomedical Optics, 10(2): 024033-1~024033-9
    [18] Wang Ge, Zhao Shiying, Yu Hengyong, et al. Design, Analysis and Simulation for Development of the First Clinical Micro-CT Scanner. Acad Radiol, 2005, 12: 511~525
    [19] Kramer R, Khoury H J, Vieira JW, et al. Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCTimages. Phys. Med. Biol., 2006, 51: 6265~6289
    [20] Chung Choo-ryung J., Tsuji Kunikazu, Nifuji Akira, et al. Micro-CT evaluation of tooth, calvaria and mechanical stress-induced tooth movement in adult Runx2/Cbfa1 heterozygous knock-out mice. J Med Dent Sci, 2004, 51: 105~113
    [21] Walters Erin B, Panda Kunal, Bankson James A, et al. Improved method of in vivo respiratory-gated micro-CT imaging. Phys. Med. Biol., 2004, 49: 4163~4172
    [22] Stock S.R., Ignatiev K., Wilkinson A.P., SULFATE ATTACK OF PORTLAND CEMENT STUDIED BY X-RAY MICROTOMOGRAPHY (MICRO-CT). Advances in X-ray Analysis, 2002, 45: 128~132
    [23] Liu Vinson, Lariviere Nicholas R., Wang Ge. X-ray micro-CT with a displaced detector array: Application to helical cone-beam reconstruction. Med. Phys., 2003, 30(10): 2758~2761
    [24] Yu Hengyong, Ye Yangbo, Wang Ge. Katsevich-Type Algorithms for Variable Radius Spiral Cone-Beam CT. Proc. of SPIE, 2004, 5535: 550~557
    [25] ZENG KAI, CHEN ZHIQIANG. REVIEW OF RECENT DEVELOPMENTS IN CONE-BEAM CT RECONSTRUCTION ALGORITHMS FOR LONG-OBJECT PROBLEM. Image Anal Stereol, 2004, 23: 83~87
    [26] Wu Xizeng, Liu Hong. X-Ray cone-beam phase tomography formulas based on phase-attenuation duality. OPTICS EXPRESS, 2005, 13(16): 6000~6014
    [27] Mori Shinichiro, Endo Masahiro, Komatsu Shuhei, et al. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT. Phys. Med. Biol., 2006, 51: 3953~3965
    [28] Chen Guang-Hong. An alternative derivation of Katsevich’s cone-beam reconstruction formula. Med. Phys., 2003, 30(12): 3217~3226
    [29] Ye Yangbo, Zhao Shiying, Yu Hengyong, et al. A General Exact Reconstruction forCone-Beam CT via Backprojection-Filtration. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24(9): 1190~1198
    [30] Weikl Wolfgang, Andra Heiko, Schnack Eckart. An alternating iterative algorithm for the reconstruction of internal cracks in a three-dimensional solid body. Inverse Problems, 2001, 17: 1957~1975
    [31] Man Bruno De, Nuyts Johan, Dupont Patrick, et al. An Iterative Maximum-Likelihood Polychromatic Algorithm for CT. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20(10): 999~1007
    [32] BERTSEKAS DIMITRI P., TSITSIKLIS JOHN N. Some Aspects of Parallel and Distributed Iterative Algorithms-A Survey. Automance, 1991, 27(1): 3~21
    [33] Wach P., Modre R., Tilg B., et al. An iterative linearized optimization technique for nonlinear ill-posed problems applied to cardiac activation time imaging. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, 20(3): 676~688
    [34] Lia Xiang, Jiang Ming, Wang Ge. A numerical simulator in VC++ on PC for iterative image reconstruction. Journal of X-Ray Science and Technology, 2003, 11: 61~70
    [35] Zbijewski Wojciech, Beekman Freek J. Effects of reconstruction voxelization in iterative X–ray CT reconstruction. IEEE, 2004, 4: 3205~3207
    [36] Chen Pei, Bamer Kenneth. MAXIMUM LIKELIHOOD RECONSTRUCTION FOR TOMOSYNTHESIS. IEEE, 2003, 3: 59~60
    [37] Wang Beilei, Bamer Kenneth. FAST, ACCURATE AND MEMORY-SAVING ART BASED TOMOSYNTHESIS. IEEE, 2003, 3: 61~62
    [38] Zou Yu, Pan Xiaochuan. Image reconstruction on PI-lines by use of filtered backprojection in helical cone-beam CT. Phys. Med. Biol., 2004, 49: 2717~2731
    [39] Tam K C, Samarasekera S, Sauer F. Exact cone beam CT with a spiral scan. Phys. Med. Biol., 1998, 43: 1015~1024
    [40] Zou Yu, Pan Xiaochuan. An extended data function and its generalized backprojection for image reconstruction in helical cone-beam CT. Phys. Med. Biol., 2004, 49: N383~N387
    [41] KachelrieB Marc, Schaller Stefan, Kalender Willi A.. Advanced single-slice rebinning in cone-beam spiral CT. Med. Phys., 2000, 27(4): 754~772
    [42] Bresler Yoram, Brokish Jeffrey. A HIERARCHICAL ALGORITHM FOR FAST BACKPROJECTION IN HELICAL CONE-BEAM TOMOGRAPHY. IEEE, 2004, 4: 1420~1423
    [43] Johnsonyzx Roger H, Huk Hui, Haworth Steven T, et al. Feldkamp and circle-and-line cone-beam reconstruction for 3D micro-CT of vascular networks. Phys. Med. Biol., 1998, 43: 929~940
    [44] Zou Yu, Pan Xiaochuan. Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT. Phys. Med. Biol., 2004, 49: 941~959
    [45]赵骅,吕科.中国虚拟人数据的配准算法.计算机工程与应用, 2004, 34: 64~76
    [46] Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Phys. Med. Biol., 1997, 42: 1~39
    [47]冯常春,周炜. X射线衰减系数与射线管电压的关系初探.无损检测, 1997, 19(1): 8~10
    [48] Rowlands J A. The physics of computed radiography. Phys. Med. Biol. 2002, 47: R123~R166
    [49]王晓峰,吴毅,杜国生. X射线计算机断层摄影成像物理指标检测与评价的研究.医疗设备信息, 2001, 9: 11~14, 61
    [50] Watz Henrik, Breithecker Andreas, Rau Wigbert Stephan. Micro-CT of the HumanLung: Imaging of Alveoli and Virtual Endoscopy of an Alveolar Duct in a Normal Lung and in a Lung with Centrilobular Emphysema—Initial Observations. Radiology, 2005, 236: 1053~1058
    [51]杨春平,吴健,洪亮,等.双CCD系统在三维面形测量中的应用.半导体光电, 2004, 25(3): 219~223
    [52]沈景鹏,张旭,杨国光.空间坐标一致性光学测量方法研究.光学仪器, 2005, 27(1): 8~11
    [53]袁劲,冯海,余绍林.一套测定物体坐标与姿态的光学系统.机器人, 1998, 20(3): 161~167
    [54]方正,骆清铭.双CCD拼接CT成像的断裂伪迹消除方法.光学技术, 2007, 33(6): 863~866
    [55]王召巴.旋转中心偏移对CT重建图像的影响.兵工学报, 2003, 22(3): 323~326
    [56]赵昊彤,刘以农,李荐民. CT图像重建中旋转轴的不稳定对图像质量的影响.清华大学学报(自然科学版), 2002, 42(8): 997~1000
    [57]曾钢,郁忠强,阎永廉.基于蒙特卡罗模拟的射线束硬化校正方法.高能物理与核物理, 2006, 30(2): 178~182
    [58]叶侠娟,张朋. CT系统的能谱估计及射束硬化校正算法. CT理论与应用研究, 2003, 12(2): 10~15
    [59] KachelrieB Marc, Sourbelle Katia, Kalender Willi A. Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography. Med. Phys., 2006, 33(5): 1269~1274
    [60]张全红,路宏年,杨民.基于重投影的多项式拟和校正射束硬化.光学技术, 2005, 31(4): 633~638
    [61]周日峰,杨学恒,张建明. X射线透射ICT中射束能谱硬化修正.重庆工学院学报, 2002, 16(5): 55~57
    [62]余晓锷,李君,洪德明. CT设备中CT值线性的测量与分析.实用放射学杂志, 2001, 17(1): 18~20
    [63]杨民,路宏年,路远. CT重构中射线硬化的校正研究.光学技术, 2003, 29(2): 177~178, 182
    [64]方正,孙小敏,骆清铭.一种简便的计算层析系统X射线硬化校正方法.光学学报, 2007, 27(2): 302~306
    [65] Schaly B, Bauman G S, Battista J J, et al. Validation of contour-driven thin-plate splines for trackong fraction-to-fraction changes in anatomy and radiation therapy dose mapping. Phys. Med. Biol., 2005, 50: 459~475
    [66] Young Yuan-Nan, Levy Doron. Registration-based morphing of active contours for segmentation of CT scans. Mathematical Biosciences and Engineering, 2005, 2(1): 79~96
    [67] Papavasileiou Periklis, Flux Glenn D, Flower Maggie A. Automated CT marker segmentation for image registration in radionuclide therapy. Phys. Med. Biol., 2001, 46: N269~N279
    [68]王兆理,杜扬,李康宁. X线图像计算机边缘提取综合算法的研究.重庆工业高等专科学校学报, 2001, 16(4): 16~18
    [69] Daggett T., Greenshields I. R. A cluster computer system for the analysis and classication of massively large biomedical image data. Computers in Biology and Medicine,1998, 28: 47~60
    [70]陈欠根,陈大舵. CT图像中轮廓特征的提取.医疗设备信息, 2003, 18(1): 10~12
    [71] Schiemann Thomas, Tiede Ulf, Hohne Karl Heinz. Segmentation of the Visible Human for high-quality volume-based visualization. Medical Image Analysis, 1996, 1(4): 263~270
    [72] Louis Alfred K., Maass Peter. Contour Reconstruction in 3-D X-Ray CT. IEEE Transactions on medical imaging, 1993, 12(4): 764~769
    [73]王科俊,郭庆昌,庄大燕.基于差分法与改进活动轮廓模型的追踪算法.计算机工程, 2008, 34(2): 212~214, 231
    [74] Feldkamp L. A., Davis L. C., Kress J. W. Practical cone-beam algorithm. J Opt. Soc. Am., 1984, 1(6): 612~619
    [75] Cho Paul s., Rudd Anthony D., Johnson Roger H.. CONE-BEAM CT FROM WIDTH-TRUNCATED PROJECTIONS. Computerized Medical Imaging and Graphics, 1996, 20(1): 49~57
    [76] Zeng Gengsheng L., Gullberg Grant T., Jaszczak Ronald J., et al. Fan-Beam Reconstruction Algorithm for a Spatially Vary Focal Length Collimator. IEEE TRANSACTION ON MEDICAL IMAGING, 1993, 12(3): 575~582
    [77] Chen Guang-Hong. A new framework of image reconstruction from fan beam projections. Med. Phys., 2003, 30(6): 1151~1161
    [78] You Jiangsheng, Zeng Gengsheng L, Liang Zhengrong. FBP algorithms for attenuated fan-beam projections. Inverse Problems, 2005, 21: 1179~1192
    [79] Bonnet Stephane, Peyrin Francoise, Turjman Francis, et al. Multiresolution Reconstruction in Fan-Beam Tomography. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11(3): 169~176
    [80] HORN BERTHOLD K. P.. Fan-Beam Reconstruction Methods. PROCEEDINGS OF THE IEEE, 1979, 67(12): 1616~1623
    [81] Cho PS, Johnson RH, Griffin YW. Cone-beam CT for radiotherapy applications. Phys. Med. Biol., 1995, 40: 1863~1883
    [82] Zenga Kai, Chena Zhiqiang, Zhanga Li, et al. A half-scan error reduction based algorithm for cone-beam CT. Journal of X-Ray Science and Technology, 2004, 12:73~82
    [83] Liu Ying, Liu Hong, Wang Ying. Half-scan cone-beam CT fluoroscopy with multiple x-ray sources. Med. Phys., 2001, 28(7): 1466~1471
    [84] Parker D.L.. Optimal short scan convolution reconstruction for fan beam CT. Med. Phys., 1982, 9(2): 254~257
    [85] Metz C. E., Doi K. Transfer function analusis of radiographic imaging systems. Phys. Med. Biol., 1979, 24: 1079~1106
    [86] Steckner M. C., Drost D. J., Prato F. S. Computing the modulation transfer function of a magnetic resonance imager. Med. Phys., 1994, 21: 483~498
    [87] Jansen J. T. M., Zoetelief J.. Computer aided assessment of image quality for mammography using a contrast detail phantom. Radiat Prot Dosimetry, 2000, 90: 181~184
    [88] Waarsing J.H., Day J.S., Weinans H.. Longitudinal micro-CT scans to evaluate bone architecture. J Musculoskelet Neuronal Interact, 2005, 5(4): 310~312
    [89] Malcolm A. A., Spowage A. C., Shacklock A. P., et al. Characterisation of ultra light aluminium foams using micro-CT. SIMTech technical reports, 2006, 7(1): 44~49
    [90] Ackerman M. J., Banvard R. A.. Imaging outcomes from The National Library of Medicine's Visible Human Project. Computerized Medical Imaging and Graphics, 2000, 24: 125~126
    [91]柴慧臻,杜光伟,罗述谦,等.中国第1例数字化女虚拟人的三维重建.中国医学影像技术, 2003, 19(4): 387~389
    [92] Pommert Andreas, Hohnea Karl Heinz, Pflessera Bernhard. Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human. Medical Image Analysis, 2001, 5: 221~228
    [93] SPITZER VICTOR, ACKERMAN MICHAEL J., SCHERZINGER ANN L., et al. The Visible Human Male: A Technical Report. Journal of the American Medical Informatics Association, 1996, 3(2): 118~130
    [94] Hersch R.D., Gennart B., Figueiredo O., et al. The Visible Human Slice Web Server: A first Assessment. Proc. SPIE, 2000, 3964: 253~258
    [95] Robb R.A. Virtual endoscopy: development and evaluation using the Visible Human Datasets. Computerized Medical Imaging and Graphics, 2000, 24: 133~151
    [96] Agostinelli Stefano, Paoli Gabriella. An object oriented fully 3D tomography visual toolkit. Computer Methods and Programs in Biomedicine, 2001, 65: 61~69
    [97] Tuana Ho Saey, Hutmacher Dietmar W.. Application of micro CT and computation modeling in bone tissue engineering. Computer-Aided Design, 2005, 37: 1151~1161
    [98] Hu Jicun, Haworth Steve T., Molthen Robert C., et al. Dynamic Small Animal Lung Imaging Via a Postacquisition Respiratory Gating Technique using Micro-Cone Beam Computed Tomography. Academic Radiology, 2004, 11(9): 961~970
    [99] Paulusa M. J, Gleasona S. S., Sari-Sarraf H., et al. High-resolution x-ray CT screening of mutant mouse models. Proc. SPIE, 2000, 3921: 270~279
    [100] Powell Kim A., Latson Larry, Ibiwoye Michael O., et al. IN VIVO LONGITUDINAL ASSESSMENT OF BONE RESORPTION IN A FIBULAR OSTEOTOMY MODEL USING MICRO-COMPUTED TOMOGRAPHY. The Iowa Orthopaedic Journal, 2005, 25: 123~128
    [101] Paulus Micheal J., Gleason Shaun S., Kennel Stephen J., et al. High Resolution X-ray Computed Tomography: An Emerging Tool for Small Animal Cancer Research. Neoplasia, 2000, 2: 62~70
    [102] Wan Shu-Yen, Kiraly Atilla P., Ritman Erik L., et al. Extraction of the HepaticVasculature in Rats Using 3-D Micro-CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19(9): 964~971
    [103]冯三强,吴端,张胜健.医学CT的误差修正方法、图像重建及实现.南京航空航天大学学报, 1999, 31(5): 504~509
    [104] Sijbers Jan, Postnov Andrei. Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys. Med. Biol., 2004, 49: N247~N253
    [105] Badea C., Hedlund L. W., Johnson G. A.. Micro-CT with respiratory and cardiac gating. Med. Phys., 2004, 31(12): 3324~3329
    [106]孟伟,孙晖.如何确保CT图像的质量.医疗卫生装备, 2005, 26(2): 46
    [107] Langheinrich Alexander Claus, Bohle Rainer Maria, Greschus Susanne, et al. Atherosclerotic Lesions at Micro CT: Feasibility for Analysis of Coronary Artery Wall in Autopsy Specimens. Radiology, 2004, 231(3): 675~681
    [108] Basu Samit, Bresler Yoram. O(N3logN) Backprojection Algorithm for the 3-D Radon Transform. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21(2): 76~88
    [109] Boag Amir, Bresler Yoram, Michielssen Eric. A Multilevel Domain Decomposition Algorithm for Fast O(N2logN) Reprojection of Tomographic Images. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9(9): 1573~1582
    [110] Kohler Th., Proksa R., Grass M.. A fast and efficient method for sequential cone-beam tomography. Med. Phys., 2001, 28(11): 2318~2327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700