用户名: 密码: 验证码:
纳米SiO_2对水泥粉煤灰体系水化硬化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水泥混凝土中掺加粉煤灰是配制现代水泥混凝土最常见的技术措施之一,也是减小粉煤灰环境负荷、提高混凝土绿色化程度及性能的重要手段。但材料早期性能发展缓慢是制约粉煤灰混凝土发展最重要的因素之一,因此研究如何提高水泥粉煤灰体系早期性能是人们重点关注的问题之一。研究发现在水泥混凝土中掺加少量纳米SiO_2可显著提高材料诸多方面性能,特别是材料早期力学性能,因此将其用于对早期性能发展缓慢的水泥粉煤灰体系的改性逐渐进入人们的研究视野。一些研究结果显示,纳米SiO_2对提高水泥粉煤灰体系早期强度有一定优势,但其对后期力学性能影响的研究存有一定争议,这主要与对纳米SiO_2在水泥粉煤灰体系中发挥作用的研究,特别是后期作用的研究较缺乏有关。
     为系统分析纳米SiO_2在促进水泥粉煤灰胶凝材料体系早期性能发展方面的作用优势,并厘清其对材料后期性能影响的规律,本文对掺溶胶态纳米SiO_2的水泥粉煤灰体系早期和后期性能发展规律进行试验研究,并对纳米SiO_2影响体系性能发展的作用机理进行分析。在上述研究的基础上,论文探讨了水泥粉煤灰体系的纳米改性方法,以期研究结果对水泥粉煤灰体系的纳米改性研究有一定参考价值。
     论文首先对掺纳米SiO_2的水泥粉煤灰净浆和砂浆的工作性、凝结硬化及力学性能进行研究发现,纳米SiO_2显著降低拌合物工作性,但粉煤灰优异的颗粒特性有助于削弱这种不利影响。纳米SiO_2对材料凝结硬化的促进作用较大程度上缓解了掺粉煤灰胶凝材料体系早期性能发展不足的缺陷:掺量为5%的纳米SiO_2显著提高材料凝结硬化、早期抗压强度等性能,且粉煤灰掺量越高,强度提高幅度越大。但水化后期,掺纳米SiO_2的水泥粉煤灰砂浆强度增长缓慢,3个月后砂浆抗压强度与未掺纳米SiO_2试件相等或较低。水泥粉煤灰体系掺入纳米SiO_2后,强度发展受自干燥影响程度加大。
     然后,论文在分析纳米SiO_2的火山灰反应特性及其对水泥水化机理影响的基础上探讨了其对水泥粉煤灰体系反应早期和后期水化硬化的影响。化学分析和形貌研究结果显示,纳米SiO_2按一级化学反应模式水化生成凝胶,并提供为水泥水化产物生长的晶核;采用量热精度更高的等温差示扫描量热技术,并结合水泥溶液离子浓度测试、水化产物形貌分析等手段对纳米SiO_2影响水泥水化的机理的研究显示,纳米SiO_2通过促进水泥水化半透膜破裂和水泥溶解来促进水泥的水化。形貌、孔结构及水泥、粉煤灰反应程度测试结果显示,纳米SiO_2水化产物结构致密,有利于材料早期结构的密实,但这些致密的水化产物与水泥早期加速水化生成的凝胶紧密包裹于未水化水泥、粉煤灰表面,阻碍水泥、粉煤灰进一步水化以及结构进一步密实。纳米SiO_2火山灰反应提供的水化凝胶有利于提高材料早期性能,但火山灰反应对水泥粉煤灰体系中Ca(OH)_2的大量消耗显著降低体系中粉煤灰的合理掺量。
     论文最后针对水泥粉煤灰体系纳米SiO_2改性的不足,探讨了该体系的纳米改性方法。通过对材料细度的匹配可更好地发挥纳米SiO_2对水泥粉煤灰体系的积极作用:颗粒相对较粗的纳米SiO_2对砂浆后期强度发展的负面影响较小,而纳米SiO_2在较细水泥体系中对孔隙的密实作用更大;实验室化学合成的纳米Ca(OH)_2对水泥粉煤灰体系改性的研究显示,纳米Ca(OH)_2对体系早期和后期性能发展均有积极作用。
Application of fly ash in cementitious materials is one of the mostly used techniquesin modern concrete, and it is a vital method of eliminating the environmental problemscaused by fly ash, as well as making the concrete industry more green and sustainable.However, the slow property gain at early ages is one of the most critical factors thataffecting the development of fly ash cementitious materials and thus methods ofimproving the early age properties of this system are of great concern. It was reportedthat by adding a small dosage of nanosilica the properties of cement-based materials canbe greatly improved, especially the early age strength gain. Thus the application ofnanosilica in fly ash cementitious materials is becoming attractive. It has been reportedthat nanosilica has the advantage of increasing the early age property of fly ashcementitious materials, however, its effect on later age properties have been rarelyinvestigated and there are some controversial results regarding the later age propertygain. This is due to the lack of study of the effects of nanosilica on fly ash cementitiousmaterials, especially at later ages.
     To verify the advantages of nanosilica on the early age properties of fly ashcementitious materials, as well as clarifying its effects on later ages, the influences ofcolloidal nanosilica on fly ash cementitious materials at both the early and later ageswere experimently studied. Mechanisms governing the property evolution of nanosilica-added fly ash cementitious materials at early and later ages were investigated. Methodsof improving the adverse effect of nanosilica on this system were proposed with thehope of adding value to the study of nanomodification in fly ash cementitious materials.
     It reveals that nanosilica remarkably decreases the workability of cementitiousmaterials, but with the help of fly ash, the workability-decreasing tendency can beeliminated. With the addition of nanosilica, the slow strength gain of fly ashcementitious materials at early age can be eliminated as well. It shows that with5%nanosilica the setting and hardening properties of fly ash cementitious materials can begreatly improved and a higher fly ash replacement leads to a greater improving effect.The rate of strength gain of nanosilica-added fly ash cement mortar slows down at laterages and the compressive strength at three months is comparable to or lower thanmortar without nanosilica. The strength gain of nanosilica-added fly ash cementitiousmaterials is more greatly influenced by self-dissociation.
     The effects of nanosilica on the hydration and hardening properties of fly ashcementitious materials were investigated based on the study of its own hydrationproperties. It was found that the nucleation effect of nanosilica on cement hydration isinduced by the hydration gel of nanosilica, which is formed by following the first orderchemical reaction model. Based on investigations made by isothermal differentialscanning calorimetry, together with the ion analysis of hydration solution andmorphology of hydration products, it was found that the cement hydration accelerationeffect of nanosilica is caused by the acceleration of the dissolution of cement and therupture of semi-permeable membrane surrounding cement particles. It was revealed bymorphology, porosity and degree of hydration analyais that the dense structure ofhydration products of nanosilica can densify the cement structure. On the other hand,the dense hydration product, together with the quickly formed cement hydration product,forms a dense coating around unhydrated particles and the later hydration of theparticles can be hindered. Although the early age properties of fly ash cementitiousmaterials are greatly improved by nanosilica, grate consumption of Ca(OH)_2greatlyreduced the optimal dosage of fly ash in the system.
     To compensate the disadvantages of nanosilica on cementitious materials, severaltechniques were raised. It was found that by marching the size of raw materials theevolution of strength gain of fly ash cementitious materials can be altered and a coarsernanosilica and a finner cement are good for the porosity reduction and propertyimprovement. Experimentally-synthesized nanoCa(OH)_2induced an advantageouseffect on both the early and later ages of the fly ash cementitous materials.
引文
[1]国家统计局.水泥产量统计, http://www.stats.gov.cn/tjsj/.
    [2]王帅红,王敏丽,水泥行业CO2减排途径综述.河南建材[J].2011,05:92-94.
    [3] Gartner E, Industrially interesting approaches to 'low-CO2'[J]. cements Cement and ConcreteResearch,2004.34(9):1489-1498.
    [4]张庆欢,徐永模,硫铝酸盐水泥:低碳水泥混凝土发展的重要领域[J].混凝土世界,2010,09:32-35.
    [5]朱天益.美国粉煤灰利用[J].粉煤灰综合利用,1994(3):51-58.
    [6]钱觉时.粉煤灰特性及粉煤灰混凝土[M].北京:科学出版社,2000.
    [7]周曦亚.复合材料[M],北京:化学工业出版社.2005.
    [8]施惠生,方泽铎.粉煤灰对水泥浆体早期水化和孔结构的影响[J].硅酸盐学报,2004,32(1):95-98.
    [9]陈胡星,马先伟,陈柏连.含粉煤灰或矿渣水泥石的孔结构[J].材料科学与工程学报2003,21(3):360-363.
    [10] Taylor HFW. Cement Chemistry [M]. Landon,1997.
    [11]魏风艳,吕忆农,兰祥辉,等.粉煤灰水泥基材料的水化产物[J].硅酸盐学报,2005,33(1):52-56.
    [12]魏风艳,许仲梓.粉煤灰抑制ASR的机制[J].材料科学与工程学报,2005,23(5):537-541.
    [13] Qian J, Shi C, Wang Z. Activation of blended cements containing fly ash [J]. Cement andConcrete Research,2001,31(8):1121-1127
    [14] Payá J, Borrachero MVE. Mechanical treatment of fly ashes: Part IV. Strength developmentof ground fly ash-cement mortars cured at different temperatures [J]. Cement and ConcreteResearch,2000,30(4):543-551.
    [15] Go i S, Luxán MP and Macías A, Activation of the fly ash pozzolanic reaction byhydrothermal conditions [J]. Cement and Concrete Research,2003,33(9):1399-1405
    [16] Wang K, Shah SP, Mishulovich A. Effects of curing temperature and NaOH addition onhydration and strength development of clinker-free CKD-fly ash binders [J]. Cement andconcrete research,2004,34(2):299-309.
    [17] Babaian PM, Wang K, Mishulovich A, et al. Effect of Mechanochemical Activation onReactivity of Cement Kiln Dust-Fly Ash Systems [J]. ACI Materials Journal,2003,100(1):55-62.
    [18]严东生,冯端.材料新星—纳米材料学[M].长沙:湖南科学技术出版社,1997.
    [19]张昭,彭少方,刘栋昌.无机精细化工工艺学[M].北京:化学工业出版社,2005.
    [20] Sobolev K, Flores I, Torres-Martinez LM, et al. Engineering of SiO2Nanoparticles forOptimal Performance in Nano Cement-Based Materials [P]. Nanotechnology in Construction,proceedings of the NICOM3, editor Bittnar Z, Bartos P, Nemecek J, Smilauer V, Zeman J.2008.
    [21] Bagheri A, Parhizkar T, MadanH I, et al. The influence of different preparation methods onthe aggregation status of pyrogenic nanosilicas used in concrete [J]. Materials and Structures,2012. DOI10.1617/s11527-012-9889-z.
    [22] Sanchez F, Sobolev K. Nanotechnology in concrete–A review [J]. Construction and BuildingMaterials,2010,24(11):2060-2071.
    [23] Plassard C, Lesniewska E, Pochard I, Nonat A. Investigation of the surface structure andelastic properties of calcium silicate hydrates at the nanoscale [J]. Ultramicroscopy,2004.100(3-4):331-338.
    [24] Yang T, Keller B, Magyari. AFM investigation of cement paste in humid air at differentrelative humidities[J]. Journal of Physics D: Applied Physics,2002,35:25-28.
    [25]赵素晶,孙伟.纳米压痕在水泥基材料中的应用与研究进展[J].硅酸盐学报,2011.39(1):164-176.
    [26]姚武,梁康,何莉.水化硅酸钙凝胶的弹塑性和徐变特性[J].材料研究学报,2010,24(2):123-128.
    [27] Paramita M. Nanomechanical Properties of Cementitious Materials [D]. Evanston,Northwestern University, Civil and Environmental Engineering.2008.
    [28] Constantinides G, Ulm F. The nanogranular nature of C–S–H [J]. Journal of the Mechanicsand Physics of Solids,2007,55(1):64-90.
    [29] Jennings HM, Bullard JW. From electrons to infrastructure: Engineering concrete from thebottom up [J]. Cement and Concrete Research,2011,41(7):727–735.
    [30] Kawashima S, Hou P, Corr DJ, et al. Modification of Cement-based Materials withNanoparticles [J]. Cement and Concrete Composites,2012. in press
    [31] Sato T, Diallo F. Seeding effect of nano-CaCO3on the hydration of tricalcium silicate [J].Journal of the Transportation Research Board,2010,2141:61-67.
    [32] Chang TP, Shih JY, Yang KM and Hsiao TC. Material properties of portland cement pastewith nano-montmorillonite [J]. Journal of Materials Science,2007,42(17):7478-7487.
    [33] Jayapalan AR, Lee BY, Fredrich SM and Kurtis KE. Influence of additions of anatase TiO2nanoparticles on early-age properties of cement-based materials [J]. Journal of theTransportation Research Board,2010,2141:41-46.
    [34] Shekari AH, Razzaghi MS. Influence of Nano Particles on Durability and MechanicalProperties of High Performance Concrete [J]. Procedia Engineering,2011,14:3036–3041.
    [35] Abdoli YN, Arefi MR, Mollaahmadi E, et al. To study the effect of adding Fe2O3nanoparticles on the morphology properties and microstructure of cement mortar [J]. LifeScience Journal,2011,8(4):550-554.
    [36] Nazari A, Riahi S. The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete [J]. Composites Part B: Engineering,2011,42(2):167-175.
    [37] Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Highly dispersed carbon nanotubereinforced cement based materials [J]. Cement and Concrete Research,2010,40(7):1052-1059.
    [38] Nazari Ali, Mohammad HR, Shadi R. The Effects of CuO Nanoparticles on Properties of SelfCompacting Concrete with GGBFS as Binder [J]. Materials Research,2011,14(3):307-316.
    [39] Raki L, Beaudoin JJ, Mitchell LD. Layered double hyroxides-like materials: nano-compositesfor use in concrete [J]. Cement and Concrete Research,2004,34:1717-1724.
    [40] Bentz DP, Snyder KA, Peltz MA. Doubling the service life of concrete structures. II:Performance of nanoscale viscosity modifiers in mortars [J]. Cement and ConcreteComposites,2010.32(3):187-193.
    [41]李庚英,王培铭.碳纳米管-水泥基复合材料的力学性能和微观结构[J].硅酸盐学报,2005,33(1):105-108.
    [42] Li G, Wang P, Zhao X. Pressure-sensitive properties and microstructure of carbonnanotubereinforced cement composites [J]. Cement and Concrete Composites,2007,29(5):377-382.
    [43]应杏秋.纳米SiO2与常规SiO2致大鼠肺毒作用的比较研究[D].卫生毒理学,2006,浙江大学:杭州.
    [44] Pacheco-Torgal F, Jalali S. Nanotechnology: Advantages and drawbacks in the field ofconstruction and building materials [J]. Construction and Building Materials,2011,25:582–590.
    [45] Chen C, Justice RS, Schaefer DW, et al. Highly dispersed nanosilica–epoxy resins withenhanced mechanical properties [J]. Polymer,2008.49(17):3805-3815.
    [46]张密林,丁立国,景晓燕,等.纳米二氧化硅的制备、改性与应用[J].化学工程师,2003,99(6):11-31.
    [47] Ye Q, Zhang Z, Kong D, et al. Influence of nano-SiO2addition on properties of hardenedcement paste as compared with silica fume [J]. Construction and Building Materials,2007,21:539-545.
    [48] Li H, Xiao HG, Yuan J, et al. Microstructure of cement mortar with nano-particles [J].Cement and Concrete Research,2004,35(2):185-189
    [49] Li H, Gao XJ, Ou JP. A study on mechanical and pressure-sensitive properties of cementmortar with nanophase materials [J]. Cement and Concrete Research,2004,34(3):435-438.
    [50] Huang M, Meng T, Qian X, et al. Influence of nano-SiO2and nano-CaCO3on the mechanicalproperties of concrete with different strength grades [P].1st International Conference on CivilEngineering, Architecture and Building Materials (CEABM2011), Li G; Huang Y; Chen C,Editor2011:480-484. Haikou.
    [51] Li GY. Properties of high-volume fly ash concrete incorporating nano-SiO2[J]. Cement andConcrete Research,2004,34(6):1043-1049
    [52] Wang B, Wang L, Lai FC. Freezing resistance of HPC with nano-SiO2[J]. Journal of WuhanUniversity of Technology-Materials Science Edition.2008,23(1):85-88.
    [53]王保民.纳米SiO2高性能混凝土性能及机理研究[D].大连,大连理工大学,2009.
    [54] Ji T. Preliminary study on the water permeability and microstructure of concrete incorporatingnano-SiO2[J]. Cement and Concrete Research,2005,35:1943–1947.
    [55]卢忠远,徐迅.纳米Si02对硅酸盐水泥水化特性的影响[J].建筑材料学报,2006,9(5):581-587.
    [56] Senff L, Hotza D, Wellington L, et al. Mortars with nano-SiO2and micro-SiO2investigatedby experimental design [J]. Construction and Building Materials,2010,24:1432–1437.
    [57] Senff L, Hotza D, Lucas S, et al. Effect of nano-SiO2and nano-TiO2addition on therheological behavior and the hardened properties of cement mortars [J]. Materials Science andEngineering A,2012,532:354–361.
    [58] Senff L, Hotza D, Repette WL, et al. Rheological characterisation of cement pastes withnanosilica, silica fume and superplasticiser additions [J]. Advances in Applied Ceramics,2010,109(4):213-218.
    [59] Kong D, Ye Q, Ni T, et al. Effect of Silica Sol on Rheological Behavior of the Cement Paste[J]. Rare Matel Materials and Engineering,2010,39(2):451-454.
    [60] Lee BY, Thomas JJ, Treager M. Influence of TiO2Nanoparticles on Early C3S Hydration [J].ACI Materials Journal,2010, SP-267-4:35-44.
    [61] Thomas JJ, Jennings HM, Chen JJ. Influence of Nucleation Seeding on the HydrationMechanisms of Tricalcium Silicate and Cement [J]. Journal of Physical Chemistry,2009,113(11),4327-4334.
    [62] Kim Jo B, Lim J. Characteristics of cement mortar with nano-SiO2particles [J]. Constructionand Building Materials,2007,21(6):1351-5.
    [63] Nazari A. The effects of SiO2nanoparticles on physical and mechanical properties of highstrength compacting concrete [J]. Composites Part B: Engineering,2011,42(3):570-578.
    [64] Shih J, Hsiao T. Effect of nanosilica on characterization of Portland cement composite [J].Materials Science and Engineering: A,2006,424(1-2):266-274.
    [65] Li H, Yuan J, et al. Microstructure of cement mortar with nano-particle [J]. Composites: PartB,2004,35:185-189.
    [66] Oltulu M, Sahin R. Single and combined effects of nano-SiO2, nano-Al2O3and nano-Fe2O3powders on compressive strength and capillary permeability of cement mortarcontaining silica fume. Materials Science and Engineering A [J].2011,528:7012-7019.
    [67] Nazari A, Riahi S. The effects of SiO2nanoparticles on physical and mechanical properties ofhigh strength compacting concrete [J]. Composites Part B: Engineering,2011,42(3):570-578.
    [68] Gundogdu D, Pekmezci BY, Atahan HN. Influence of nanosilica on the mechanical propertiesof mortars containing fly ash [P]. in Internal RILEM conference on materials science, B. E,Editor2010: Aachen, GErmany.345-354.
    [69] Stefanidou M, Papayianni I. Influence of nano-SiO2on the Portland cement pastes[J].Composites Part B: Engineering,2012,43(6):2706-2710.
    [70]李固华.纳米材料对混凝土耐久性的影响[D].成都,西南交通大学,2006.
    [71] Gaitero JJ, Campillo I, Guerrero A. Reduction of the calcium leaching rate of cement paste byaddition of silica nanoparticles [J]. Cement and Concrete Research,2008,38:1112-1118.
    [72] Dolado J, Campillo I, Erkizia E. Effect of Nanosilica Additions on Belite Cement Pastes Heldin Sulfate Solutions [J]. Journal of American Ceramics society,2007,90(12):3973–3976.
    [73] Munoz JF, Meininger RC, Youtcheff J. New possibilities and future pathways of nanoporousthin film technology to improve concrete performance [J]. Journal of Transpor-tationResearch Record,2010,2(2142):34-41.
    [74] Zhang M, Islam J. Use of nano-silica to reduce setting time and increase early strength ofconcretes with high volumes of fly ash or slag [J]. Construction and Building Materials,2012,29:573-580.
    [75] Zhang M, Islam J, Peethamparan S. Use of nano-silica to increase early strength and reducesetting time of concretes with high volumes of slag [J]. Cement and Concrete Composites,2012,34:650–662.
    [76] Kuo W, Lin K, Chang W, et al. Effects of nano-materials on properties of waterworks sludgeash cement paste [J]. Journal of Industrial and Engineering Chemistry,2006,12(5):702-709.
    [77] Lin DF, Lin KL, Chang WC, et al. Improvements of nano-SiO2on sludge/fly ash mortar [J].Waste Management,2008,28(6):1081-1087.
    [78] Sant G, Ferraris CF, Weiss J. Rheological properties of cement pastes: a discussion ofstructure formation and mechanical property development [J]. Cement and Concrete Research,2008,38:1286-1296.
    [79] Diamantonis N, Marinos I, Katsiotis MS, et al. Investigations about the influence of fineadditives on the viscosity of cement paste for self-compacting concrete [J]. Construction andBuilding Materials,2010,24:1518-1522.
    [80] Bentz DP, Ferrais CF, Galler MA, et al. Influence of particle size distributions on yield stressand viscosity of cement-fly ash pastes [J]. Cement and Concrete Research,2012,42:404-409.
    [81] KRieger IM, Dougherty TJ. A mechanism for non-newtonian flow in suspensions of rigidspheres [J]. Transactions of the society of rheology,1959,3:137-152.
    [82] Berra M, Carassiti F, Mangialardi T. Effects of nanosilica addition on workability andcompressive strength of Portland cement pastes [J]. Construction and Building Materials,2012.35:666-675.
    [83]赵利,原永涛,宗翔鹏. pH值对粉煤灰处理印染废水的影响[J].粉煤灰综合利用,2005(6):40-41.
    [84] Sobolev K, Flores I, Hermosillo R, Torres-Martinez LM. Nanomaterials and nanotechnologyfor high-performance cement composites [P]. Nanotechnology of concrete: recentdevelopments and future perspectives. Sobolv K, Shah SP. editor.2010,93-120.
    [85] Meng T, Yu Y, Qian X, et al. Effect of nano-TiO2on the mechanical properties of cementmortar [J]. Construction and Building Materials,2012,29:241–245.
    [86] Zhang J, Weissingera EA, Peethamparan S, et al. Early hydration and setting of oil wellcement [J]. Cement and Concrete Research,2010,40(7):1023-1033.
    [87] Meddah MS, Tagnit-Hamou A. Pore Structure of Concrete with Mineral Admixtures and ItsEffect on Self-Desiccation Shrinkage [J]. ACI Materials Journal,2009.106(3):241-250.
    [88] Tam CM, Vivian WY, Tam KM. Assessing drying shrinkage and water permeability ofreactive powder concrete produced in Hong Kong [J]. Construction and Building Materials,2012.26:79–89.
    [89]大连理工大学无机化学教研室.无机化学(第4版)[M].北京:高等教育出版社,2000.
    [90]王文军.纳米矿粉水泥土固化机理及损伤特性研究[D].杭州,浙江大学,2004.
    [91]黄开金.纳米材料的制备及应用[M].北京:冶金工业出版社,2009.
    [92] Lars W. An experimental comparison between isothermal calorimetry, semi-adiabaticcalorimetry and solution calorimetry for the study of cement hydration [J]. Building Materials,Lund University, Sweden.2003.
    [93] TAM Air. Isothermal calorimetry of cement. www.cptechcenter.ort/t2/documents/09IsothermalCalorimetry_000.pdf.
    [94] Denis D, Andre N, Pierre B. Kinetics of Tricalcium Silicate Hydration in DilutedSuspensions by Microcalorimetric Measurements [J]. J Am Ceram SOC,1990,73(11)3319-22.
    [95] Patrick J, Emmanuel G, Robert F, et al. Dissolution theory applied to the induction period inalite hydration [J]. Cement and Concrete Research,2010.40:831–844.
    [96] Stein HN, Stevels JM. Influence of silica on the hydration of3CaO·SiO2[J]. J Appl Chem,1964,14:338-346.
    [97] Gartner EM, Jennings HM. Thermodynamics of calcium silicate hydrates and theirsolutions [J]. Journal of American Ceramics society,1980,87:743–749.
    [98] Double DD, Hellawell A, Perry S. The hydration of Portland cement [J]. Proc Royal SocLondon Series A, Math Phy Sci.1978,359:435-51.
    [99] Birchall JD, Howard AJ, Double DD. Some gereral considerations of a membrane/osmosismodel for Portland cement hydration [J]. Cement and Concrete Research,1980,10:145~155.
    [100] http://www.wiziq.com/tutorial/29087-Diffusion-osmosis-and-imbibition-in-nature.
    [101] Nebel S, Ganz P, Seelig Joachim. Heat Changes in Lipid Membranes under Sudden OsmoticStress [J]. Biochemistry,1997,36,2853-2859.
    [102] Scrivener KL, Nonat A. Hydration of cementitious materials, present and future [J]. Cementand Concrete Research,2011.41:651–665.
    [103] Rikard Y, Ulf J, Britt-Marie S, et al. Early hydration and setting of Portland cementmonitored by IR, SEM and Vicat techniques [J]. Cement and Concrete Research,2009,39(5):433~439.
    [104] Escalante-Garc′a I, Shar JH. Effect of temperature on the hydration of the main cliner phasesin Portland cements: part I, neat cements [J]. Cement and concrete research,1998,28(9):1245–1257.
    [105] Escalante-Garc a JI.The microstructure and mechanical properties of blended cementshydrated at various temperatures [J]. Cement and Concrete Research,2001,31(5):695-702.
    [106] Kjellsen KO. Backscattered electron imaging of cement pastes hydrated at differenttemperatures [J]. Cement and Concrete Research,1990.20:308-311.
    [107] Kjellsen KO. Reaction kinetics of Portland cement mortars hydrated at different temperatures[J]. Cement and Concrete Research,1999.22:112-120.
    [108]谭克锋,刘涛.早期高温养护对混凝土抗压强度的影响[J].建筑材料学报,2006.9(4):473-476.
    [109] Bunter A. Effect of Curing Temperature on the Pore Structure of Tricalcium Silicate Pastes[J]. Journal of Colloid and Interface Science,1980,74(2):549-560.
    [110] Garrault S. Hydrated Layer Formation on Tricalcium and Dicalcium Silicate Surfaces:Experimental Study and Numerical Simulations [J]. Langmuir,2001,17(26):8131-8138.
    [111] Scrivener K. Backscattered electron imaging of cementitious microstructures: understandingand quantification [J]. Cem Concr Comp,2004,26(8):935–945.
    [112]张云升,孙伟,郑克仁.水泥-粉煤灰浆体的水化反应进程[J].东南大学学报(自然科学版)[J].2006(1):118-123.
    [113]黄士元,李志华,程吉平.粉煤灰-Ca(OH)2-H2O系统中的反应动力学[J].硅酸盐学报,1986.16(2):191-197.
    [114]陈益民,许仲梓.高性能水泥制备和应用的基础研究[M].北京:化学工业出版社,2008.
    [115]徐文雨,关英俊,李金玉.大坝混凝土渗漏溶蚀的研究[J].水利水电技术,1990,7:43-47.
    [116] Mehta PK, Monteiro PJM. Concrete Microstructure, Properties, and Materials [M].北京:中国电力出版社,2008.
    [117] Powers TC, Brownyard TL. Studies of the physical properties of hardened Portland cementpaste [J]. Bull.22. Lab of Portland Cement Association,1948.43:101-132.
    [118] Escalante-Garcia JI. Nonevaporable water from neat OPC and replacement materials incomposite cements hydrated at different temperatures [J]. Cement and Concrete Research2003,33:1883–1888.
    [119] Huang C, Feldman RF. Hydration reactions in Portland cement-silica fume blends [J].Cement and Concrete Research,1985,15(4):585-592.
    [120] Zhang Y, Sun W, Yan H. Hydration of high-volume fly ash cement pastes [J]. Cement andConcrete Composites,2000,22(6):445-452.
    [121] Kirkpatrick RJ. Nuclear Magnetic Resonance Spectroscopy, Handbook of analyticaltechniques in concrete science and technology Principles, Techniques, and Applications [P].Edited by V. S. Ramachandran and James J. Beaudoin, Ottawa, Ontario, Canada.2001.
    [122] Lilkov V, Dimitrova Ekaterina, Petrov Ognyan E. Hydration process of cement containing flyash and silica fume: the first24hours [J]. Cement and Concrete Research.1997,27(4):577-588.
    [123]杨南如,岳文海.无机非金属材料图谱手册[M],武汉:武汉工业大学出版社,1999.
    [124] Hughes TL, Methven CM, Timothy GJ, et al, Determining Cement Composition by FourierTransform Infrared Spectroscopy [J]. Advanced Cement based materials,1995,2:91-104.
    [125] Yu P, Kirkpatrick RJ, Poe B, et al. Structure of calcium silicate hydrate (C-S-H): near-, mid-,and far-infrared spectroscopy [J]. Journal of American Ceramics society,1999,82(3):742-48.
    [126]于文金,罗永传,弓子成.温度对大掺量粉煤灰水泥水化C-S-H聚合度的影响[J].武汉理工大学学报,2011.33(11):28-33.
    [127]闫乙鹏,山宏宇,叶青.复掺矿物掺合料海工混凝土氯离子抗渗性机理分析及寿命预测[J].公路,2012(1):148-152.
    [128] Barnes P著,吴兆琦译.水泥的结构与性能[M].北京:中国建筑工业出版社,1991.
    [129] Choolaei M, Morad Rashidi A, Ardjmand M. The effect of nanosilica on the physicalproperties of oil well cement. Materials Science and Engineering: A,2012,538(15):288-294.
    [130] Rahel Kh. Ibrahim, R. Hamid, MR. Taha. Fire resistance of high-volume fly ash mortars withnanosilica addition. Construction and Building Materials,2012.36:779–786.
    [131]沈威,黄文熙,阂盘荣.水泥工艺学[M],武汉:武汉工业大学出版社1991.
    [132]龚逸明,黄艳春.粉煤灰增钙.粉煤灰综合利用[M].2004(3):41-43.
    [133] Oner A, Akyuz S, Yildiz R. An experimental study on strength development of concretecontaining fly ash and optimum usage of fly ash in concrete [J]. Cement and ConcreteResearch,2005(35): p.1165–1171.
    [134]赵顺增,刘立.水泥混凝土中活性掺和料的最大限量探讨[J].混凝土世界,2011.25(7):32-37.
    [135]侯瑞琴,杜玉成,刘铮,等.纳米氢氧化钙颗粒制备、表征及NOx捕获性能研究[J].非金属矿,2010.33(5):5-12.
    [136]刘欣萍,许兢,肖荔人.原位聚合法制备胶囊氢氧化钙[J].华东理工大学学报(自然科学版),2006.32(10):1221-1225.
    [137] Roy A, Bhattacharya J. Synthesis of Ca(OH)2nanoparticles by wet chemical method [J].Micro&Nano Letters,2010.5(2):131-134.
    [138] Givi Alireza Naji, Suraya Abdul Rashid, Farah Nora A. Aziz. Particle size effect on thepermeability properties of nano-SiO2blended Portland cement concrete [J]. Journal ofComposite Materials,2010. DOI:10.1177/0021998310378908.
    [139] Li H, Zhang M, Ou J. Abrasion resistance of concrete containing nano-particles for pavement[J]. Wear,2006,(260):1262–1266.
    [140] Stefanidou M, Papayianni I. Influence of nano-SiO2on the Portland cement pastes [J].Composites Part B: Engineering,2012.43(6):2706-2710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700