用户名: 密码: 验证码:
超声波在键合换能系统接触界面的非线性传播机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热超声芯片键合是当前芯片一级封装使用的主要技术。其中,超声键合换能系统是超声芯片键合工艺的核心执行机构。键合换能系统接触界面在工作过程中的非线性特性严重影响了超声波在换能器中的传播效率和芯片键合的质量。本课题受高等学校博士点专项科研基金:芯片封装换能系统接触界面的超声波传播机理及其设计(编号:20060533068)项目和国家自然科学基金:超声波在键合换能系统接触界面的传播机理与低能耗接触界面设计(编号:50605064)项目支持。本文以提高超声芯片键合的质量和键合过程的稳定性为目标,以提高超声波在键合换能器接触界面传递效率为核心,研究超声波在键合换能器接触界面传播的能量传递效率规律、波形畸变以及高次谐波产生规律等,从根本上认识超声波在键合换能器接触界面处非线性传播的机理,为热超声键合换能器的优化设计、制造和使用提供理论依据。
     本文主要的研究内容:
     第一、采用赫兹接触原理与斯涅尔定律,构建了超声波在键合换能器接触界面的传播模型。研究接触界面因素:介质材料特性阻抗、表面粗糙度、实际接触面积、接触界面应力和界面粘合剂等对超声波在接触界面传播的影响规律。建立超声波在接触界面传播的非线性方程,运用约化摄动法求解,得到超声波在键合换能器接触界面的传播方程。基于超声波在接触界面的传播特性,建立了超声波在键合换能器接触界面传播的弹簧阻尼质点模型。
     第二、运用机械动力学原理,将超声波在换能系统接触界面的传播模拟成弹簧阻尼质点系统,仿真得到超声波振动在键合换能器接触界面的传播随接触界面预紧力、接触界面刚度和接触界面阻尼的影响规律。在超声键合试验台上验证了不同接触界面因素:表面粗糙度、接触界面应力和界面粘合剂对超声波传播的影响规律。试验得到了超声波在接触界面的波形畸变、高次谐波产生与键合强度之间的联系。
     第三、采用等效电路方法,构建了超声键合换能系统接触界面的等效阻抗模型。基于力电类比方法,建立了接触界面包含接触界面材料、接触界面状态参数的阻抗和导纳集总参数模型。完善了超声键合换能器的等效电路模型。采用阻抗分析仪验证了换能器等效电路模型的正确性。得到了接触界面应力、接触界面粗糙度及界面粘合剂对超声换能器谐振频率和阻抗特性的影响规律。
     以上研究内容、方法与结论,对理解、分析超声键合换能器的非线性振动具有积极的作用,对超声键合换能器接触界面的理解和提高与推进半导体器件制造起着基础性的意义,对其他超声换能系统也具有一定的借鉴意义。
Thermosonic chip bond technology is a potential process in the current chip package area. Ultrasonic bond transducer system is the important part in ultrasonic chip bond process. The nonlinear characteristics of contact interface in ultrasonic bond transducer system are mainly factor of ultrasonic transmission efficiency reduction and chip bond failure. This thesis comes from Research Fund for the Doctoral Program of Higher Education of China, Ultrasonic Propagation Mechanism in Contact Interface of Chip Package Transducer System and Design, No.20060533068 and National Natural Science Foundation of China, Ultrasonic Propagation Mechanism in Contact Interface of Chip Package Transducer System and Low Power Consumption Contact Interface Design, No.50405064. In order to improve the ultrasonic transmission efficiency at the contact interface of ultrasonic transducer and the quality of chip bond and stability of transducer vibration, the thesis study on ultrasonic transmission at the contact interface of the ultrasonic bond transducer. Ultrasonic energy loss, waveform conversion and harmonic variation are studied. The nonlinear vibration fundamental of contact interface is important for the ultrasonic transducer optimize design, manufacture and use.
     In this paper, the study consists of:
     Firstly, based on Hertz contact theory and Snell law, the model of ultrasonic propagation through contact interface was studied. The factors of contact interface including:interface roughness, the actual contact area, contact interface stress and interface adhesive. The relation of the factors affecting on ultrasonic propagation was obtained. The nonlinear ultrasonic propagation equation is established, and is solved using reductive perturbation method. The spring-damp-mass model of ultrasonic propagation through contact interface is established, in the light of ultrasonic propagation chracteritics at contact interface.
     Secondly, ultrasonic propagation through contact interface is simulated using of mechanical dynamics simulation software. It is gained that ultrasonic propagarion varys with the contact interface stress, contact interface stiffness and interface damp. The test is done on ultrasonic bond platform. The contact interface roughness, contact interface stress and interface adhesive are taken account. It is abtained that the waveform distortion and high harmonic generation is relating to contact interface parameters. The relation of the bonding strength and the higher order harmonics of bond tool vibration are obtained.
     Finally, the equivalent impedance model of ultrasonic transducer's contact interface is established using of mechanical and electrical equivalent model. Based on electromechanical analogy method, the contact interface model is established, which concludes contact interface material, contact interface status parameter. The equivalent impedance model of ultrasonic transducer is gained. The model is proved is validatied by experiment using impedance analysis method.
     The content of the above research, methods and conclusions have a positive effect on understanding contact transducer interface's nonlinear vibration of ultrasonic transducer. Those are help for analysis and design of chip bonding transducer system. It plays a fundamental significance that improving the manufacture of semiconductor devices. There are some references on other ultrasonic transducer system.
引文
[1]米小兵.超声波和热波检测的机理与技术:[博士学位论文].南京:南京大学,2001
    [2]王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术.北京:国防工业出版社,2007
    [3]陈思忠.我国功率超声技术近况与应用进展.声学技术,2002,21(1):46-49
    [4]计红军.超声楔焊键合物理过程及其规律研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2005
    [5]隆志力,吴运新,王福亮.芯片封装互连新工艺热超声倒装焊的发展现状.电子工艺技术,2004,25(9):184-188
    [6]Zhong Z W, Goh K S. Investigation of ultrasonic vibrations of wire-bonding capillaries. Microelectronics Journal,2006,37: 107-113
    [7]隆志力.芯片键合换能系统动力学特性与优化设计研究:[博士学位论文].长沙:中南大学,2007
    [8]LI Jun-hui, WAND Fu-liang, HAN Lei, et al. Atomic Diffusion Properties in Wire Bonding. Transactions of Nonferrous Metals Society of China, 2006,16:463-466
    [9]李军辉,韩雷,谭建平.Ni-Al超声楔键合分离界面的结构特性及演变规律.焊接学报,2005,26(4):4-9
    [10]LI Jun-hui, HAN Lei, ZHONG Jue. Studies of Microstructure Characteristics at the Bond Interface. The Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP'04),2004,316-321
    [11]LI Junhui, HAN Lei, ZHONG Jue. The Characteristics of Ultrasonic Vibration Coupling in Bonding Technology. The Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP'04),2004,311-315
    [12]Li Jun-hui, Han Lei, Zhong Jue, Atomic Diffusion at the Thermosonic Bond Interface in Aluminum and Gold & Aluminum and Nickel, The 7th IEEE CPMT Conference on High Density Microsystem Design, Packaging and Failure Analysis (HDP05),2005.466-470
    [13]王福亮,李军辉,韩雷,等.热超声倒装键合振动传递与键合强度形成研究.中国机械工程,2006,17(23):2350-2353
    [14]李军辉,韩雷,谭建平,等.热超声键合界面的微观结构特性.中国机械工程,2005,16(4):341-345
    [15]田艳红,孔令超,王春青.芯片互连超声键合技术连接机制探讨.电子工艺技术,2007,27(1):1-6
    [16]Joshi K C. The Formation of Ultrasonic Bonds Between Metals. Welding Journal,1971, (1):28-32
    [17]Han Lei, Wang Fuliang, Xu Wenhu, et al. Bondability Window and Power Input for Wire Bonding. Microelectronics Reliability,2006,46:610-615
    [18]Wang Fuliang, Li Junhui, Han Lei, et al. Effect of Ultrasonic Power on Wedge Bonding Strength and Interface Microstructure. Transactions of Nonferrous Metals Society of China,2007,27:606-611
    [19]Qi Jun, N Hung gar Chun, Li Ming, et al. Effects of ProcessParameters on Bondability in Ultrasonic Ball Bonding. Scripta Materialia, 2006,54:293-297
    [20]王福亮,韩雷,钟掘.超声功率对引线键合强度的影响.机械工程学报,2007,43(3):107-111
    [21]王福亮,韩雷,钟掘.超声功率对粗铝丝超声引线键合强度的影响.中国机械工程,2005,16(10):919-923
    [22]王福亮,韩雷,钟掘.换能器驱动信号与引线键合强度的关系.机械工程学报,2008,44(4):102-106
    [23]王福亮.热超声倒装键合界面运动与界面性能的生成规律研究:[博士学位论文].长沙:中南大学,2007
    [24]广明安,韩雷.超声键合过程中键合压力特性的实验研究.半导体技术,2006,31(8):607-611
    [25]高荣芝,韩雷.键合力对超声键合换能系统振动影响的时频分析.中国机械工程,2007,18(15):1824-1829
    [26]吕雷,韩雷.键合压力对超声换能系统非线性混沌特性的影响.振动与冲击,2009,28(4):132-136
    [27]高荣芝,韩雷.键合压力对粗铝丝引线键合强度的实验研究.压电与声光,2007,29(3):366-369
    [28]Chan Y C, Luk DY. Effects of Bonding Parameters on the Reliability Performance of Anisotropic Conductive Adhesive Interconnects for Flip-Chip-on-Flex Packages Assembly II. Different Bonding Pressure. Microelectronics Reliability,2002,42:1195-1204
    [29]Ding Yong, Kim Jang-Kyo, Tong Pin. Numerical Analysis of Ultrasonic Wire Bonding:Effects of Bonding Parameters on Contact Pressure and Frictional Energy. Mechanics of Materials,2006,38:11-24
    [30]Ivan Lum. Effects of Ultrasound in Microelectronic Ultrasonic Wire Bonding:[PH. D thesis]. Waterloo:University of Waterloo,2007
    [31]WU Yun-xin, LONG Zhi-li, HAN Lei, et al. Temperature effect in thermosonic wire bonding. Transactions of Nonferrous Metals Society of China,2006,16:628-622
    [32]隆志力,韩雷,吴运新等不同温度对超声键合工艺连接强度的影响.焊接学报,2005,26(8)23-26
    [33]隆志力,韩雷,吴运新,等.温度因素对热超声键合强度的影响实验研究.半导体技术,2005,30(6):41-44
    [34]Ang X. F., Zhang G. G., Wei J., et al. Temperature and pressure dependence in thermocompression gold stud bonding. Thin Solid Films, 2006,504:379-383
    [35]王福亮,李军辉,韩雷,等.键合时间对粗铝丝超声引线键合强度的影响.焊接学报,2006,27(5):47-52
    [36]WANG Fuliang, LI Junhui, HAN Lei, et al. Effect of Bonding Parameters on Thermosonic Flip Chip Bonding Under Pressure Constraint Pattern. Proceedings of HDP'06,2006.87-89
    [37]李丽敏.热超声倒装过程的热-力建模和多参量仿真:[硕士学位论文].长沙:中南大学,2008
    [38]张福学,王丽坤.现代压电学(上,中,下).北京:科学出版社,2003
    [39]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,2005
    [40]姚文苇,林书玉,王亚雄.指数形负载超声变幅杆频率方程与放大系数的研究.陕西师范大学学报(自然科学版),2005,33(3):53-57
    [41]林书玉.夹心式功率超声压电换能器负载特性研究.陕西师范大学学报(自然科学版),2002,30(2):29-34
    [42]顾晓丹,刘传绍,张昌娟.夹心式压电超声换能器的等效电路设计法.声 学与电子工程,2007,(3):26-29
    [43]Buchacz A., Wrobel A. Piezoelectric Layer Modelling by Equivalent Circuit and Graph Method. Journal of Achievements in Materials and Manufacturing Engineering,2007,20 (1):299-302
    [44]于洁,章东,刘晓宙,等.圆锥面PVDF聚焦换能器的非线性声场理论及实验研究.物理学报,2007,56(10):5909-5914
    [45]Schmerr L W, Lopez-Sanchez A, Huang R. Complete Ultrasonic Transducer Characterization and its Use for Models and Measurements. Ultrasonics,2006,44 (22):753-757
    [46]廖华丽,刘任先.功率超声变幅杆振动能量传输性能的研究.机械设计与制造,1999,(5):71-73
    [47]林仲茂.超声波幅杆原理与设计.北京:科学出版社,1987
    [48]Or S W, Chan H L W, Lo V C, et al. Dynamics of an Ultrasonic Transducer Used for Wire Bonding. IEEE Transactions on Ultrasonics. Ferroelectrics and Frequency Control,1998,45(6):1453-1460
    [49]Or S W, Nersessian N, McKnight G P, et al. Dynamic Magnetomechanical Properties of [112]-Oriented Terfenol-D/Epoxy 1-3 Magnetostrictive Particulate Composites. Journal of Applied Physics,2003,93 (10):8510-8512
    [50]Parrini Lorenzo. Advanced Process Characterization for 125 kHz Wire Bonder Ultrasonic Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2001,48(6):1632-1639.
    [51]Parrini Lorenzo. Design of Adanced Ultrasonic Transducers for Welding Devices. IEEE TRANSACTIONS ON COMPONENT AND PACKAGING TECHNOLOGY,2002,25 (3):486-495
    [52]Amin S G, Ahmed M H M., Youssef H A. Computer-aided Design of Acoustic Horns for Ultrasonic Machining Using Finite-element Analysis. Journal of Materials Processing Technology,1995,55:254-260
    [53]Changsoo Jang, Geun Sik Ahn, Yung Joon Kim, et al. Finite Element Contact Analysis on a Horn-Holder Assembly for Wire Bonding. IEEE Transactions on Electronics Pachaging Manufacturing,2003,26 (1): 46-52
    [54]周光平,李明轩.有负载的超声弯曲变幅杆的振动特性分析.声学学报,2000,25(3):280-284
    [55]顾煜炯,周兆英,姚健.超声振动系统的四端网络设计方法及其应用.机械工程学报,1997,33(3):94-102
    [56]Yconbo Kim, Yongrac Roh. New design of Matching Layers for High Power and Wide Band Ultrasonic Transducers. Sensors and Actuator A,1998, 71:116-122
    [57]Lin Chi-Hshiung, Tsao Ta-Peng, Tsai Wen-Chang. Tuning the Ratio K/H to Suppress Vibrations for Turbine Blades. Electrical Power and Energy System,2000,22:434-445
    [58]贺西平,高洁.超声变幅杆设计方法研究.声学技术,2006,25(1):82-87
    [59]洪嘉振.多体系统动力学.上海:上海交通大学出版社,1992
    [60]林书玉,曹辉.一种新型的径向振动高频压电陶瓷复合超声换能器.电子学报,2008,36(5):1004-1010
    [61]胡新伟.大功率压电超声换能器的非线性研究:[硕士学位论文].西安:陕西师范大学,2007
    [62]付耀东.考虑压电材料迟滞非线性时旋转行波超声电机动力学分析:[硕士学位论文].天津:天津大学,2007
    [63]姜文华,水永安,毛一葳,等.有限振幅声波在固体中传播的非线性特性.物理学进展,1996,16(4):303-312
    [64]税国双,汪越胜,曲建明.材料力学性能退化的超声无损检测与评价.力学进展,2005,35(1):52-68
    [65]Sesawa K, Kanai K. A Fault Surface or a Block Absorbs Seismic Wave Energy. Bull Earthquake Res Inst,1940,18:465-482
    [66]Atkinson C. On Stress Singularities and Interface in Linear Elastic Fracture Mechanics. International Journal of Fracture,1977,13: 807-820
    [67]Yang W, Shin C F. Fracture along an Interlayer. International Journal of Solids and Structures,1994,31:984-1002
    [68]Richardson J M. Harmonic Generation at all Unbonded Interface I. Planar Interface Between Semi-infinite Elastic Media. International Journal of Engineering Science,1979,17:73-85
    [69]Buck 0, Morris W L, Richardson J M. Acoustic Harmonic Generation at Unbonded Interfaces and Fatigue Cracks. Applied Physics Letters, 1978,33 (5):371-373
    [70]Morris W L, Buck 0, lnman R V. Acoustic Harmonic Generation due to Fatigue Damage in High-strength Aluminum. Journal of Applied Physics, 1979,50 (11):6737-6741
    [71]Parrini Lorenzo. New Methodology for the Design of Advanced Ultrasonic Transducer for Welding Device. IEEE Ultrasonic Symposium. 2000,699-704
    [72]Martin von Arx. Novel Ultrasonic Transducer Design for Fine-Pitch Wire Bonding. IEEE/CPMT Electronics Manufacturing Technology Symposium,2003,49-53
    [73]宋爱军.超声键合换能系统非线性振动的实验研究:[硕士学位论文].长沙:中南大学,2007
    [74]刘清.压电超声结构非线性动力学实验研究:[硕士学位论文].天津:天津大学,2008
    [75]曾昱.超声非线性的理论与实验研究:[硕士学位论文].北京:北京交通大学,2008
    [76]隆志力,韩雷,吴运新,等.芯片键合换能系统中接触界面的影响分析.压电与声光,2008,30(8):511-513
    [77]Han Lei, Zhong Jue, Gao Rongzhi. Effect of Tightening Torque on Transducer Dynamics and Bond Strength in Wire Bonding. Sensors and Actuators A,2008,141:695-702
    [78]姚钢,韩雷.键合工具安装长度对引线键合强度影响的实验研究.压电与声光,2008,30(4):414-417
    [79]广明安,韩雷,李涵雄.键合工具和肋环夹持工况对超声键合换能系统电学特性的影响.微细加工技术,2006,(10):59-64
    [80]申昭熙.含弱界面复合材料层合板中弹性波传播行为研究:[硕士学位论文].西安:西安交通大学,2004
    [81]杨韬.弹性波透过接触界面的实验研究:[硕士学位论文].北京:北京交通大学,2005
    [82]Comninou M, Dundurs J. Reflexion and Refraction of Elastic Waves in Presence of Separation. Proceedings of the Royal Society. Land A, 1977,356:509-528
    [83]高志.材料[液—固]流变界面传热机理与高梯度温变成型界面的建立:[博士学位论文].长沙:中南大学,2001
    [84]湛利华.界面接触热阻实验与建模及其在快凝铸轧参数设计中的应用:[硕士学位论文].长沙:中南大学,2001
    [85]Anil Misra. Mechanistic Model for Contact Between Rough Surfaces. Journal of Engineering Mechanics,1997,123(5):474-484
    [86]Rajneesh Kumar, Manjeet Singh. Reflection/transmission of Plane Waves at an Imperfectly Bonded Interface of Two Orthotropic Generalized Thermoelastic Half-spaces. Materials Science and Engineering A,2008,47:83-96
    [87]Pugliese G, Tavares S M 0, Ciulli E, et al. Rough Contacts Between Actual Engineering Surfaces:Part II. Contact Mechanics. Wear,2008, 264:1116-1128
    [88]Jamil Abdo, Kambiz Barhang. Elastic-plastic Contact Model for Rough Surfaces Based on Plastic Ssperity Concept. International Journal of Non-Linear Mechanics,2005,40:494-506
    [89]Orestes Marangos. Multi-asperity Contact Model for Seismic Wave Propagation Through Dingle Rock Joint:[Master thesis]. Missouri Kansas:University of Missouri Kansas City,2004
    [90]Anil Misra, Orestes Marangos. Application of a Micromechanical Model to Wave Propagation Through Nonlinear Rough Interfaces Under Stress. 2006 IEEE Ultrasonics Symposium,2006,309-312
    [91]林书玉.夹心式功率超声压电陶瓷换能器的工程设计.声学技术,2006,25(4):160-164
    [92]吕克璞,郭鹏,张磊,等.非线性弹性杆波动方程的摄动分析.应用数学和力学,2006,27(9):1079-1083
    [93]王兆国.固体介质中非线性波传播特点与岩性分析:[硕士学位论文].长春:吉林大学,2007
    [94]汪越胜,于桂兰,章梓茂,等.复杂界面(界面层)条件下的弹性波传播问题研究综述.力学进展,2000,30(8):378-390
    [95]Baik J M, Thompson R B, Ultrasonic Scattering from Imperfect Interfaces:A Quasi-static Model. Journal of Nondestructive Evaluation,1984, (4):177-197
    [96]Action F. Thomas. Lattice Modeling of Ultrasonic Nondestructive Evaluation of Attenuating Materials:[PH. D. thesis]. Cambridge: Massachusetts Institute of Technology,2006
    [97]Peter D. Ultrasonic Wave Propagation in Thick, Layer Composites Containing Degraded Interfaces:[Master thesis]. Cambridge: Massachusetts Institute of Technology,2005
    [98]Scaleradni M, Agostini V. Simulationof the Propagation of Ultasonic Pulse inIN Nonlinear and/or Attenuative Media. Journal of Computational Acoustics,2002,10 (3):274-294
    [99]Action F. Thomas. Lattice Modeling of Ultrasonic Nondestructive Evaluation of Attenuating Materials:[PH. D. Thesis]. Cambridge: Cambridge:Massachusetts Institute of Technology,2006
    [100]ZHENG Haishan, MOROZOV Igor B., ZHANG Zhongjie. Numerical Analysis of One-dimensional Nonlinear Acoustic Wave. Acta Geophysica,2007, 55(3):313-323
    [101]Rajneesh Kumar, Manjeet Singh. Reflection/transmission of Plane Waves at an Imperfectly Bonded Interface of Two Orthotropic Generalized Thermoelastic Half-spaces. Materials Science and Engineering A,2008,47:83-96
    [102]Wang Yue-Sheng, Yu Gui-Lan, Dai Hui-Hui. Transmission of Elastic Waves Through a Frictional Contact Interface Between Two Anisotropic Dissimilar Media. Wave Motion,2003,37:137-156
    [103]李建华,赵翠萍.螺栓结合面接触刚度和接触阻尼.郑州大学学报,1993,25(12):53-57
    [104]赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型.机械工程学报,2007,43(3):94-10
    [105]王松涛.典型机械结合面动态特性及其应用研究:[硕士学位论文].昆明:昆明理工大学,2008
    [106]凤飞龙,沈建中,邓京军.用二维等效电路模型研究大截面圆柱变幅杆的振动.声学技术,2007,26(1):149-152
    [107]Michael Mcbreaty, Lee H. Kim, Nihat M, et al. Analysis of Impedace Loading in Ultrasonic Transducer System. Ultrasonic Symposium, 1997,497-504
    [108]左鹤声.机械阻抗方法与应用.北京:机械工业出版社,1987
    [109]杜功焕,朱哲民,龚秀芬.声学基础(上册).上海:上海科学技术出版社
    [110]王其藩.系统动力学.北京:清华大学社,1994
    [111]闻邦椿.振动机械的理论及应用.北京:机械工业出版社,1982
    [112]Huang Jin H., Dai Wen-Long. Static and dynamic electromechanical responses of piezoelectric transducers. Materials Letters,2001, 50:209-218
    [113]Arnold F J, Mcuhlen S S. The influence of the thickness of non-piezoelectric pieces on pre-stressed piezotransducers. Ultrasonics,2003,41:191-196
    [114]广明安.TS2100超声键合机换能系统俯仰振动实验研究:[硕士学位论文].长沙:中南大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700