用户名: 密码: 验证码:
带安全参数的通信模型容量区域的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数据传输的高效性和安全性一直是通信中的两个最基本的研究课题。高效性意味着对于给定的通信系统模型,要设计出尽可能达到信道容量的编码方案,同时该编码方案所对应的译码错误概率要趋近于零。而安全性意味着如果存在窃听者,即使他知道所有的编码方案的细节,他也不能窃听到任何的信息。本文从多用户信息论的角度,对通信网络中数据传输的高效性和安全性进行了详细的研究。
     在高效性方面,本文对带信道状态信息的多接入信道模型的容量区域进行了研究(该问题是Gel'fand-Pinsker信道在多接入信道模型中的推广),找到了能达到信道容量的编码和译码方案,同时也求出了该模型下的容量区域的具体数学表达式。该问题属于热点问题,但是以往的工作均只求出了一个容量区域的子区域,所以确定整个容量区域是有着重要的理论指导意义的。
     在安全性方面,本文着重研究了窃听信道模型下的安全问题。在该系列模型中,我们假设有一个窃听者能通过一个噪声信道被动窃听主信道传输的信息。我们研究了以下问题:第一,当主信道的信道状态信息能被发送方以无记忆的方式知道时,我们刻画了窃听者关于发送的消息的疑惑度以及信息传输效率之间的关系,得到整个容量区域。该容量区域是所有可以实现的传输效率和疑惑度的2元组所组成的区域,所有在该区域的二元组都能够具体实现,而所有不在该区域的二元组都不能具体实现。而在因果和有记忆的情况下,我们得到了容量区域的内外界。更进一步,我们刻画了该模型下的安全容量,即在保证窃听者得不到任何信息的情况下,消息传输效率的最大值。第二,我们刻画了当主信道的信道状态信息能以因果或者有记忆的方式被发送方知道,且合法用户接收者的信息能以因果的方式反馈到发送方的情况下,该窃听信道模型的容量区域以及安全容量。第三,众所周知,反馈不能增加离散无记忆信道的信道容量,带着这个疑问,我们研究了反馈能不能增加窃听信道的容量区域的问题,答案是惊喜的,可以!第四,我们进一步研究了非降阶的窃听信道带反馈的模型,并且得到了它的容量区域和安全容量。目前反馈在安全上的研究非常少,本文系统研究了反馈在安全模型中的作用。
     最后,我们离开窃听信道模型,去研究广播信道模型的安全问题。具体来讲,我们研究了在带信道状态信息的降阶广播信道模型下,如果发送方能以因果或者有记忆的方式得到信道状态信息,并且非降阶用户的信息能通过反馈而被发送方得到的情况下,该模型的容量区域以及安全容量问题。
     在安全性的研究上,降阶广播信道模型是窃听信道模型的扩展。总体来说我们是研究了窃听信道及其扩展模型在考虑了信道状态信息和反馈的情况下的容量区域问题,这里的容量区域实际上是包含了所有可达的安全参数和传输效率的区域。以上问题的研究均为理论成果,我们从数学上刻画和解释了系统安全和传输效率的关系。更为重要的是,我们提出了很多有趣的编码方案来达到上述各种模型的容量区域,这在现实中有着十分重要的指导作用。另外一个非常有趣的结论产生在带反馈的非降阶的窃听信道模型中,在该模型下,我们假设窃听者的信道噪声比合法用户的信道噪声还要小。这在一般的窃听信道模型中是不可能保证系统安全的,因为窃听者知道所有编码方案的细节且能比合法用户还要更容易译码。但是通过反馈,我们证明并设计了编码方案,使得在带反馈的非降阶的窃听信道模型下,仍然能够保证系统安全,因为我们可以把反馈当作一个密钥共享的手段。这个把反馈当作密钥共享的手段的思想被广泛应用于其他带反馈模型的分析中。
The most important issues in communication are reliability and security. The reliabilityquantifies the maximum rate achievable with small probability of error. Security is an impor-tant issue when the transmitted information is confidential and needs to be kept as secret aspossible from wiretapper. In this thesis, we investigate the reliability and security problemsin multi-user information theory.
     For the reliability, we investigate the situation that the multiple-access channel (MAC)is controlled by a channel state information sequence, and meanwhile it is available to thechannel encoders in a causal or noncausal manner. This new model can be viewed as aMAC extension of Shannon’s model and Gel’fand-Pinsker’s model. The capacity region isdetermined for the new model in both causal and noncausal manners, and an example abouthow to calculate the capacity region is given.
     For the security, firstly, we investigate the wiretap channel with memoryless side in-formation. In the new model, the conditional transition probability distribution of the mainchannel depends on a channel state information, which is available at the joint source-channelencoder in a memoryless manner. The capacity region considering transmission rate andequivocation, is determined for the new model. For the causal and noncausal manners, wederive the inner and outer bounds on the capacity region. Furthermore, the secrecy capacityof the new model is described and bounded, which provides the best transmission rate withperfect secrecy.
     Secondly, the model of wiretap channel has been reconsidered for the case that the mainchannel is controlled by channel state information (side information), and it is available at thetransmitter in a causal case (termed here causal side information) or noncausal case (termedhere noncausal side information). Moreover, there is a noiseless feedback from the legitimatereceiver to the transmitter, and it helps them share a secret key, which enlarges the wiretap-per’s uncertainty about the transmitted message. Measuring the uncertainty by equivocation(conditional entropy), the capacity region considering transmission rate and equivocation, isdetermined for the new model of wiretap channel with causal side information and noiselessfeedback. Furthermore, the secrecy capacity is formulated and bounded.
     Thirdly, we study the model of wiretap channel with noiseless feedback, and the capac-ity region considering transmission rate and equivocation, is determined. Furthermore, thesecrecy capacity of this model is formulated, which provides the best transmission rate withperfect secrecy. Although the traditional channel capacity is kept in the wiretap channel withnoiseless feedback, the secrecy capacity is larger than that of the model of wiretap channel(without feedback).
     Fourthly, we study the non-degraded wiretap channel with noiseless feedback, and it isfirst investigated by R. Ahlswede and N. Cai, where a lower and upper bound on the secrecycapacity is provided in their work. However, the capacity region considering transmissionrate and the equivocation to the wiretapper, has not been determined yet. In this article, thecapacity region is determined for the non-degraded wiretap channel with noiseless feedback.Furthermore, the secrecy capacity of this model is formulated.
     Finally, we investigate the model of degraded broadcast channel with side informa-tion, confidential messages and noiseless feedback. This work is from Steinberg’s work onthe degraded broadcast channel with causal and noncausal side information, and Csisz′arand Ko¨rner’s work on broadcast channel with confidential messages. In this new model,the transmitter sends a confidential message to the non-degraded receiver, and meanwhilesends a common message to both the degraded and non-degraded receivers. Moreover, thechannel for the non-degraded receiver is controlled by channel state information (side infor-mation), and it is available to the transmitter in a causal manner (termed here causal sideinformation) or noncausal manner (termed here noncausal side information). In addition,we assume that there is a noiseless feedback from the output of the channel for the non-degraded receiver to the transmitter, and it helps them share a secret key, which enlarges thedegraded receiver’s uncertainty about the confidential message. Measuring the uncertaintyby equivocation (a conditional entropy), the capacity region composed of all achievable rates-equivocation triples is determined for this new model in both causal and noncausal manners.Furthermore, the secrecy capacity in both manners is formulated.
引文
[1] R. G. Gallager,“A perspective on multiaccess channels,” IEEE Trans Inf Theory, pp.124142, Mar1985.
    [2] R. Ahlswede and J. Ko¨ner,“Source coding with side information and a converse for the degradedbroadcast channel,” IEEE Trans Inf Theory, vol. IT-21, pp.629637,1975.
    [3] P. Bergmans,“Random coding theorem for broadcast channels with degraded components,” IEEETrans Inf Theory, vol. IT-19, pp.197207,1973.
    [4] T. M. Cover,“Comments on broadcast channels,” IEEE Trans Inf Theory, pp.25242530,1998.
    [5] T. M. Cover,“Broadcast channels,” IEEE Trans Inf Theory, vol. IT-18, pp.214,1972.
    [6] T. M. Cover,“An achievable rate region for the broadcast channel,” IEEE Trans Inf Theory, vol.IT-21, pp.399404,1975.
    [7] A. El Gamal,“The feedback capacity of degraded broadcast channels,” IEEE Trans Inf Theory, vol.IT-24, pp.379381,1978.
    [8] A. El Gamal,“The capacity region of a class of broadcast channels,” IEEE Trans Inf Theory, vol.IT-25, pp.166169,1979.
    [9] A. El Gamal and E. C. Van der Meulen,“A proof of Marton.s coding theorem for the discretememoryless broadcast channel,” IEEE Trans Inf Theory, vol. IT-27, pp.120122,1981.
    [10] A. El Gamal,“The capacity of the physically degraded Gaussian broadcast channel with feedback(corresp.),” IEEE Trans Inf Theory, pp.508511, July1981.
    [11] A. El Gamal,“The capacity region of Gaussian broadcast channels with intersymbol interferenceand colored Gaussian noise,” IEEE Trans Inf Theory, vol. IT-47, pp.28, January2001.
    [12] B. E. Hajek and M. B. Pursley,“Evaluation of an achievable rate region for the broadcast channel,”IEEE Trans Inf Theory, pp.3646, January1979.
    [13] T. S. Han,“The capacity region for the deterministic broadcast channel with a common message(corresp.),” IEEE Trans Inf Theory, pp.122125, January1981.
    [14] T. S. Han and M. H. M. Costa,“Broadcast channels with arbitrarily correlated sources,” IEEE TransInf Theory, vol. IT-33, pp.641650,1987.
    [15] K. Marton,“A coding theorem for the discrete memoryless broadcast channel,” IEEE Trans InfTheory, vol. IT-25, pp.306311,1979.
    [16] L. H. Ozarow and C. S. K. Leung,“An achievable region and an outer bound for the Gaussianbroadcast channel with feedback,” IEEE Trans Inf Theory, vol. IT-30, pp.667671,1984.171
    [17] R. Ahlswede,/Multi-way communication channels,0in Proceedings of2nd International Sympo-sium Information Theory (1971), pp.2352, Tsahkadsor, Armenian S.S.R.: Publishing House ofthe Hungarian Academy of Sciences,1973.
    [18] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications.Upper Saddle River, New Jersey: Prentice Hall,1993.
    [19] N. Alon and J. H. Spencer, The Probabilistic Method. New York: Wiley, Second ed.,2000.
    [20] A. Amraoui, S. Dusad, and R. Urbanke,/Achieving general points in the2-user Gaussian MACwithout time-sharing or rate-splitting by means of iterative coding,0in Proceedings of IEEE Inter-national Symposium on Information Theory, p.334, Lausanne, Switzerland, June30July52002.
    [21] M. R. Aref, Information Flow in Relay Networks. PhD thesis, Stanford, CA: Stanford University,October1980.
    [22] T. Berger,/Multiterminal source coding,0in The Information Theory Approach to Communica-tions,(G. Longo, ed.), pp.171231, Berlin, Germany: Springer Verlag,1978.
    [23] P. P. Bergmans,/Random coding theorem for broadcast channels with degraded compo-nents,0IEEE Transactions on Information Theory, vol.19, no.2, pp.197207, March1973.
    [24] P. P. Bergmans,/A simple converse for broadcast channels with additive white Gaussiannoise,0IEEE Transactions on Information Theory, vol.20, no.2, pp.279280, March1974.
    [25] N. Blachman,/The convolution inequality for entropy powers,0IEEE Transactions on Informa-tion Theory, vol.11, no.2, pp.267271, April1965.
    [26] S. I. Bross, A. Lapidoth, and M. A. Wigger,/The Gaussian MAC with conferencing encoders,0inProceedings of IEEE International Symposium on Information Theory, Toronto, Canada, July6112008.
    [27] A. B. Carleial,/Multiple-access channels with different generalized feedback signals,0IEEETransactions on Information Theory, vol.28, no.6, pp.841850, November1982.
    [28] A. S. Cohen and A. Lapidoth,/The Gaussian watermarking game,0IEEE Transactions on Infor-mation Theory, vol.48, no.6, pp.16391667, June2002.
    [29] T. Cover,/A proof of the data compression theorem of Slepian and Wolf for ergodicsources,0IEEE Transactions on Information Theory, vol.21, no.2, pp.226228, March1975.
    [30] T. M. Cover and A. El Gamal,/Capacity theorems for the relay channel,0IEEE Transactions onInformation Theory, vol.25, no.5, pp.572584, September1979.
    [31] T. M. Cover and C. Leung,/An achievable rate region for the multiple-access channel with feed-back,0IEEE Transactions on Information Theory, vol.27, no.3, pp.292298, May1981.
    [32] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley Sons,1991.
    [33] I. Csiszcar and J. K&orner, Information Theory: Coding Theorems for Discrete MemorylessChannels. Budapest: Akadcemiai Kiadco,1981.
    [34] R. L. Dobrushin,/Information transmission in a channel with feedback,0Theory of ProbabilisticApplications, vol.34, pp.367383, December1958.
    [35] A. El Gamal and M. Aref,/The capacity of the semideterministic relay channel,0IEEE Transac-tions on Information Theory, vol.28, no.3, p.536, May1982.
    [36] A. El Gamal and T. M. Cover,/Achievable rates for multiple descriptions,0IEEE Transactions onInformation Theory, vol.28, no.6, pp.851857, November1982.
    [37] L. R. Ford and D. R. Fulkerson,/Maximal flow through a network,0Canadian Journal of Mathe-matics, vol.8, pp.399404,1956.
    [38] N. Gaarder and J. Wolf,/The capacity region of a multiple-access discrete memoryless channel canincrease with feedback,0IEEE Transactions on Information Theory, vol.21, no.1, pp.100102,January1975.
    [39] R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley,1968.
    [40] A. B. Carleial,/Multiple-access channels with different generalized feedback signals,0IEEETransactions on Information Theory, vol.28, no.6, pp.841850, November1982.
    [41] A. S. Cohen and A. Lapidoth,/The Gaussian watermarking game,0IEEE Transactions on Infor-mation Theory, vol.48, no.6, pp.16391667, June2002.
    [42] T. Cover,/A proof of the data compression theorem of Slepian and Wolf for ergodicsources,0IEEE Transactions on Information Theory, vol.21, no.2, pp.226228, March1975.
    [43] T. M. Cover and A. El Gamal,/Capacity theorems for the relay channel,0IEEE Transactions onInformation Theory, vol.25, no.5, pp.572584, September1979.
    [44] T. M. Cover and C. Leung,/An achievable rate region for the multiple-access channel with feed-back,0IEEE Transactions on Information Theory, vol.27, no.3, pp.292298, May1981.
    [45] R. Ahlswede and N. Cai,“Transmission, Identification and Common Randomness Capacities forWire-Tap Channels with Secure Feedback from the Decoder,” book chapter in General Theory ofInformation Transfer and Combinatorics, LNCS4123, pp.258-275, Berlin: Springer-Verlag,2006.
    [46] E. Ardestanizadeh, M. Franceschetti, T.Javidi and Y.Kim,“Wiretap channel with secure rate-limitedfeedback,” IEEE Trans Inf Theory, vol. IT-55, no.12, pp.5353-5361, December2009.
    [47] Y. Chen, A. J. Han Vinck,“Wiretap channel with side information,” IEEE Trans Inf Theory, vol.IT-54, no.1, pp.395-402, January2008.
    [48] I. Csisza′r and J. Ko¨ner,“Broadcast channels with confidential messages,” IEEE Trans Inf Theory,vol. IT-24, no.3, pp.339-348, May1978.
    [49] I. Csisza′r and J. Ko¨ner, Information Theory. Coding Theorems for Discrete Memoryless Systems.London, U.K.: Academic,1981.
    [50] M. H. M. Costa,“Writing on dirty paper,” IEEE Trans Inf Theory, vol. IT-29, no.3, pp.439-441,1983.
    [51] S. I. Gel’fand and M. S. Pinsker,“Coding for channel with random parameters,” Problems of Controland Information Theory, vol.9, no.1, pp.19-31,1980.
    [52] J. Ko¨ner and K. Marton,“General broadcast channels with degraded message sets,” IEEE Trans InfTheory, vol. IT-23, no.1, pp.60-64, January1977.
    [53] N. V. Kuznetsov and B. S. Tsybakov,“Coding in memories with defective cells,” Problemy peredachiinformatsii, vol.10, no.2, pp.52-60,1974.
    [54] L. Lai, H. El Gamal and V. Poor,“The wiretap channel with feedback: encryption over the channel,”IEEE Trans Inf Theory, vol. IT-54, pp.5059-5067,2008.
    [55] N. Merhav,“Shannon’s secrecy system with informed receivers and its application to systematiccoding for wiretapped channels,” IEEE Trans Inf Theory, special issue on Information-TheoreticSecurity, vol. IT-54, no.6, pp.2723-2734, June2008.
    [56] C. Mitrpant, A. J. Han Vinck and Y. Luo,“An Achievable Region for the Gaussian Wiretap Channelwith Side Information,” IEEE Trans Inf Theory, vol. IT-52, no.5, pp.2181-2190,2006.
    [57] C. E. Shannon,“Channels with side information at the transmitter,” IBM Journal Research andDevelopment, vol.2, pp.289-293, October1958.
    [58] Y. Steinberg,“Coding for the degraded broadcast channel with random parameters, with causal andnoncausal side information,” IEEE Trans Inf Theory, vol. IT-51, no.8, pp.2867-2877, August2005.
    [59] A. D. Wyner,“The wire-tap channel,” The Bell System Technical Journal, vol.54, no.8, pp.1355-1387,1975.
    [60] G. Caire and S. Shamai (Shitz),“On the capacity of some channels with channel state information,”IEEE Trans Inf Theory, vol. IT-45, no.6, pp.2007-2019, September1999.
    [61] Y. Cemal and Y. Steinberg,“The multipe-access channel with partial state information at the en-coders,” IEEE Trans Inf Theory, vol. IT-51, no.11, pp.3992-4003, November2005.
    [62] A. Das and P. Narayan,“Capacities of time-varying multiple-access channels with side information,”IEEE Trans Inf Theory, vol. IT-48, no.1, January2002.
    [63] S. Jafar,“Capacity with causal and noncausal side information: a unified view,” IEEE Trans InfTheory, vol. IT-52, no.12, December2006.
    [64] M. Salehi,“Capacity and coding for memories with real-time noisy defect information at encoderand decoder,” Proc. Inst. Elec. Eng-Pt.I., vol.139, no.2, pp.113-117, April1992.
    [65] C. E. Shannon,“Channels with side information at the transmitter,” IBM Journal Research andDevelopment, vol.2, pp.289-293, October1958.
    [66] L. Lai, H. El Gamal and V. Poor,“The wiretap channel with feedback: encryption over the channel,”IEEE Trans Inf Theory, vol. IT-54, pp.5059-5067,2008.
    [67] A. J. Grant, B. Rimoldi, R. L. Urbanke, and P. A. Whiting,/Rate-splitting multiple-access fordiscrete memoryless channels,0IEEE Transactions on Information Theory, vol.47, no.3, pp.873890, March2001.
    [68] P. Gupta and P. R. Kumar,/Towards an information theory of large networks: An achievable rateregion,0IEEE Transactions on Information Theory, vol.49, no.8, pp.18771894, August2003.
    [69] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press,1985.
    [70] O. Johnson,/A conditional entropy power inequality for dependent random variables,0IEEETransactions on Information Theory, vol.50, no.8, pp.15811583, August2004.
    [71] O. Johnson, Information Theory and the Central Limit Theorem. London, UK: Imperial CollegePress,2004.
    [72] R. C. King, Multiple Access Channels with Generalized Feedback. PhD thesis, Stanford, CA: Stan-ford University, March1978.
    [73] G. Kramer, Directed Information for Channels with Feedback, volume ETH Series in InformationProcessing. Vol.11, Konstanz, Germany: Hartung-Gorre Verlag,1998.
    [74] G. Kramer,/Capacity results for the discrete memoryless network,0IEEE Transactions on Infor-mation Theory, vol.49, no.1, pp.421, January2003.
    [75] G. Kramer, M. Gastpar, and P. Gupta,/Cooperative strategies and capacity theorems for relaynetworks,0IEEE Transactions on Information Theory, vol.51, no.9, pp.30373063, September2005.
    [76] G. Kramer, I. Maricc, and R. D. Yates,/Cooperative communications,0Foundations and Trendsin Networking, vol.1, no.34, pp.271425,2006.
    [77] G. Kramer and S. A. Savari,/Edge-cut bounds on network coding rates,0Journal of Network andSystems Management, vol.14, no.1, pp.4967, March2006.
    [78] Y. Liang and G. Kramer,/Rate regions for relay broadcast channels,0IEEE Transactions on In-formation Theory, vol.53, no.10, pp.35173535, October2007.
    [79] H. Liao,/A coding theorem for multiple access communications,0in Proceedings of IEEE Inter-national Symposium on Information Theory, Asilomar, CA,1972.
    [80] J. L. Massey, Applied Digital Information Theory. Zurich, Switerland: ETH Zurich,19801998.
    [81] J. L. Massey,/Causality, feedback and directed information,0in Proceedings of IEEE Interna-tional Symposium on Information Theory Applications, pp.2730, Hawaii, USA, November1990.
    [82] A. Orlitsky and J. R. Roche,/Coding for computing,0IEEE Transactions on Information Theory,vol.47, no.3, pp.903917, March2001.
    [83] L. Ozarow,/On a source-coding problem with two channels and three receivers,0Bell SystemTechnical Journal, vol.59, no.10, pp.19091921, December1980.
    [84] L. Ozarow,/The capacity of the white Gaussian multiple access channel with feedback,0IEEETransactions on Information Theory, vol.30, no.4, pp.623629, July1984.
    [85] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Ma-teo, CA: Morgan Kaufmann,1988.
    [86] S. S. Pradhan, R. Puri, and K. Ramchandran,/n-channel symmetric multipledescriptions)Part I:(n,k) source-channel erasure codes,0IEEE Transactions on Information Theory, vol.50, no.1, pp.4761, January2004.
    [87] R. Puri, S. S. Pradhan, and K. Ramchandran,/n-channel symmetric multipledescriptions)Part II:an achievable rate-distortion region,0IEEE Transactions on Information Theory, vol.51, no.4, pp.13771392, April2005.
    [88] T. J. Richardson, A. Shokrollahi, and R. L. Urbanke,/Design of capacityapproaching low-densityparity-check codes,0IEEE Transactions on Information Theory, vol.47, no.2, pp.619637,February2001.
    [89] B. Rimoldi and R. Urbanke,/A rate-splitting approach to the Gaussian multiple-access chan-nel,0IEEE Transactions on Information Theory, vol.42, no.2, pp.364375, March1996.
    [90] H. Sato,/An outer bound to the capacity region of broadcast channels,0IEEE Transactions onInformation Theory, vol.24, no.3, pp.374377, May1978.
    [91] C. E. Shannon,/A mathematical theory of communication,0Bell System Technical Journal, vol.27, pp.379423,623656, July and October1948,(Reprinted in Claude Elwood Shannon: Col-lected Papers, pp.583,(N. J. A. Sloane and A. D. Wyner, eds.) Piscataway: IEEE Press,1993).
    [92] C. E. Shannon,/The zero error capacity of a noisy channel,0IRE Transaction Information Theory,vol.2, pp.221238, September1956,(Reprinted in Claude Elwood Shannon: Collected Papers,(N. J. A. Sloane and A. D. Wyner, eds.) pp.221238, Piscataway: IEEE Press,1993).
    [93] C. E. Shannon,/Coding theorems for a discrete source with a fidelity criterion,0in IRE Inter-national Convention Record, pp.142163, March1959.(Reprinted in Claude Elwood Shannon:Collected Papers,(N. J. A. Sloane and A. D. Wyner, eds.) pp.325350, Piscataway: IEEE Press,1993.
    [94] C. E. Shannon,/Two-way communication channels,0in Proceedings of4th Berkeley Symposiumon Mathematical Statistics and Probability,(J. Neyman, ed.), pp.611644, Berkeley, CA: Uni-versity California Press,1961.(Reprinted in Claude Elwood Shannon: Collected Papers,(N. J. A.Sloane and A. D. Wyner, eds.), pp.351384, Piscataway: IEEE Press,1993).
    [95] D. Slepian and J. K. Wolf,/A coding theorem for multiple access channels with correlatedsources,0Bell System Technical Journal, vol.52, pp.10371076, September1973.
    [96] D. Slepian and J. K. Wolf,/Noiseless coding of correlated information sources,0IEEE Transac-tions on Information Theory, vol.19, no.9, pp.471480, July1973.
    [97] A. Stam,/Some inequalities satisfied by the quantities of information of Fisher and Shan-non,0Information Control, vol.2, pp.101112, July1959.
    [98] E. Telatar,/Capacity of multi-antenna Gaussian channels,0European Transactions on Telecom-munication, vol.10, no.6, pp.585595, November December1999.
    [99] E. C. van der Meulen, Transmission of Information in a T-Terminal Discrete Memoryless Channel.PhD thesis, Berkeley, CA: University of California, January1968.
    [100] R. Venkataramani, G.Kramer, and V. K. Goyal,/Multiple description coding with many chan-nels,0IEEE Transactions on Information Theory, vol.49, no.9, pp.21062114, September2003.
    [101] H. Wang and P. Viswanath,/Vector Gaussian multiple-description for individual and central re-ceivers,0IEEE Transactions on Information Theory, vol.53, no.6, pp.21332153, June2007.
    [102] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz),/The capacity region of the Gaussianmultiple-input multiple-output broadcast channel,0IEEE Transactions on Information Theory, vol.52, no.9, pp.39363964, September2006.
    [103] F. M. J. Willems, Information Theoretical Results for the Discrete Memoryless Multiple AccessChannel. PhD thesis, Leuven, Belgium: Katholieke Universiteit, October1982.
    [104] F. M. J. Willems and E. C. van der Meulen,/The discrete memoryless multipleaccess channelwith cribbing encoders,0IEEE Transactions on Information Theory, vol.31, no.3, pp.313327,May1985.
    [105] A. D. Wyner,/A theorem on the entropy of certain binary sequences and applications: PartII,0IEEE Transactions on Information Theory, vol.19, no.6, pp.772777, November1973.
    [106] A. D. Wyner and J. Ziv,/A theorem on the entropy of certain binary sequences and applications:Part I,0IEEE Transactions on Information Theory, vol.19, no.6, pp.769772, November1973.
    [107] A. D. Wyner and J. Ziv,/The rate-distortion function for source coding with side information atthe decoder,0IEEE Transactions on Information Theory, vol.22, no.1, pp.110, January1976.
    [108] L.-L. Xie and P. R. Kumar,/A network information theory for wireless communication: scal-ing laws and optimal operation,0IEEE Transactions on Information Theory, vol.50, no.5, pp.748767, May2004.
    [109] L.-L. Xie and P. R. Kumar,/An achievable rate for the multiple-level relay channel,0IEEE Trans-actions on Information Theory, vol.51, no.4, pp.13481358, April2005.
    [110] W. Yu, A. Sutivong, D. Julian, T. M. Cover, and M. Chiang,/Writing on colored paper,0inProceedings of2001IEEE International Symposium Information Theory, p.302, Washington, DC,June24292001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700