用户名: 密码: 验证码:
水泥分解炉内NO生成和还原机理的实验及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水泥工业的快速发展及其产量的日益提高,水泥生产已是我国NOx排放的重要来源之一,仅次于火力发电和汽车尾气之后居第三位。水泥预分解窑技术(干法水泥星产技术)是当今世界水泥工业的主流生产工艺,分解炉是干法水泥生产工艺中降低NOx排放的有效设备。国内外研究者注重降低水泥预分解窑NOx排放的实际效果,而对炉内NOx生成和还原的机制研究较少。所以,开展水泥分解炉这一特殊工况条件下NO转化机制研究对水泥工业的NOx减排具有重要的意义。
     本论文总结和分析了水泥分解炉内NO生成与还原反应机理的国内外研究现状。采用理论分析、模拟实验和计算机模拟相结合的方法对分解炉内NO生成和还原反应规律,以及全尺度分解炉内NO的分布特征进行了系统的研究。本论文主要从以下几个方面开展研究工作:
     利用模拟分解炉悬浮及喷腾条件的高温气固悬浮实验系统,对分解炉内不同类型的水泥生料、生料的各种配料及高CO2浓度对煤粉和煤焦燃烧过程中NO生成反应的影响规律进行了实验研究。结果表明,水泥生料及其配料对煤粉和煤焦燃烧NO的生成反应均具有一定的催化作用,不同类型的生料对煤燃烧NO生成反应的催化作用差异不大,生料配料中石灰石对NO生成反应的催化作用最强。气氛中CO2浓度升高,煤粉和煤焦燃烧过程中NO的生成反应速率降低,NO排放总量减少。升高温度对煤粉和煤焦燃烧NO的生成有一定的促进作用;气氛中C02浓度升高,添加生料及升高温度对煤粉和煤焦燃烧NO生成的促进作用减弱。
     分析了水泥分解炉内煤粉和煤焦对窑尾烟气中NO的还原作用机制,得到了不同温度条件下水泥生料及CO2浓度对煤粉和煤焦还原NO的影响规律;探讨了煤焦及生料对CO还原NO反应的影响作用。研究表明,煤粉和煤焦对NO的还原作用差异较大;挥发分与NO的反应速率更快,焦炭与NO反应的速率较慢,但与NO反应的时间相对较长;生料对挥发分和焦炭还原NO的反应均有一定的催化作用,且生料对挥发分含量高的煤粉还原反应的催化作用更强;温度升高,生料对NO还原反应的催化作用也逐渐增强。气氛中C02浓度升高,煤粉和煤焦对NO的还原能力均增强,而生料对NO还原反应的催化作用减弱。煤焦和生料对CO还原NO的反应均有一定的催化作用,但CO2浓度升高时,生料对CO还原NO反应的促进作用降低。
     在模拟分解炉的悬浮实验系统上,研究了分解炉内煤粉及煤焦在氧气存在的条件下对窑尾烟气中NO还原的动态变化特性,得到了挥发分和焦炭在燃烧过程中NO生成和还原的动态转化规律。研究表明:在氧气存在条件下,煤粉还原NO的转化过程分为均相还原和异相氧化两个阶段。添加水泥生料、变化温度及O2浓度,煤焦及煤粉与NO反应的动态转化过程均会发生一定的变化。分解炉内NO生成及还原的动态转化机制实验研究,揭示了分解炉内窑尾烟气中NO被大量还原的本质。
     在煤焦燃烧及水泥生料分解耦合作用研究的基础上,对分解炉条件下煤焦燃烧过程中NO生成反应的动力学模型进行了理论分析及实验研究,得到了适用于水泥工业常用的几种煤样的煤焦燃烧过程中NO生成反应动力学模型与参数,并将各模型和参数应用于分解炉NO排放模拟的计算机辅助试验平台。在此基础上,从动力学的角度探讨了分解炉内煤焦燃烧过程中NO生成及实际排放之间的关系。
     分析了分解炉内NO生成及还原的主要途径及数值模拟的数学模型,在原有分解炉热态模拟计算机辅助试验平台基础上,建立了分解炉NO排放数值模拟计算机辅助试验平台,在此基础上模拟分析了某5000吨/天生产能力的全尺寸三喷腾分解炉的NO分布规律。研究结果表明,在三喷腾分解炉三次风入口上部区域的NO浓度最高,温度对炉内NO排放的影响较大;分三次风可以降低炉内的燃烧温度及主燃区的O2浓度,从而有效的减少预分解窑系统的NO排放。多工况模拟结果与现场测量的数据偏差较小,验证了所建立的试验平台的适用性,为开发低NO分解炉提供了一套完备的试验平台。
In China, with the rapid development of cement industry, the total amount of NOx produced from the cement industry has been the third largest resources, besides the power plant and automobile. The precalciner technology(new type processing cement with daily output), in which precalciner is an important equipment for the reduction of NO emission, is the main technology for cement production in China now. Most of attentions about the researches of NOx emission in precalciner systems were paid to the actual results of NO reduction, however, the study of the mechanisms about NO formation and reduction in precalciner has been rarely concerned on up to now. Therefore, it is necessary and significant to study the conversion of NO for the reduction of NO emission from cement production.
     Therefore, the Characteristics of NO formation and reduction in precalciner and the NO distribution in 3-D precalciner have been studied with the methods of simulated experiments, theoretical analysis and CFD simulation. The researches have been carrid out mainly on the several following respects:
     A suit of equipment simulated the suspension and spray condition of precalciner was established in this dissertation, in which the experiments of NO fornation on different CO2 concentrations and with the catalysis of cement raw were carried out. It was shown that different types of raw meal had significant effect on the formation of NO. However, the catalytic capacity between different kinds of raw meal was almost the same. For different ingredients of cement raw meal, the catalysis of limestone on the formation of NO was the strongest. With the increase of CO2 concentration, the rate of NO emission and the total amount of NO emission during coal and char combustion decreased. The conversion of fuel-N and char-N to NO increased with the rise of temperature, however, the effect of temperature and cement raw meal on the NO emission reduced with the increase of CO2 concentration.
     The mechanism of NO reduction by coal and char in precalciner was discussed, and the effects of cement raw meal and CO2 concentration on the reduction of NO by coal and char at different temperatures were discussed, the mechanism of NO reduction by CO with the catalysis of char and cement raw meal was also concerned. It was found that the rates of NO reduction by volatiles was much higher while the reaction time of NO-C was longer. The amount of NO reduction by coal and char incresed with the addition of raw meal, which indicated that cement raw meal had positive catalysis on the reduction of NO. The catalysis of cement raw meal on the reduction of NO by higher volatile coal was more stronger, and the catalysis of the cement raw meal became stronger with the increase of the reaction temperature. With the increase of CO2 concentration, the NO recuciton capacity of coal and char became stronger. Char and cement raw meal could promote the reaction of CO and NO, however, the effect of cement raw meal decreased with the increase of CO2 concentration.
     The dynamic processes of NO reduction by coals and char at different O2 concentrations were firstly investigated on the suspension condition of precalciner. The effects of cement raw meal, temperature and O2 concentration on NO formation and reduction by coal and char were discussed. It was shown that there were two stages in NO reduction process at the presence of O2. The first stage was the early homogeneous NO reduction by volatiles, while the second one was the heterogeneous oxidation of char-N. Cement raw meal, temperature and O2 concentration could affect the dynamic processes of NO conversion by coals and char. The mechanism that lots of NO from kiln rotary was reduced in precalciner was revealed by the analysis of NO conversion with the presence of O2 in precalciner.
     The kinetics of NO formation during char combustion with raw meal presence in the suspension reactor was investigated. The influences of reaction conditions (species, temperature and cement raw meal) on the kinetics of NO formation during char combustion were discussed in this paper. The models and parameters have been applicated to the computer aided test platform for NO simulation in precalciner. The effect of cement raw meal on the kinetics of NO formation during char combustion as well as the correlation between the formation and reduction of NO during char combustion was also discussed.
     The emission of NO in precalciner was analyzed by numerical simulation, and the relevant mathematical models were developed. The numerical simulation method was combined to develop the computer aided test platform for NO simulation in precalciner, which could provide an experimental platform for design and development of low-NO precalciner. NO transformation and distribution in a 3 D-precalciner with the production capacity of 5000t/d was analyzed in this dissertation. The results indicated that the NO concentration on the top of the inlet of the tertiary air was the highest, and the distribution of NO in precalciner could be affected by temperature significantly. The emission of NO could be reduced by staged combustion effectively because of the reduction of O2 concentration in main combustion zone. It could be found that the platform was reliable through the comparison between the simulation results and the actual measurements.
引文
[1]韩仲琦.低碳经济与我国水泥工业.21世纪建筑材料,2010,2(3):7-11
    [2]胡芝娟.分解炉氮氧化物转化机理及控制技术研究:[博士学位论文].武汉:华中科技大学,2004
    [3]高长明.水泥工业废气脱氮技术.水泥技术,2007,2:19-20
    [4]嵇鹰,田耀鹏,徐德龙.水泥工业NOx排放控制探讨.西安科技大学学报,2009,41(3):397-403
    [5]Manias C G, Nathan G J. Low NOx clinker production. World Cement,1994, 25(5):54-56
    [6]Xeller H. New development in NOX abatement in the cement industry, Part 1. ZKG international,1998,51(3):44-51
    [7]崔素萍,叶文娟,兰明章,王亚丽.水泥窑炉NOx形成机理及处理技术.中国水泥,2010,5:55-59
    [8]Thomsen K, Jensen L S, Schomburg F. FLS-Fuller ILC Low NOx calciner commissioning operation at Lone Star St.Cruz in California. ZKG international, 1998,51(1):42-50
    [9]Haeder J, Buxtehude. Development of precalcining technology in the cement industry. ZKG international,1998,51(3):44-51
    [10]Francaise C. The new CF/FCB Low NOX precalciner- a decisive advanced in environment protection. ZKG international,1993,46(4):26-37
    [11]Brem G, Jongen H. NOX-Reduction by SNCR with alternative reagents for rotary kilns in cement plants. ZKG international,2003,56(2):35-41
    [12]宋正华,邢国梁,杨正平.新型干法水泥窑氮氧化物脱除技术.水泥技术,2009,6:73-74
    [13]Wang S J, LuJD, Li W J, H Z J. Modeling of Pulverized Coal Combustion in Cement Rotary Kiln. Energy and Fuels,2006,20(6):2350-2356
    [14]任合斌,陆继东,胡芝娟,王世杰,李卫杰.水泥回转窑内NO生成及其分布规律研究.工程热物理学报(增刊),2006,27(S2):159-162
    [15]Bosoaga A, Masek O, Oakey J E. CO2 Capture Technologies for Cement Industry. Energy Procedia,2009,1:133-140.
    [16]胡芝娟,刘志江,王世杰.模拟分解炉中煤焦燃烧生成NO的特性.化工学报,2005,56(3):545-550
    [17]Wang S J, Lu J D, Huang L, Hu Z J. A study on NO-Char reaction in bench scale precalciner. Cement and Concrete World,2005,10(56):54-64
    [18]Cances J, Commamdre J M, Salvador S, Dagaut P. NO reduction capacity of four major solid fuels in reburning conditions-experiments and modeling. Fuel,2008, 87(3):274-289
    [19]Iliuta I, Dam-Johansen K, Jensen L S. Mathematical modeling of an in-line low-NOx calciner. Chemical Engineering Science,2002,57(5):805-820
    [20]Iliuta I, Dam-Johansen K, Jensen A. Modelling of in-Line Low-NOx Calciners-NOx Emission. Chemical Engineering Science,2003,81(5):537-548
    [21]Huang L, Lu J D, Hu Z J, Wang S J. Numerical simulation of NO release in precalciner and optimization. Energy and Fuels,2006,20(1):164-171
    [22]Huang L, Lu J D, Wang S J, Hu Z J. Numerical Simulation of Pollutant Formation in Precalciner. Canada Journal of Chemical engineering,2005,83(4):675-684
    [23]黄来,陆继东,胡芝娟,王世杰.分解炉中NO生成模拟与优化研究.化工学报,2006,57(11):2624-2630
    [24]Jorget S. New CF/FCB low NOx-precalciner. ZKG International, Edition B.1993, 46(5):250-255
    [25]Amand L E, Leckner B. Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler. Combustion and Flame,1991, 84(1-2):181-196
    [26]Amand L E, Leckner B and Dam-Johansen K. Influence of SO2 on the NO/N2O chemistry in fluidized bed combustion:1. Full-scale experiments. Fuel,1993, 72(4):557-564
    [27]Shimizu T, Inagaki M. Decomposition of N2O over limestone under Fuidized bed combustion conditions. Energy and Fuels,1993,7(5):648-654
    [28]Schafer S B, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part Ⅱ:heterogeneous reactions involving limestone. Fuel,2002,81(13):1641-1646
    [29]Leppalahti J, Koljonen T. Nitrogen evolution from coal、peat and wood during gasification:literature review. Fuel Processing Technology,1999,43(1):41-45
    [30]刘艳华,车得福,徐通模.煤中矿物质对燃煤污染物排放特性的影响.燃料化学学报,2005,33(1):18-23
    [31]周建平,姚洪,徐涛,刘一兵,曾汉才.炉内喷钙对S02和NOx排放的影响.热力发电,1998,3:4-9
    [32]李绚天,骆仲泱,倪明江,岑可法.煤燃烧过程中加石灰石脱硫对NOx排放影响的研究.1991,19(1):71-76
    [33]郝永新,郝变华.流化床燃烧过程中燃料氮转化为NO和N20的系数.北方环境,1997,2:14-20
    [34]魏砾宏,姜秀民,杨天华,李延吉,王雷.矿物成分对超细煤粉燃烧过程中氮转化的影响.环境科学学报,2006,26(11):1780-1784
    [35]刘皓,陆继东,冯波,刘德昌.流化床煤燃烧N2O, SOx及NOx的消减.华中理工大学学报,1996,24(11):103-106
    [36]张东平,池涌,严建华,李香排,曹玉春,岑可法.燃煤流化床钙基脱硫剂对NO转变率的影响及机理.环境科学,2003,24(1):143-146
    [37]Zhao J S, Grace G R, Lim J L et al. Influence of operating parameters on NOx emissions from a circulating fluidized bed combustor. Fuel,1994,73(10): 1650-1657
    [38]Lyngfelt A, Bergqvist K, Johnson F, Amand L E and Leckner B. Dependence of sulphur capture on air-staging in a 12 MW circulating fluidised bed boiler. Gas Cleaning at High Temperatures,1993:470-491
    [39]Shimizu T,Tachiyama Y,Kuroda A, Inagaki M. Effect of SO2 removal by limestone on NOx and N2O emissions from a bubbling fluidized-bed combustor. Fuel,1992, 71(7):841-844
    [40]Wu Z H, Sugimoto Y, and Kawashima H. Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrrolic or pyridinic nitrogen. Fuel, 2001,80(2):251-254
    [41]Jensen A, Johnsson J E, Dam-Johansen K. Ntrogen Chemistry in FBC With Limestone Addition. Proceedings of the Combustion Institute,1996,31(2): 3335-3342
    [42]Jensen A, Johnsson J E, Dam-Johansen K. Catalytic and Gas-Solid Reactions involving HCN over Limestone. AICHE Journal,1997,43(11):3070-3084
    [43]Johnsson J E. A kinetic model for NOx formation in fluidized bed Combustion, In 10th International Conference on FBC.1989:435-442
    [44]Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel,1994,73(9):1398-1415
    [45]Zijlma G J, Jensen A D, Johnsson J E, Van den Bleek C M. NH3 oxidation catalysed by calcined limestone-a kinetic study, Fuel,2002,81(14):1871-1887
    [46]De Soete G G. Heterogeneous N2O reactions related to combustion. Proceedings of the Fifth International Workshop on Nitrous Oxide Emissions,1992:199-222
    [47]Braford M, Grover R, Paul P. Controlling NOx Emission. Part 2. Chemical Engineering Progress,2002,98(4):38-42
    [48]Tsujimura M, Furusawa T, Kunii D. Catalytic reduction of nitric oxide by carbon monoxide over calcined limestone. Journal of chemical engineering of Japan,1983, 16:132-136
    [49]Furusawa T, Koyama M and Tsujimura M. Nitric oxide reduction by carbon monoxide over calcined limestone enhanced by simultaneous sulphur retention. Fuel,1985,64(3):413-415
    [50]Hansen P F B, Dam-Johansen K, Johnsson J E et al. Catalytic reduction of NO and N2O on limestone during sulfur capture under fluidized bed combustion conditions. Chemical Engineering Science,1992,47(9-11):2419-2424
    [51]Ralf F W, Kopsel S H. Catalytic influence of ash elements on NOx formation in char combustion under fluidized bed conditions. Fuel,1997,76(4):345-351
    [52]Bueno-Lopez A, Garcia-Garcia A, Caballero J A and Linares-Solano A. Influence of potassium loading at different reaction temperatures on the NOx reduction process by potassium-containing coal pellets. Fuel,2003,82(3):267-277
    [53]Gard-Garcia A, Illan-Gomez M J, Linares-Solano A, Salinas-Martinez C. Potassium-containing briquetted coal for the reduction of NO. Fuel,1997,76(6): 499-505
    [54]Bueno-Lopez A, Garcia-Garcia A. Potassium-containing coal pellets for NOx reduction under gas mixtures of different composition. Carbon,2004,42(8-9): 1565-1574
    [55]Yamashita H, Yamada H, Tomita A. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen. Applied Catalysis,1991,78(2):1-6
    [56]Burch T E, Chen W Y, Thomas W L, Arthur M S. Interaction of fuel-N with nitric oxide during reburning with coal. Combustion and Flame,1994,98(4):391-401
    [57]刘银河,刘艳华,车得福,徐通模.煤中灰分和钠添加剂对煤燃烧中氮释放的影响.中国电机工程学报,2005,25(4):136-141
    [58]刘艳华,车得福,徐通模.煤中矿物质对燃煤污染物排放特性的影响.燃料化学学报,2005,33(1):18-23
    [59]刘艳华,车得福,惠世恩,徐通模.含铁物质对燃煤污染特性的影响.环境科学,2001,22(2):25-30
    [60]唐浩,钟北京.不同催化剂对脱矿煤焦还原NO的催化能力比较.热能与动力 工程,2005,20(1):28-29
    [61]赵宗彬,李文,李保庆.半焦负载钙和铁催化还原NO的研究.环境化学,2001,22(5):17-20
    [62]赵宗彬,李文,李保庆.矿物质对煤焦燃烧过程中NO释放规律的影响.化工学报,2003,51(1):100-106
    [63]Zhao Z B, Qiu J S, Li W, Chen H K, Li B Q. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion. Fuel,2003,82(8):949-957
    [64]Nakayama S, Noguehi Y. Pulverized coal combustion in O2/CO2 mixtrue on a power plant for CO2 recovery. Energy Convers Management,1992,33(5-8): 379-386
    [65]Hosada, Hirama T. NOx and N2O emission in bubbling fiuidized-bed coal combustion with oxygen and reeyeled flue gas, MarcroseoPic charavterics of their formation and reduction. Energy and Fuels,1998,12:102-108
    [66]Yamadea T, Kiga T, Okaua M. Characteristics of Pulverized coal combustion in CO2 Recvery Power Plant APPlied O2/CO2.JSME International Journal,1998,41: 1017-1022
    [67]Kimura N, Omata K, Kiga T, et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion Management,1995,36(6-9):805-808
    [68]Okazaki K, Ando T. NOx reduction mechanism in coal combustion with recycled CO2. Energy,1997,22(2-3):207-215
    [69]Croiset E. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel, 2001,80(14):2117-2121
    [70]Liu H, Zailani R, Gibbs B M. Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle. Fuel,2005,84(16):2109-2115
    [71]Hu Y Q, Naito S, Kobayashi N et al. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel,2000,79(15): 1925-1932
    [72]Hu Y Q, Kobayashi N, Hasatani M. Effects of coal properties on recycled-nox reduction in coal combustion with O2/recycled flue gas. Energy Convers Management,2003,44(14):2331-2340
    [73]Hu Y Q, Kobayashi N, Hasatani M. The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio. Fuel,2001,80(13): 1851-1855
    [74]邹春,黄志军,初琨,桂许龙,丘纪华,张立麒,郑楚光.燃煤O2/CO2循环燃烧过程中SO2与NOx协同脱除的中试研究.中国电机工程学报,2009,29(2):20-24
    [75]黄志军,邹春,初琨,丘纪华,郑楚光.O2/CO2循环燃烧中NOx的中试实验研究.工程热物理学报,2009,30(2):2141-2144
    [76]王宏,邱建荣,郑楚光.燃煤在O2/CO2方式下NOx生成特性的研究.燃料化学学报.2001,29(5):458-462
    [77]刘豪,邱建荣,徐志英,成斌,王小华,孔凡海,曾汉才.高浓度CO2气氛下燃煤氮、硫污染物的释放特性.工程热物理学报,2008,29(2):354-356
    [78]王宏,董学文,邱建荣,郑楚光.燃煤在O2/CO2方式下NOx生成特性研究.燃料化学学报,2005,29(5):458-462
    [79]陈阳.O2/CO2气氛下NOx生成机理研究:[硕士学位论文].武汉:华中科技大学,2007
    [80]孟德润,赵翔,周俊虎,岑可法.煤在O2/CO2中燃烧的NOx释放规律.化工学报,2005,56(12):2410-2414
    [81]孟德润,周俊虎,赵翔,赵晓辉,刘彦,杨卫娟,岑可法.O2/CO2气氛下氮反应机理的研究.环境科学学报,2005,25(8):1011-1014
    [82]毛玉如,方梦祥,王勤辉,吴学成,骆仲泱,倪明江,岑可法.O2/CO2气氛下循环流化床煤燃烧污染物排放的试验研究.动力工程,2004,24(3):411-415
    [83]李庆钊,赵长遂,武卫芳,陈晓平,董伟.O2/CO2气氛下燃煤NO排放特性的实验研究.中国电机工程学报,2009,29(23):33-39
    [84]段伦博,赵长遂,卢骏营,周骛,李英杰,陈晓平.O2/CO2气氛下煤燃烧SO2/NO析出特性.化工学报,2009,60(5):1268-1274
    [85]陈传敏,赵长遂,庞克亮,梁财.O2/CO2气氛下燃煤NOx排放特性的实验研究.东南大学学报,2005,35(5):738-741
    [86]张永春,张军,刘杨先,赵亮,谢芳,陈洁,盛昌栋.O2/CO2气氛下混煤燃烧过程中NOx排放特性.东南大学学报,2010,24(5):992-996
    [87]段伦博,周骛,卢骏营,李英杰,陈晓平,赵长遂.CO2浓度对煤焦燃烧及污染物排放特性影响的试验研究.动力工程,2009,29(6):571-575
    [88]于岩,阎维平,刘彦丰,赵泽光,高正阳.O2/CO2气氛下CO对NO排放特性影响的实验研究.华北电力大学学报,2004,31(2):28-31
    [89]Shimizu T, Karahashi E, Yamaguchi T, Inagaki M. Decomposition of NH3 over calcined and uncalcined limestone under Fuidized bed combustion conditions. Energy and Fuels,1995,9(6):962-965
    [90]Shimizu T, Inagaki M. Decomposition of N2O over limestone under Fuidized bed combustion conditions. Energy and Fuels,1993,7(5):648-654
    [91]Johnsson J E, Jensen A, Vaaben R, Dam-Johansen K. Decomposition and reduction of N2O over limestone under FBC conditions.14th International Conference On Fluidized Bed Combustion,1997,2:953-966
    [92]Sasaoka E, Sada N, Hara K, Uddin A, Sakata Y. Catalytic activity of lime for N2O decomposition under coal combustion conditions. Industrial Chemical Research, 1999,38:1335-1340
    [93]Zijlma G J, Jensen A D, Johnsson J E, Van den Bleek C M. The influence of H2O and CO2 on the reactivity of limestone for the oxidation of NH3. Fuel,2000,79(12): 1449-1454
    [94]Bertrand R R, Hoke R C, Shaw H and Skopp A. Combustion of coal in a bed of fluidized limestone. American Chemical Society, Division of Fuel Chemistry, 1973,18(4):25-29
    [95]Dam-Johansen K, Hansen P F B and S(?)ren Rasmussen. Catalytic reduction of nitric oxide by carbon monoxide over calcined limestone:reversible deactivation in the presence of carbon dioxide. Applied Catalysis B:Environmental,1995,5(4): 283-304
    [96]KruppPolysius. AEA/CFX/008(6/96)
    [98]Giddings D, Pickering S J, Simmons K, Eastwick C N. Combustion and aerodynamic behaviour of car tyre chips in a cement works precalciner. Journal of the Institute of Energy,2002,75(5):91-99
    [99]Peter F, Mullinger J, Jenkins G. Optimising precalciner design and performance. World Cement,1996,4:37-42
    [100]郑建祥,刘文铁,赵云华,赵修建,陆慧林.分解炉内气固两相流动特性的数值模拟.硅酸盐学报,2005,33(7):853-858
    [101]赵蔚琳,李兆峰.FLS分解炉二维流场的数值模拟计算.工业炉,2002,24:44-47
    [102]赵蔚琳,侯立红.DD分解炉内湍流流场的数值模拟.硅酸盐通报,2002,2:26-28
    [103]吴慧英,李建锡,王家循,覃勇付,靳芳芳,段国平.分解炉内气相湍流流动的数值模拟分析.中国水泥,2005,11:54-57
    [104]李硕,孙立鹏.分解炉内气固两相流场的数值模拟及流场分析.湖北工业大学学报,2010,25(4):115-117
    [105]李硕.2500t/d RSP分解炉内三维流场的数值模拟研究.机械制造,2010,48:19-21
    [106]Hu Z J, Lu J D, Huang L, Wang S J. Numerical simulation study on gas-solid two-phase flow in pre-calciner. Communications in Nonlinear Science and Numerical Simulation,2006,11:440-451
    [107]黄来,陆继东,胡芝娟,吴君棋.旋喷结合分解炉内流场的数值模拟.燃烧科学与技术,2003,9(3):274-279
    [108]Lu J D, Huang L, Hu Z J, Wang S J. Simulation of the gas-solid two-phase flow, coal combustion and raw meal calcination in a pre-calciner. ZKG International, 2004,57(2):55-63
    [109]黄来,陆继东,李昌军,胡芝娟,王世杰,吴君棋.双喷腾分解炉内气固两相流场的数值模拟.硅酸盐学报,2003,31(8):748-753
    [110]马保国,李相国.分解炉的结构对冷态流场影响的数值模拟.武汉理工大学学报,2006,28(1):35-37
    [111]李相国,马保国等.喷腾分解炉内流场优化的数值仿真研究.水泥技术,2006,127(1):51-54
    [112]王家楣,肖国权.分解炉内气固两相流场不同模型模拟结果分析.海军工程大学学报,2005,17(3):5-8
    [113]毛娅,陈作炳,陈定方,卢海波,豆海健.基于两相流理论的RSP型分解炉三维流场数值模拟研究.武汉理工大学学报,2006,30(6):1015-1018
    [114]陈作炳,卢海波,彭建新,豆海建,施连章,黄继全.强化悬浮式分解炉内气固两相流场的数值模拟.硅酸盐学报,2006,34(1):50-54
    [115]李相国,马保国,于竹青,罗忠涛,柯凯.喷旋分解炉内煤粉燃烧的数值模拟.武汉理工大学学报,2009,31(1):38-44
    [116]谢峻林,梅书霞,衣明辉.煤粉在分解炉内燃烧机理的数值模拟研究.煤炭科学技术,2005,33(5):48-51
    [117]考宏涛,陆雷,胡道和.离线型分解炉内燃烧气氛对碳酸钙分解的影响.南京化工大学学报,1998,20(1):52-54
    [118]缪明烽,叶旭初,胡道和.RSP分解炉内燃烧、分解的数学模拟分析.水泥工程,1995,4:16-21
    [119]叶旭初,胡道和.喷腾分解炉内热态过程的数值模型.南京化工学院学报,1993,15(7):24-28
    [120]叶旭初,胡道和.SLC分解炉内燃烧、分解的数值模拟研究.硅酸盐学报,1994,22(4):325-330
    [1211黄来,陆继东,任合斌,胡芝娟,王世杰.双喷腾分解炉中燃烧与分解耦合数值模拟.硅酸盐学报,2004,32(10):1271-1275
    [122]Huang L, Lu J D, Xia F, Li W J, Ren H B.3-D mathematical modeling of an in-line swirl-spray precalciner. Chemical Engineering and Processing,2006,45(3): 204-213
    [123]黄来,陆继东,张振顶,夏凡,李昌军.分解炉虚拟样机的研究与开发.系统仿真学报,2005,17(3):642-645
    [124]沈威,黄文熙,闵盘荣.水泥工艺学.武汉工业大学出版社,1990
    [125]王世杰.水泥预分解窑系统内生料分解、煤粉燃烧与NOX控制研究:[博士学位论文].武汉:华中科技大学,2006
    [126]李坚利,周惠群.水泥生产工业.武汉:武汉理工大学出版社,2008
    [127]Rao T R, Gunn D J, Bowen J H. Kinetics of calcium carbonate decomposition. Chemical Engineering Research and Design,1989,67:38-47
    [128]Wang Y, Thomson W J. The effects of steam and carbon dioxide on calcite decomposition using dynamic X-Ray diffraction. Chemical Engineering Science, 1995,50(9):1373-1382
    [129]王世杰,陆继东,胡芝娟,周琥,张步庭.水泥生料分解动力学的研究.硅酸盐学报,2003,31(8):811-814
    [130]王世杰,陆继东,周琥,胡芝娟,张步庭.石灰石颗粒分解的动力学模型研究.工程热物理学报,2003,24(4):699-702
    [131]李建锡.煤在分解炉中的燃烧特性分析.水泥技术,1996,6:11-16
    [132]李安平,张薇,简淼夫等.水泥生料在模拟分解炉内分解特性的研究.硅酸盐学报,1995,23(2):175-183
    [133]胡荣祖,史启祯编.热分析动力学.北京:科学出版社,2001
    [134]Gavin D G, Dorrington M A. Factors in the conversion of fuel nitrogen to nitric and nitrous oxides during fluidized bed combustion. Fuel,1993,72(3):381-388
    [135]Ohtsuka Y, Wu Z, Furimsky E. Effect of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal. Fuel,1997,76(14-15): 1361-1367
    [136]Zhao Z B, Li W, Li B Q. Catalytic reduction of NO by coal chars loaded with ca and Fe in various atmospheres. Fuel,2002,81(11-12):1559-1564
    [137]Hahn W A, Shadman F. Effect of Solid Structural Change on the Rate of NO Formation During Char Combustion. Combustion Science and Technology,1983, 30(1-2):89-104.
    [138]Yang Y B, Hampartsoumian E, Gibbs B M. The effects of temperature, mixing and volatile release on NO reduction mechanisms by coal reburning. Proceedings of the Combustion Institute,1998,27(7):3009-3017
    [139]李莉.水泥分解炉内氮氧化物释放特性及生成机理研究:[硕士学位论文].广州:华南理工大学,2010
    [140]Liu H, Gibbs B M. The influence of limestone addition at different positions on gaseous emissions from a coal-fired circulating fluidized bed combustor. Fuel, 1998,77(14):1569-1577
    [141]Shimizu T, Tachiyama Y, Kuroda A, Inagaki M. Effect of SO2 removal by limestone on NOx and N2O emissions from a bubbling fluidized-bed combustor. Fuel,1992, 71(7):841-844
    [142]Lin W, Dam-Johansen K and Van den Bleek C M V. Interaction between emissions of sulfur dioxide and nitrogen oxides in fluidized bed combustion. Fuel,1994, 73(7):1202-1210
    [143]Zhu Q, Jones J M, Thomas K M. The influence of Fe catalysts on the release of nitrogen oxides during the gasification of nitrogen doped carbon-13 material. Carbon,1997,35(6):855-858
    [144]Li D, Gao S Q, Song W L, Xu G W. Experimental study of NO reduction over biomass char. Fuel Processing Technology,2007,88(7):707-715
    [145]Li Y H, Lu G Q, Rudolph V. The kinetics of NO and N2O reduction over coal chars in fluidized-bed combustion. Fuel,1998,53(1):1-26
    [146]Subberg E M, Teng H, and Calo J M. Studies on the kinetics and mechanism of the rection of NO with carbon. Proceedings of the Combustion Institute,1991,23(1): 1199-1205
    [147]Aarna I, Suuberg E M. A review of the kinetics of the nitric oxide-carbon reaction. Fuel,1997,76(6):475-491
    [148]Furusawa T, Tsunoda M, Tsujimura M and Adschiri T. Nitric oxide reduction by char and carbon monoxide. Fuel,1985,64(9):1306-1309
    [149]Liu Y H, Che D F. Release of NO and its precursors from coal combustion in a fixed bed. Fuel Processing Technology,2006,87(4):355-362
    [150]孟德润,赵翔,周俊虎,岑可法.煤在O2/CO2中燃烧的NOx释放规律.化工学报,2005,56(12):2410-2414
    [151]李庆钊,赵长遂,武卫芳,陈晓平,董伟.O2/CO2气氛下燃煤NO排放特性的实验研究.中国电机工程学报,2009,29(23):33-39
    [152]刘述祖.水泥悬浮预热与窑外分解技术.武汉:武汉工业大学出版社,1995
    [153]Wendt J O L. Mechanisms governing the formation and destuction of NO and other nitrogenous species in low NO coal combustion systems. Combustion Science and Technology,1995,108:323-344
    [154]Etzkom T, Muris S, Wolfru J, Atta-Shahin A, Warnatz J. Destrution and formation of NOx in low Pressure stoichiometric CH4/O2 flame. Proceedings of the Combustion Institute,1992,24(1):925-932
    [155]赵宗彬,管仁贵,李保庆.CO和02气氛下煤中矿物质对NO与半焦还原反应的影响.燃料化学学报,2001,29(3):232-237
    [156]Aarna I, Suuberg E M. The role of carbon monoxide in the NO-carbon reaction. Energy and Fuels,1999,13(6):1145-1153
    [157]Chan L K, Sarofim A F and Beer J M. Kinetics of the NO-carbon reaction at fluidized bed. Combust and Flame,1983,52(1):37-45
    [158]Olanders B, Stromberg D. Reduction of Nitric Oxide over Magnesium Oxide and Dolomite at Fluidized Bed Conditions. Energy and Fuels,1995,9(4):680-684
    [159]Shimizua T, Peglowa M, Sakunob S, Misawab N, Suzukib N, Uedab H, Sasatsub H, Gotoub H. Effect of attrition on SO2 capture by limestone under pressurized fluidized bed combustion conditions comparison between a mathematical model of SO2 capture by single limestone particle under attrition condition and SO2 capture in a large-scale PFBC. Chemical Engineering Science,2001,56(23):6719-6728
    [160]Mereb J B, Wendt J O L. Air staging and reburning mechanisms for NOx abatement in a laboratory coal combustor. Fuel,1994,73(7):1020-1026.
    [161]Spliethoff H, Greul U, Rudigger H, Magel H C, Schnell U, Hein K R G, Li C Z, Nelson P F. NOx reduction using coal pyrolysis gas as reburn fuel:Effects of pyrolysis gas composition. Coal Science and Technology,1995,24:1775-1778
    [162]Su S, Xiang J, Sun L S, Hu S, Zhang Z X, Zhu J M. Application of gaseous fuel reburning for controlling nitric oxide emissions in boilers. Fuel Processing technology,2009,90(3):396-402
    [163]Jensen L S, Jannerup H E, Glarborg P, Jensen A and Dam-Johansen K. Experimental Investigation of NO from pulverised char combustion. Proceedings of the Combustion Institute,2000,28(2):2271-2278
    [164]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science,1989,15(4):287-338
    [165]Boardman R D. Development and Evaluation of a Combined Thermal and Fuel Nitric Oxide Predictive Model.Ph. D. thesis, Brigham Young University,1990
    [166]Fiveland W A, and Wessel R A. Model for predicting the formation and reduction of nitric oxide pollutants in three-dimensional furnaces burning pulverized fuel. Journal of the Institute of Energy,1991,64:41-54
    [167]Peck R E, Glarborg P, Johnsson J E. Kinetic Modeling of Fuel-Nitrogen Conversion in One-Dimensional Pulverized-Coal Flames. Combustion Science and Technology,1991,76(1):81-109
    [168]Thomas K M. The release of nitrogen oxides during char combustion. Fuel,1997, 76(6):457-473
    [169]Jones J M, Patterson P M, Pourkashanian M, Williams A. Approaches to modelling heterogeneous char NO formation/destruction during Pulverised coal combustion. Carbon,1999,37(10):1545-1552
    [170]Molina A, Eddings E G, Pershing D W, Sarofim A F. Char nitrogen conversion: implications to emissions from coal-fired utility boilers. Progress in Energy and Combustion Science,2000,26:507-531
    [171]Chen Z, Lin M, Ignowski J, Kelly B, Linjewile T M, Agarwal P K. Mathematical modeling of fluidized bed combustion.4:N2O and NOx emissions from the combustion of char. Fuel,2001,80(9):1259-1272
    [172]Ashman P J, Haynes B, Buckley A N, Nelson P. The Fate of Char-nitrogen in Low-temperature Oxidation. Proceedings of the Combustion Institute,1998,27(2): 3069-3075
    [173]Harding A A W, Brown S D and Thomas K M. Release of NO From the Combustion of Coal Chars. Combustion and Flame,1996,107(4):336-350
    [174]Chaiklangmuang S, Jones J M, Pourkashanian M, Williams A. Conversion of volatile-nitrogen and char-nitrogen to NO during combustion. Fuel,2002,81(18): 2363-2369
    [175]钟北京,徐旭常.燃烧过程中NOx形成的数学模拟.燃烧科学与技术,1995,44(5):120-128
    [176]De Soete G G. Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen. Proceedings of the Combustion Institute,1975,15(1):1093-1099
    [177]Smoot L D, Smith P J. NOx Pollutant Formation in a Turbulent Coal System. Coal Combustion and Gasification, Plenum, NY,1985:373-378
    [178]Lockwood F C, Romo-Millanes C A. Mathematical modelling of Fuel NO Emission From PF Burners. Journal of the Institute of Energy,1992,65:144-152
    [179]Coelho L R, Azevedo J L T, Carvalho M G. Numerical simulation and Comparison Conditions. Proceedings of the 3rd International Symposium on Coal Combustion Science and Technology,1995:617-624.
    [180]Mitchell J W, Tarbell J M. A kinetic model of nitric oxide formation during pulverized coal combustion. AIChEJ,1982,28(2):302-311
    [181]Levy J M, Chan L K, Sarofim A F, Beer J M. NO/char reactions at pulverized coal flame conditions. Proceedings of the Combustion Institute,1981,18(1):111-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700