用户名: 密码: 验证码:
小兴安岭主要森林群落类型土壤有机碳库及其周转
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小兴安岭林区地处高纬度,是国家重点林区之一,也是中国天然林生态系统的核心区域之一,是温带北部以阔叶红松林为代表的针阔混交林区,在北温带森林类型中以其建群种独特、物种多样性而著称。小兴安岭地区植被和土壤的固碳功能潜力巨大,在中国森林碳汇中占有重要地位,可为温室气体碳库进行深入、细致的研究,获得科学、可靠的土壤碳储存能力与潜力清单具有重要的社减排提供重要保障。对小兴安岭森林生态系统的土壤会、政治、生态和经济意义。
     本文选择小兴安岭地区12种主要森林群落类型土壤有机碳(SOC)为研究对象。采用群落类型法对小兴安岭地区主要森林群落类型SOC的组成、分布特征及其影响因子进行了分析。探讨该区主要森林群落类型下SOC的分配规律及其与各影响因子间的关系,并对小兴安岭地区土壤总有机碳库进行了估算。主要结论如下:
     (1)采用环刀法测定土壤容重、持水量和孔隙度。小兴安岭地区土壤容重A层为0.30—0.82g/cm3,其中落叶松林为最高,阔叶红松林次之,云冷杉林最低;B层为0.67—1.33g/cm3,其中落叶松林最高,阔叶红松林次之,白桦林最低。A层和B层均为随着土层加深而增大。
     (2)小兴安岭地区土壤毛管持水量A层为64.89%—211.03%,其中云冷杉林最高,阔叶红松林次之,落叶松林最低;B层为33.34—134.34%,同样为云冷杉林最高,阔叶红松林次之,落叶松林最低。饱和持水量A层为78.35%—276%,其中云冷杉林最高,阔叶红松林次之,落叶松林最低;B层为36.35%—147.95%,同样为云冷杉林最高,阔叶红松林次之,落叶松林最低。
     (3)小兴安岭地区土壤毛管孔隙度A层为47.37%—59.53%,其中云冷杉林最高,枫桦次生林最低,阔叶红松林为51.90%;B层为40.52%—71.40%,同样为云冷杉林最高,枫桦次生林最低,阔叶红松林为52.35%。非毛管孔隙度A层为8.86—21.96%,其中枫桦次生林最高,针混杂木林最低,阔叶红松林为16.26%;B层为3.73—15.00%,其中枫桦次生林最高,落叶松林最低,阔叶红松林为12.77%。总孔隙度为A层为60.48%79.27%,其中云冷杉林最高,针混杂木林最低,阔叶红松林为68.16%;B层为47.08%79.20%,其中云冷杉林最高,落叶松林最低,阔叶红松林为65.11%。
     (4)小兴安岭地区主要森林群落类型下的SOC含量,A层为69.60—164.28g/kg,其中白桦林最大(164.28g/kg),枫桦次生林最小(69.60g/kg),阔叶红松林为124.04g/kg;B层为26.18--134.83g/kg,其中白桦林最高(134.83g/kg),山杨次生林最低(26.18g/kg),阔叶红松林为84.00g/kg。SOC密度在A层为4.82--20.86kg/m2,其中落叶松林最高(20.86kg/m2),云冷杉林最低(4.82kg/m2),阔叶红松林为14.34kg/m2;B层为1.60-24.71kg/m2,其中落叶松林最高(24.71kg/m2),而山杨次生林最低(1.60kg/m2),阔叶红松林为8.81kg/m2。土壤碳氮比(SOC/TN)在A层为18.5425.84,其中云冷杉林最高,阔叶红松林次之,枫桦次生林最低;B层为17.05—26.43,其中白桦林最高,阔叶红松林次之,枫桦次生林最低。
     (5) A层中,土壤活性碳、缓效性碳和惰性碳分别为0.65—1.84g/kg、27.78—62.44g/kg和37.14—111.82g/kg,分别占总有机碳的0.93—2.01%、22.5147.26%和50.72—76.24%。平均驻留时间分别为9—24天、4—41年和90年。B层中,土壤活性碳、缓效性碳和惰性碳分别为0.51—1.89g/kg、13.30—39.86g/kg和11.96—85.13g/kg,分别占总有机碳的0.86—3.51%、30.55—50.82%和45.67—67.83%,平均驻留时间分别为10—37天、10-28年和90年。
     (6)影响小兴安岭地区主要森林群落类型SOC的因素主要为土壤容重,在我们的研究中,阔叶红松林,白桦林和其它五种群落类型的土壤容重均与SOC含量有相关关系,其中阔叶红松林相关性最大,R2=0.5995,白桦林次之,R2=0.4381,其它五种群落类型相关性较小,R2=0.2706。凋落物对不同群落类型的影响主要表现在对白桦林的影响较大,R2=0.3059,对其它群落类型的直接影响较小。海拔对SOC含量的影响较小。
     (7)小兴安岭地区森林土壤总面积为285.84×104hm2,SOC总贮量为898.14×109t。其中混杂木林SOC贮量所占比例最大,达到了小兴安岭SOC总贮量的36.69%,山杨次生林SOC贮量所占比例最小,仅占SOC总贮量的0.21%。SOC贮量大小顺序与其在小兴安岭的分布面积大小顺序一致,为针混杂木林>白桦次生林>落叶松林>云冷杉林>枫桦次生林>阔叶红松林>山杨次生林。
Xiaoxing an'mountains area locates in high latitude, and is one of the key national forest and the core of the natural forest ecosystems in China, also is conifer-leaved-boad forests with Pinus koraiensis dominated in north temperate zone, and is famous as its unique constructive species and species diversity of in north temperate forest types. The potential of fixing carbon function of vegetation and soil is great, occupies an important position in the carbon sinks in China, and could provide important protection in carbon emission reduction. To study soil organic carbon pool of forest ecosystem in Xiaoxing an'mountains in-depth and carefully, and obtain scientific and dependable bill about soil carbon storage has important significant in society, politics, ecology and economy.
     The soil organic carbon (SOC) under 12 main forest community types in Xiaoxing an' mountains were studied in the paper. Method of community type was chosed to analyze the fraction and distribution of SOC, and the control factoers under main forest community types in Xiaoxing an' mountains. The distribution of SOC and the relationships with the control factors under main forest community types in the area were studied, the total SOC storage of Xiaoxing an' mountains were estimated too. Major conclusions were summarized as follows:
     (1) The method of ring was chosed to study the soil bulk density, water holding capacity and the porosity. In Xiaoxing an' mountains, the soil bulk density of A layer was 0.30-0.82g/cm3, and the value was the largest under larch forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under Picea sp.—Abies nephlolepis forest; The soil bulk density of B layer was 0.67-1.33g/cm3, and the value was the largest under larch forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under birch forest. The soil bulk density of A and B layers were all larger with the soil were deeper.
     (2) In Xiaoxing an' mountains, the soil capillary water holding capacity of A layer was 64.89%-211.03%, and the value was the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under larch forest; The soil capillary water holding capacity of B layer was 33.34-134.34%, and also the value was the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under larch forest. The saturated water holding capacity of A layer was 78.35%-276%, and the value was the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under larch forest; The saturated water holding capacity of B layer was 36.35%-147.95%, and also the value was the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under larch forest.
     (3) In Xiaoxing an' mountains, the soil capillary porosity of A layer was 47.37%-59.53%, and the value was the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under secondary Betula costata forest; The soil capillary porosity of B layer was 40.52%-71.40%, and also the value was the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under secondary Betula costata forest. The soil uncapillary porosity of A layer was 8.86-21.96%, and the value was the largest under secondary Betula costata forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under secondary coniferous forest; The soil uncapillary porosity of B layer was 3.73-15.00%, and the value was the largest under secondary Betula costata forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under larch forest. The soil total porosity of A layer was 60.48%-79.27%, and the value was the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under secondary coniferous forest; the soil total porosity of B layer was 47.08%-79.20%, and the value was the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under larch forest.
     (4) In Xiaoxing an' mountains, the SOC content under main forest community type in A layer was 69.60-164.28g/kg, and the value was the largest under birch forest (164.28g/kg) and the lowest under secondary Betula costata forest (69.60g/kg), and was 124.04g/kg under broad-leaved Pinus koraiensis forest; The SOC content of B layer was 26.18-134.83g/kg, and the value was the largest under birch forest (134.83g/kg) and the lowest under secondary Populus forest (26.18g/kg), and was 84.00g/kg under broad-leaved Pinus koraiensis forest. The SOC density of A layer was 4.82-20.86kg/m2, and the value was the largest under larch forest (20.86kg/m2) and the lowest under Picea sp.—Abies nephlolepis forest (4.82kg/m2), and was 14.34kg/m2 under broad-leaved Pinus koraiensis forest; the SOC density in B layer was 1.60-24.71kg/m2, and the value was the largest under larch forest (24.71kg/m2) and the lowest under secondary Populus forest (1.60kg/m2), and was 8.81kg/m2 under broad-leaved Pinus koraiensis forest; the soil organic carbon/total nitrogen (SOC/TN) of A layer was 18.54-25.84, and the largest under Picea sp.—Abies nephlolepis forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under secondary Betula costata forest; SOC/TN of B layer was 17.05-26.43, and the largest under birch forest, the second under broad-leaved Pinus koraiensis forest, and the lowest under secondary Betula costata forest.
     (5) The contents of active SOC (Ca), slow SOC (Cs) and resistant SOC (Cr) of A layer were 0.65-1.84g/kg,27.78-62.44g/kg and 37.14-111.82g/kg, and respectively accounts to 0.93-2.01%,22.51-47.26% and 50.72-76.24%, and the mean residue time is 9-24 days,4-41 years and 90 years. The contents of Ca, Cs and Cr of B layer were 0.51-1.89g/kg,13.30-39.86g/kg and 11.96-85.13g/kg, and respecitively accounts to 0.86-3.51%,30.55-50.82% and 45.67-67.83%, and the mean residue time is 10-37 days,10-28 years and 90 years.
     (6) The control factor that influence SOC of main forest community type in Xiaoxing an'mountains was soil bulk density, the soil bulk density under broad-leaved Pinus koraiensis forest, birch forest and five other community types were all related with SOC contents, and the relationship was the largest under broad-leaved Pinus koraiensis forest (R2= 0.2706), that was the second under birch forest (R2= 0.4381), and that was the lowest under five other community types (R2= 0.3059). Litter had more influencing on the birch forest (R2= 0.3059), but had less direct influencing on other community types. The attitude had less influencing on SOC content.
     (7) The total area of the forest soil was 285.84×104hm2 in Xiaoxing an'mountains, the total SOC stotage was 898.14×109t. The secondary coniferous forest accounts to the largest proportion of of the total SOC storage in Xiaoxing an'mountains area with 36.69%, and secondary Populus forest accounts to the lowest with 0.21%. The order of SOC storage was the same to the distribution area, was secondary coniferous forest> secondary birch forest> larch forest> Picea sp.—Abies nephlolepis forest> secondary Betula costata forest> broad-leaved Pinus koraiensis forest> secondary Populus forest.
引文
[1]苏永中,赵哈林.土壤有机碳储量影响因素及其及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    [2]Schlesinger, W. H. Evidence from chronosequce studies for a low carbon-storage potential of soil [J]. Nature,1990, (348):232-234.
    [3]Dixon, R K., and D. P. Turner. The global carbon cycle and climate change:responses and feedbacks from belowground systems [J]. Environmental Pollution,1991, (73):245-262.
    [4]Smith, T. M., W. Cramer, R. K. Dixon, et al. The global terrestrial carbon cycle [J]. Water, Air, and Soil Pollution,1993, (70):19-37.
    [5]Olsson, B.A., H. Staaf, H. Lundkvist, et al. Carbon and nitrogen in coniferous forest soils after clear felling and harvests of different intensity [J]. Forest Ecology and Management,1996, (82):19-32.
    [6]Finer, L., H. Mannerkoski, S. Piirainen, et al. Carbon and nitrogen pools in an old growth, Norway spruce mixed forest in eastern Finland and changes associated with clear cutting [J]. Forest Ecology and Management,2003, (174):51-63.
    [7]李玉强,赵哈林,陈银萍.陆地生态系统碳源和碳汇及其影响机制研究进展[J].生态学杂志,2005,24(1):37-42.
    [8]Parton, W. J., D. S. Schimel, C. V. Cole, et al. Analysis of factors controlling soil organic matter levels in great plains grass lands [J]. Soil Science Society of America Journal,1987,(51):1173-1179.
    [9]Parton, W. J., J. R L. Sandford, P. A. Sanchez, et al. Modeling soil organic matter dynamics in tropical soils [J]. Soil Science Society of America Journal,1989, (39):153-171.
    [10]Stevenson, F.J腐殖质化学[M].北京:北京农业大学出版社,1982:1-5.
    [11]王发刚,王启基,王文颖,景增春.土壤有机碳研究进展[J].草地资源与利用,2008,25(2):48-54.
    [12]杨丽霞,潘剑君,苑韶峰.森林土壤有机碳库组分定量化研究[J].土壤学通报,2006,(37):241-243.
    [13]宋国菡.耕垦下表土有机碳库变化及水稻土有机碳的团聚体分布与结合形态[D].南京:南京农业大学,2005:88-110.
    [14]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    [15]王淑平.土壤有机碳和氮的分布及其对气候变化的响应[M].北京:中国科学院植物所,2003:9.
    [16]Lal, R. Soil carbon sequestration in China through agricultural intensification, and degraded and decertified ecosystems [J]. Land Degradation and Development,2002,13:469-478.
    [17]李甜甜,季宏兵,孙媛媛,罗建美,江用彬,王丽新.我国土壤有机碳储量及影响因素研究进展[J].首都师范大学学报,2007,28(1):93-97.
    [18]黄昌勇.土壤学[M].北京:中国农业出版社,2000:62.
    [19]解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
    [20]Post, W. M., and K. C. Kwom, Soil carbon sequestration and land-use change:process and potential[J]. Global Change Biology,2000, (6):317-327.
    [21]张凤荣.土壤地理学[M].北京:中国农业出版社,2002:98-99.
    [22]Bouwman, A. F. Global distribution of the major soil sand land cover types [J]. New York:John Wiley and Sons,1990:33-59.
    [23]Loveland, T. R, B. C. Reed, J. F. Brown, et al. Development of a global land over characteristics database and IGBP discover from 1-km AVHRR data[J]. International Jounarnal of Remote sensing, 2000,(21):1303-1330.
    [24]王绍强,周成虎,李克让,朱松丽,黄方红.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    [25]解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    [26]王绍强,刘纪远.土壤蓄积量变化的影响因素研究现状.地球科学展[J],2002,17(4):528-534.
    [27]Hasink, J. Preservation of plant residues in soils differing in unsaturated protective capacity [J]. Soil Science Society of America Journal,1996, (60):487-491.
    [28]Burger, J. A. D. L. Kelting. Using soil quality indicators to assess forest stand management [J]. Forest Ecology and Management,1999, (122):155-156.
    [29]莫良玉,吴良欢,陶勤南.高等植物对有机氮吸收与利用研究进展[J].生态学报,2002,22(1):118-124.
    [30]王长庭,龙瑞军,王启基,等.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J].草业学报,2005,14(4):15-20.
    [31]王鹏程.三峡库区森林植被水源涵养功能研究[D].北京:中国林业科学研究院2007:1-30.
    [32]吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
    [33]吴庆标,王效科,郭然.土壤有机碳稳定性及其影响因素[J].土壤通报,2005,36(5):743-747.
    [34]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000,32(1):11-17.
    [35]Batjes, N. H. Total carbon and nitrogen in the soil of the world [J]. European Journal of soil Science, 1996,(47):151-163.
    [36]杨金艳.东北天然次生林生态系统地下碳动态研究[D].哈尔滨;东北林业大学,2005:1-80.
    [37]Post, W. P., W. R. Emanual, P. J. Zinke, et al. Soil carbon pools and world life zones [J]. Nature,1982, (298):156-159.
    [38]周国模,刘恩斌,余光辉.森林土壤碳库研究方法进展[J].浙江林学院学报,2006,23(2):207-216.
    [39]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,14(5):797-802.
    [40]Alentini, R.,G. Mattenucci, A. J. Dolman, et al. Respiration as the main determinant of carbon balance in European forests [J]. Nature,2000,40(4):862-864.
    [41]唐晓红,黄雪夏,魏朝富.不同尺度土壤有机碳空间分布特征研究综述[J].中国农学通报,2005,(3):224-229.
    [42]Jobbagy, E. G., R. B. Jackson. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Application,2000, (10):423-436.
    [43]Elzein, A., J. A. Balesdent. Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils [J]. Soil Science Society of America Journal,1995, (59):1328-1335.
    [44]Eswarran, H., E. V. Van Den Berg, and P. Reich. Organic carbon in soils of the world [J]. Science Society of America Journal,1993,2(57):192-194.
    [45]Rustad, L. E., T. G Huntin, and R. D. Boone. Controls on soil respiration:implications for climate change [J]. Biogeochemistry,2000, (48):1-6.
    [46]方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    [47]Paul, E. S., and W. Jack, Assessing Brazil's, carbon budget:Biotic carbon pools [J]. Forest Ecology and Management,1995, (75):77-86.
    [48]Tatyana, P. K., and S. V. Ted. Carbon cycle of terrestrial ecosystems of the former Soviet Union [J]. Environmental Science and Policy,1998, (1):115-128.
    [49]Lars, K., N. Anette, H. Martin, et al. Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agriculture Ecosystems and Environment,2003, (96):19-28.
    [50]Rollinger, J. L., T. F. Strong, D. F. Grigal. Forested soil carbon stotage in landscapes of the northern great lakes region [A]. In:management of carbon sequestration in soil (ed by Lai, R. et al.)[M]. New York:CRC press,1997:335-350.
    [51]Susan, R., M. Wilma, V. Comelis, et al. Analysis of soil organic carbon and vegetation cover trends along the Botswana Kalahari Transect [J]. Journal of Arid Environments,1998,38(5):379-396.
    [52]徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报,2005,(27):18-22.
    [53]邵月红,潘剑君,许信旺,等.长白山森林土壤有机碳库大小及周转研究[J].水土保持学报,2006,(20):99-102.
    [54]杨万勤,冯瑞芳,张健,等.中国西部3个亚高山森林土壤有机层和矿质层碳储量和生化特性[J].生态学报,2007,(27):4157-4165.
    [55]Billings, W. D. Carbon balance of Alaskan tundra and taiga ecosystems:past, present, and future [J]. Quatern Sci Rev,1987, (6):165-177.
    [56]Bird, M. I. Soil carbon inventories and carbon13 on a latitude transect in Siberia [J]. Tellus,2002,54(18): 631-641.
    [57]Hazlett, P. W., A. M. Gordon, P. K. Sibley, et al. Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in northeastern Ontario [J]. Forest Ecology and Management,2005,37(219):56-68.
    [58]贾宇平.土壤碳库分布与储量研究进展[J].太原师范学院学报,2004,3(4):62-64.
    [59]Degryze, S., J. Six, K. I. T. H. Paustian, et al. Soil organic carbon pool changes following land-use conversions [J]. Global Change Biology,2004, (10):1120-1132.
    [60]Hobbie, S. E., J. P. Schimel, S. E. Trumbore, J. R. Randerson. A mechanistic understanding of carbon storage and turnover in high-latitude soils [J]. Global Change Biology,2000,6(1):196-210.
    [61]Ise, T., P. R. Moorcroft. The global-scale temperature and moisture dependencies of soil organic carbon decomposition:an analysis using a mechanistic decomposition model [J]. Biogeochemistry,2006, (80): 217-231.
    [62]Wickland, K. P., J. C. Neff. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls [J]. Biogeochemistry,2008, (87):29-47.
    [63]Quideau, S. A., O. A. Chadwick, A. Benesi, et al. A direct link between forest vegetation type and soil organic matter composition [J]. Geoderma,2001, (104):41-60.
    [64]Miegroet, H. V., J. L. Boettinger, M. A. Baker, et al. Soil carbon distribution and quality in a montane rangeland-forest mosaic in northern Utah [J]. Forest Ecology and Management,2005, (220):284-299.
    [65]Guo, L. B., A. L. Cowie, K. D. Montagu, et al. Carbon and nitrogen stocks in a native pasture and an adjacent 16-year-old Pinus radiata D. Don. plantation in Australia [J]. Agriculture, Ecosystems and Environment,2008,12(4):205-218.
    [66]Yanai, R. D., W. S. Currie, C. L. Goodale. Soil carbon dynamics after forest harvest:an ecosystem paradigm reconsidered [J]. Ecosystems,2003, (6):197-212.
    [67]Lal, R. Soil carbon sequestration impacts on global climate change and food security [J]. Science,2004, (304):1623-1626.
    [68]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330-332.
    [69]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,(18):349-356.
    [70]于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    [71]Li, Z. P., F. X. Han, Y. Su, et al. Assessment of soil organic and carbonate carbon storage in China [J]. Geoderma,2007,138(1):119-126.
    [72]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报,2004,35(4):502-506.
    [73]Currie, W. S. Relationships between carbon turnover and bioavailable energy fluxes in two temperate forest soils [J]. Global Change Biology,2003, (9):919-929.
    [74]Michel, K., E. Matzner. Nitrogen content of forest floor layers affects carbon pathways and nitrogen mineralization [J]. Soil Biology and Biochemistry,2002, (34):1807-1813.
    [75]Sinsabaugh, R. L., D. L. Moormead, A. E. Linkins. The enzymic basis of plant litter decomposition: emergence of an ecological process [J]. Applied Soil Ecology,1994, (1):97-111.
    [76]Schulze, E. D., J. Lloyd, F. M. Kelliher, et al. Productivity of forests in the Eurosiberia boreal region and their potential to act as a carbon sink—a synthesis [J]. Global Change Biology,1999, (5):703-722.
    [77]Bird, M. I., H. Santruckova, J. Lloyd, et al. The isotopic composition of soil organic carbon on a north-south transect in western Canada [J]. European Journal of Soil Science,2002, (53):393-403.
    [78]张敏儒,赵学民,李君,等.对伊春森工林区碳汇工作的几点建议[J].黑龙江生态工程职业学院学报,2007,20(3):33-34.
    [79]郝占庆,陶大力,赵士洞.长白山北坡阔叶红松林及其次生白桦林高等植物物种多样性比较[J].应用生态学报,1994,5(1):16-23.
    [80]方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算[J].中国科学,2007,37(6):804-812.
    [81]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983:105-107.
    [82]Boix-Fayos, C., A. Calvo-Cases, A. C. Imeson, M. D. Soriano-Soto. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators [J]. Catena,2001, (44):47-67.
    [83]庞学勇,刘世全,刘庆,等.川西亚高山针叶林植物群落演替对土壤性质的影响[J].水土保持学报,2003,17(4):42-451
    [84]庞学勇,包维楷,张咏梅,等.岷江柏林下土壤物理性质及其地理空间差异[J].应用与环境生物学报,2004,10(5):596-601.
    [85]张鼎华,孙志蓉,翟明普,等.杨树刺槐混交林沙地土壤的水分物理性质[J].应用与环境生物学报,2001,7(2):122-125.
    [86]赵世伟,周印东,吴金水.子午岭北部不同群落类型土壤水分特征研究[J].水土保持学报,2002,16(4):119-122.
    [87]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社,1978:1-30.
    [88]Yang, L., J. Pan, Y. Shao, et al., Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China [J]. Journal of Environmental Management,2007, (85):690-695.
    [89]Leavitt, S. W., E. A. Paul, E. Pendall, et al. Field variability of carbon isotopes in soil organic carbon [J]. Nuclear Instruments and Methods in Physics Research,1997, (123):451-454.
    [90]王鹏程,刑乐杰,肖文发,等.三峡库区森林生态系统有机碳密度及碳储量[J].生态学报,2009,29(1):97-107.
    [91]Collins, H.P., E. A. Paul, R. L. Blevens, et al. Soil organic matter dynamics in corn based agroecosystems of the central USA:Results from 15C natural abundance [J]. Soil Science Society of America Journal,1999, (63):584-599.
    [92]陈庆强,彭少麟.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563.
    [93]陈立新.土壤实验技术与分析[M].哈尔滨:东北林业大学出版社,2001:25-35.
    [94]李向应,李忠勤,陈正华.天山乌鲁木齐河源号冰川雪坑中pH值和电导率的季节变化及淋溶过程[J].地球科学进展,2006,21(5):487-495.
    [95]王光玉.杉木混交林水源涵养和土壤性质研究[J].林业科学,2003,39(专刊1):15-20.
    [96]王树力.不同经营类型红松林对汤旺河流域土壤性质的影响[J].水土保持学报,2006,20(3)90-93.
    [97]杨弘,李忠,裴铁,等.长白山北坡阔叶红松林和暗针叶林的土壤水分物理性质[J].应用生态学报,2007,18(2):272-276.
    [98]庞学勇,刘庆,刘世全,吴彦,林波,何海,张宗锦.川西亚高山云杉人工林土壤质量性状演变 [J].生态学报,2004,24(2):261-267.
    [99]孙艳红,张洪江,程金花,等.缙云山不同林地类型土壤特性及其水源涵养功能[J].水土保持学报,2006,20(2):106-109.
    [100]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报,2006,26(11):3685-3695.
    [101]郝占庆,王力华.辽东山区主要森林类型林地土壤涵蓄水性能的研究[J].应用生态学报,1998,9(3):237-241.
    [102]胡海清,刘洋,孙龙,蔡体久,宋立臣.火烧对不同林型下森林土壤水分物理性质的影响[J].水土保持学报,2008,22(2):162-165.
    [103]曾永年,冯兆东,曹广超,等.黄河源区高寒草地土壤有机碳储量及分布特征[J].地理学报,2004,59(4):497-503.
    [104]黄雪夏,倪九派,高明,等.重庆市土壤有机碳库的估算及其空间分布特征[J].水土保持学报,2005,19(1):54-58.
    [105]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    [106]李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学,2003,33(1):72-78.
    [107]Berger, T. W., C. Neubauer, and G. Glatzel. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria [J]. Forest Ecology and Management,2002, (159):3-14.
    [108]Nan, C. V., and A. E. James. Soil properties important to the restoration of a Shasta red fir barrens in the Siskiyou Mountains [J]. For Ecol Manage,2000, (138):427-434.
    [109]邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,19(3):24-28.
    [110]方运霆,莫江明,Sandra Brown,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,24(1):135-142.
    [111]Russell, A. E., J. W. Raich, O. J. Valverde-Barrantes, and R.F. Fisher. Tree species effects on soil properties in experimental plantations in tropical moist forest [J]. Soil Sci Soc Am J,2007, (71):1389-1397.
    [112]李忠,孙波,林心雄.我国东部土壤有机碳密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    [113]王绍强,周成虎,刘纪远,李克让,杨晓梅.东北地区陆地碳循环平缓模拟分析[J].地理学报,2001,56(4):390-400.
    [114]孙维侠,史学正,于东升,王库,王洪杰.我国东北地区土壤有机碳密度和贮量的估算研究[J].土壤学报,2004,41(2):298-301.
    [115]Fang, J.Y., A. P. Chen, C. H. Peng, et al. Changes in forest biomass carbon storage in china between 1949 and 1998 [J]. Science,2001, (292):2320-2322.
    [116]张守杰.白桦树的更新与经营[J].林区教学,2008,(9):144-145.
    [117]朱显谟,田积莹.强化黄土高原土壤渗透性及抗冲性的研究[J].水土保持学报,1993,7(3):1-10.
    [118]李文影,满秀玲,张阳武.不同林龄白桦次生林土壤特性及其水源涵养功能[J].中国水土保持科学,2009,7(5):63-69.
    [119]游秀花.马尾松天然林不同演替阶段土壤理化性质的变化[J].福建林学院学报,2005,25(2):121-124.
    [120]Hartemink, A.E. Biomass and nutrient accumulation of Piper Aduncum and Imperata cylindrica fallows in the humid lowland of Papua New Guinea [J]. Forest Ecology and Management,2001, (144):19-32.
    [121]李君剑,石福臣,柴田英昭,世贺一郎.东北地区三种典型次生林土壤有机碳、总氮及微生物特征的比较研究[J].南开大学学报(自然科学版),2007,40(3):84-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700