用户名: 密码: 验证码:
催化剂对炭化反应产物性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质炭(Biochar)是新近提出的一项应对温室效应的技术措施,同时也是一项提高土壤肥力的新举措,是当前研究的热点之一。针对生物质炭研究中集中在酸性土壤、短期培养试验、单季田间试验的现状,结合生物质能源生产中催化剂普遍使用的实际情况,本文从普通生物质炭对石灰性土壤性质及作物产量的长期影响出发,通过实验室小型设备,研究催化剂对污泥水热炭化过程和作物秸秆干裂解过程和产物性质的影响,分析催化剂对生物质炭性质的影响,为其进一步农业应用提供实验依据。研究主要结果如下:
     催化剂可缩短加热水热炭化过程的加热时间9-23%,具有一定的节约能耗效果。催化剂可显著降低水热炭中C、N含量,极大清除污泥伴生污水中的P;CaO可显著提高污泥水热炭的酸缓冲性和pH,催化剂可降低水热炭的炭化度。催化剂可显著降低水热液中C的浓度,显著提高水热液的生化降解性,极大降低P的富营养化风险。水热炭化使分散态重金属集中分布于水热炭、水热液及焦油中,CaO对水热炭中重金属含量和活性的影响高于FeCl3, CaO可提高酸溶态重金属的比例,而FeCl3对7种重金属的活性无明显影响。
     K2C03或K2CO3/CaO混合物均可降低生物质炭中全C、N的浓度,提高生物质炭中DOC、易矿化态N、交换态P、K的比例,含催化剂的生物质炭中养分的有效性较高。K2CO3或K2CO3/CaO混合物可提高生物质炭的pH和CEC值,降低生物质炭的碘吸附值。K2C03或K2CO3/CaO混合物均可降低生物质炭的炭化程度,表明催化剂降低生物质炭的稳定性,提高其可降解性,较普通生物质炭更具生物驱动作用。
     三年田间长期试验结果表明,在石灰性砂壤土上施用生物质炭,对冬小麦与夏玉米的年均产量没有显著影响,施用60t ha-1生物质炭是比较适当的用量;生物质炭对土壤速效养分状况的影响不显著,对土壤容重和持水能力具有一定的提高作用。
     上述研究结果表明,普通生物质炭对石灰性土壤性质及作物产量无不良影响,含催化剂的生物质炭的农学适用性高于普通生物质炭。当然,关于含催化剂的生物质炭的农学性质尚需土壤施用试验来验证。
Biochar is a newly emerged technology to cope with the greenhouse effect. It is also a new method to improve soil fertility. Both of the above are one of the hot-topics in today's scientific research. Most of these researches were focused on acid soil, laboratory incubation experiment, or field experiment of a single growing-season. At the same time, catalysts were widely used in bio-energy production. Based on these facts, two researches were conducted in this study. The first one was the long-term impact of ordinary biochar on soil properties and crop yields in a field experiment running on a calcareous soil, and the second one was a laboratory experiment, focusing on the effect of catalysts on the properties of products of the hydrothermal carbonization of sewage sludge and the pyrolysis of crop straw. The main aim of this study was to provide an experimental basis for the further agricultural application of these catalysts-contained biochar. The main results are listed as followed:
     The catalysts shortened the heating time of sludge hydrothermal carbonization process from9to23%, meaning saving energy somewhat. The catalysts significantly reduced the content of C and N in the hydrochar, and CaO significantly increased the acid buffer capability and pH of the hydrochar. The catalysts reduced the carbonization degree of the hydrochar. The catalyst significantly reduced the concentration of C in the hydro-liquid, and significantly improved the biochemical degradability of the hydro-liquid. The dispersed heavy metals in original sludge were concentrated in the hydrochar, the hydro-liquid and the tar. The impact of CaO on content and activity of heavy metals in the hydrochar was greater than that of FeCl3. CaO increased the proportion of acid-soluble heavy metals in hydrochar while FeCl3had little effect on the activity of the heavy metals activity.
     K2CO3or K2CO3/CaO mixture reduced the concentration of total C and N in the biochar, and increased the ratio of DOC, easily mineralized N, exchangeable P and K in the biochar, meaning catalysts could increase the nutrients availability of the biochar. The K2CO3or K2CO3/CaO mixture increased pH and CEC of the biochar, but reduced iodine adsorption of the biochar. K2CO3or K2CO3/CaO mixture reduced the carbonization degree of the biochar, indicating catalysts could reduce the stability of the biochar, improving the degradability of the biochar, thereby improving the bio-driving power of the biochar.
     Application of biochar to calcareous soil had no significant effect on the average annual yield of winter wheat and summer maize. The most appropriate dosage of biochar was60t ha-1. Biochar applying had little effects on soil available nutrient, but improved the soil bulk density and water holding capacity in this calcareous sandy soil.
     The above results shows two facts, one is that application of ordinary biochar to calcareous soil has no negative effects both on soil properties and crop yield, and the second is that the agronomic properties of the catalyst-contained biochar is better that that of the ordinary biochar. Of course, the agronomic effects of the catalyst-contained biochar need to be tested by the field experiment.
引文
1) Abdel-Nasser A, EH. An insight into the KOH activation mechanism through the production of microporous activated carbon for there moval of Pb2+ cations [J]. Applied Surface Science,2009, 255:3723-3730.
    2) Akhtar J, Nor A A. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable and Sustainable Energy Reviews,2011,15:1615-1624.
    3) Alsop M G, Conway R A. Improved Thermal Sludge Conditioning by Treatment with Acids and Bases [J]. Water Pollution Control Fed,1982,54:146-152.
    4) Amir S, Hafidi M, Merlina G, et al. Sequential extraction of heavy metal during composting of sewage sludge [J]. Chemosphere,2005,59:801-810.
    5) Antal M J, Varhegyi G, Jakab E. Cellulose pyrolysis kinetics:Revisited [J]. Industrial and Engineering Chemistry Research,1998,37(4):1267-1275.
    6) Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review. Plant Soil,2010,337:1-18.
    7) Awad Y M, Blagodatskaya E, Ok Y S, et al. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. European Journal of Soil Biology,2012,48:1-10.
    8) Bache B W. The role of calcium in buffering soils. Plant, Cell and Environment,1984,7:391-395.
    9) Baronti S, Alberti G, Genesio L, et al. Effects on soil fertility and on crops production 2nd International Biochar Conference-IBI September 8-10 Newcastle-Gateshead, UK.
    10) Beaumont O. Flash pyrolysis products from beech wood [J]. Wood Fiber Science,1985,17: 228-239.
    11) Bekele A, Kellman L, Beltrami H. Soil Profile CO2 concentrations in forested and clear cut sites in Nova Scotia, Canada. Forest Ecology and Management,2007,242:587-597.
    12) Berge N D, RoKS, Mao J, et al. Hydrothermal Carbonization of Municipal Waste Streams [J]. Environmental Science and Technology,2011,45:5696-5703.
    13) Blackwell P, Riethmuller G, Collins M. Biochar application to soil. In Lehmann J., Joseph S, eds. Biochar for Environmental Management:Science and Technology. Earthscan, London, 2010,207-226.
    14) Blackwell P, Shea S, Storer P, et al. Improving wheat production with deep banded oil mallee charcoal in Western Australia. Paper presented at the International Agrichar Initiative, Terrigal, Australia,2007.
    15) Blazso M, Jakab E, Vargha A, et al. The effect of hydrothermal treatment on a Merseburg lignite. Fuel,1986,65:337-341.
    16) Bobleter O. Hydrothermal degradation of polymers derived from plants [J]. Progress in Polymer Science,1994,19:797-841.
    17) Borah D, Satokawa S, Kato S, et al. Sorption of As(V) from aqueous solution using acid modeled carbon black [J]. Journal of Hazardous Materials,2009,162:1269-1277.
    18) Bougrier C, Delgenes J P, Carrere H. Effects of thermal treatment on five different waste activated sludge sample solubilisation, physical properties and anaerobic digestion [J]. Chemical Engineering Journal,2008,139(2):236-244.
    19) Bridgewater A V. Principles and practice of biomass fast pyrolysis processes for liquids [J]. Journal of Analytical and Applied Pyrolysis,1999,51:3-22.
    20) Brodowski S, John B, Flessa H, et al. Aggregate-occluded black carbon in soil [J]. European Journal of Soil Science,2006,57:539-546.
    21) Brownr C, Liu Q, Norton G. Catalytic effects observed during the CO2 gasification of coal and switch grass [J]. Biomass and Bioenergy,2000,18(6):499-506.
    22) Burghardt R, Krull R, Hempel D C, et al. Alkalische hydrolysevon Klarschlamm am Beispiel der Klaranlage Dormagen der Bayer AG [J], Korrespondenz Abwasser,1997,44 (10):1806-1811.
    23) Cao X, Ro K S, Chappell M, et al. Chemical structures of swine manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy [J]. Energy & Fuels,2011,25:388-397.
    24) Chan K Y, van Zwieten L, Meszaros I,et al. Assessing the Agronomic Values of Contrasting Char Materials on an Australian Hard Setting Soil, in Proceedings of the conference of the international agrichar initiative, Terrigal, NSW, Australia,2007.
    25) Chan K Y, van Zwieten L, Meszaros I, et al. Using poultry litter biochar as soil amendments. Australia Journal of Soil Research,2008,46:437-444.
    26) Chiu S J, Cheng W H. Thermal degradation and catalytic cracking of poly (ethyleneterephthalte) [J], Polymer Degradation And stability,1999,63:407-412.
    27) Coma J, Jabbouri A, Grasmick A. Primary treatment of urban wastewater [J]. Water Science and Technology,1991,24(7):217-222.
    28) Cui H J, Wang M K, Fu M L, et al. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. Journal of Soils Sediments,2011,11:1135-1141.
    29) Cui X, Antonietti M, Yu S H, et al. Structural effects of iron oxide nano particles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates [J]. Small,2006,2:756-759.
    30) David S, Brian K, Julianrhr. Review of literature on catalysts for biomass gasification [J]. Fuel Processing Technology,2001,73(3):155-173.
    31) Deenik J L, McClellan T, Uehara G, et al. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal,2010,74:1259-1270.
    32) Degroot W F, Pan WP, Rahman M D, et al. First chemical events in pyrolysis of wood [J]. Journal of analytical and applied pyrolysis,1988,13:221-231.
    33) Degroot W F, William F, Shafizade H, et al. Bio-chemical analysis of wood and wood products by pyrolysis- mass spectrometry and multiva riate analysis [J]. Journal of analytical and applied pyrolysis,1984,6 (3):217-232.
    34) Della Rocca D A, Horowitz G I, Boneli P R, et al. Olive stone s pyrolysis:chemical, textural and kinetic characterization. in:Boocock D G B, Eds. Development in Thermochemical Biomass Conversion [M]. London:Blackie Press,1997.
    35) DeLuca T H, MacKenzie M D, Gundale M J, et al. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal,2006,70: 448-453.
    36) Deneux-Mustin S, Lartiges B S, Villemin G, et al. Ferric Chloride and Lime conditioning of activated sludges:An electron microscopic study on resin-embedded samples [J]. Water Research, 2001,35, (12):3018-3024.
    37) Fisher R A, Swanwick S J. High temperature treatment of sewage sludges [J]. Water Pollution Control,1971,71(3):255-370.
    38) Furusawa T, Tsutsumi A. Development of cobalt catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification [J]. Applied Catalysis A:General, 2005,278:195-205.
    39) Gaskin J W, Speir R A, Harris K, et al. Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield. Agronomy Journal,2010,102:623-633.
    40) Glaser B, Balashov E, Haumaier L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry,2000,31:669-678.
    41) Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review [J]. Biology and Fertility Of Soils,2002,35:219-230.
    42) Glaser B. Manioc peel and charcoal:a potential organic amendment for sustainable soil fertility in the tropics [J]. Biology and Fertility Soils,2005,41:15-21.
    43) Grange P, Laurent E, Maggi R, et al. Hydro treatment of pyrolysis oils from biomass, reactivity of various categories of oxygenated compounds and preliminary techno-economical study [J]. Catalysis Today,1996,29:297-301.
    44) Guiotoku M, Rambo C R, Hansel F A. Microwave-assisted hydrothermal carbonization of lignocellulosic materials [J]. Materials Letters,2009,63:2707-2709.
    45) Hallen R T, Sealock L T, Cuelle R, et al. Research in thermochemical biomass conversion [C]. London:Elsevier Applied Science,1998.
    46) Hamer A, Mason C A, Hamer G. Death and lysis during aerobic thermophilic sludge treatment: characterization of recalcitrant products [J]. Water Research,1994.28(4):863-869.
    47) Hamer U, Marschner B, Brodowski S, et al. Interactive priming of black carbon and glucose mineralization [J]. Organic Geochemistry,2004,35(7):823-830.
    48) Hattori M, Shimaya Y, Saito M. Solubility and dissolved cellulose in aqueous scalcium and sodium 2 thiocyanate solution [J]. Polymer Journal,1998,30(1):49-55.
    49) Hoekman S K, Broch A, Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass [J]. Journal Of Energy & Fuels,2011,25(4):1802-1810.
    50) Hoshi T. A practical study on bamboo charcoal use to tea trees [M]. Report on Research by project (Tokoi University, Japan),2001,13:1-47.
    51) Hossain M K, Strezov V, Chan K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management,2011, 92:223-228.
    52) Iswaran V, Jauhri K S, Sen A. Effect of charcoal, coal and peat on the yield of moong, soybean and pea [J]. Soil Biology and Biochemistry,1980,12:191-192.
    53) Jakab E, Faix O, Till F. Thermal decomposition of milled mood lignin studied by thermo gravimetry/mass spectrometry [J]. Journal of Analytical and Applied Pyrolysis,1997,40 (41):171-186.
    54) Jayaraj Y M, Aparanji B, Nimbargi P M. Amelioration of heavy metal toxicity on primary productivity of aquatic ecosystems by calcium, magnesium and iron. Environmental Ecology. 1992,10:667-674.
    55) Jeffery S, Verheijen F G A, vander Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystems and Environment,2011,144:175-187.
    56) Jien S H, Wang C S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena,2013,110:225-233.
    57) Jin H M, Chang Z Z. Distribution of heavy metal contents and chemical Fractions in Anaerobically digested manure slurry [J]. Apply Biochemisty Biotechnol,2011,164:268-282.
    58) Jones D L, Rousk J, Edwards-Jones G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology & Biochemistry,2012,45:113-124.
    59) Kammann C I, Linsel L, Goβling J W, et al. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil,2011,345:195-210.
    60) Kangala B. Accumulation and fate of selected heavy metals in a biological wastewater treatment system [J]. Waste Management,2003,23(2):135-143.
    61) Kishimoto S, Sugiura G. Charcoal as a soil conditioner [J]. Int. Achieve Future,1985,5:12-23.
    62) Kumar S, Loganathan V A, Gupta R B,et al. An assessment of U (Ⅵ) removal from groundwater using biochar produced from hydrothermal carbonization [J]. Journal of Environmental Management,2011,92(10):2504-2512.
    63) Ladd J N, Brisbane P G, Butler J H A. Studies on soil fumigation 3:Effects on enzyme-activities, bacterial numbers and extractable ninhydrin reactive compounds. Soil Biology & Biochemistry, 1976,8:255-260.
    64) Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma,2010,158:443-449.
    65) Lee H S, Vole sky B. Interaction of light metals and protons with seaweed biosorbent [J]. Water Research,1997,31(12):3082-3088.
    66) Lee W J. Catalytic activity of alkali and transition metal salt mixtures for steam char gasification [J]. Fuel,1995,74:1387-1393.
    67) Lehmann J, Joseph S. Biochar for environmental management:science and technology [M]. London:Earth scan,2009.
    68) Lehmann J, Silva J P, Rondon M, et al. Slash and char a feasible alternative for soil fertility management in the central Amazon?Soil Science:Confronting New Realities in the 21st Century.17th World Congress of Soil Science, Bangkok,2002.
    69) Lehmann J. Terra preta Nova-where to from here? in Woods W I., Teixeira W C Lehmann J, et al., eds. Terra preta Nova:A tribute to Wim Sombrock, Springer, Beilin,2009,473-486
    70) Lehmann J, Czzimczik C, Laird D, et al. Stability of biochar in the soil. In Lehmann J., Joseph S, eds. Biochar for Environmental Management:Science and Technology. Earthscan, London, 2010,183-205.
    71) Lehmann J, da Silva Jr J P, Steiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin:fertilizer, manure and charcoal amendments. Plant and Soil,2003,249; 343-357.
    72) Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota---A review. Soil Biology & Biochemistry,2011,43:1812-1836.
    73) Lehmann J, Rondon M. Bio-char soil management on highly weathered soils in the humid tropics. In:UphoffN., Ball A S., Fernandes E, et al., eds. Biological approaches to sustainable soil systems. CRC/Taylor & Francis, Boca Raton,2006,517-530.
    74) Lester J N, Sterrit R M, Kirk P W W, et al. Significance and behaviour of heavy metals in wastewater treatment process. Ⅱ. Sludge treatment and disposal [J]. Science of the total environment,1983,30:45-83.
    75) Li L J, Wang Y, Zhang Q, et al. Wheat straw burning and its associated impacts on Beijing air quality [J]. Science in China Series,2008,51(3):404-414.
    76) Li Z B, Ryan J A, Chen J L, et al. Adsorption of Cadmium on Biosolids-Amended Soils [J]. Journal of Environmental Quality,2001,30(3):903-911.
    77) Libra J A, RoKS, Kammann C, et al. Hydrothermal carbonization of biomass residuals:a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels,2011,2(1):89-124.
    78) Lizzio A A, Radovic L R. Transient kinetics study of catalytic char gasification in carbon dioxide [J]. Industrial and Engineering Chemistry Research,1991,30(8):1735-1744.
    79) Loppinet-Serani A, Aymonier C, Cansell F. Current and foreseeable applica-tions of supercritical water for energy and the environment [J]. Chem Sus Chem.2008(1):486-503.
    80) Mahajan OM P, Walker J R, Phillip L. Effect of inorganic matter removal from coals and chars on the surface areas [J]. Fuel,1979,58(5):333-337.
    81) Marta S, Antonio B F. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides [J]. Chemistry-A European Journal,2009,15:4195 -4203.
    82) Matsuhashi M, Pankrushina A N. Studies on carbon material requirements for bacterial proliferation and spore germination under stress conditions:a new mechanism involving transmission of physical signals [J]. American Society for Microbiology,1995,177 (3):688-693.
    83) Matthiesen H. In situ measurement of soil pH Journal of Archaeological Science,2004,31: 1373-1381.
    84) McBride M B. Soluble trace metals in alkaline stabilized sludge products [J]. Journal of Environmental Quality,1998,27:578-584.
    85) McHenry M P. Soil Organic Carbon, Biochar, and Applicable Research Results for Increasing Farm Productivity under Australian Agricultural Conditions, Communications in Soil Science and Plant Analysis,2011,42:1187-1199.
    86) Middelburg J J, Nieuwenhuize J, van Breugel P. Black carbon in marine sediments [J]. Marine Chemistry,1999,65:245-252.
    87) Miyamoto I, Inamoto M, Matsui T, et al. Studies on structure of cuprammonium cellulose(N): Acircular dichroism Study on the dissolved state of cellulose in cuprammonium solution [J]. Polymer Journal,1995,27(11):1113-1122.
    88) Mudge L K, Baker E G, Mitchell D H, et al. Use of catalysts in biomss gasification [J]. Solar Energy Eng,1985,107:89.
    89) Murthy S N, Novak J T, De Haas R D. Monitoring cations to predict and improve activated sludge settling and dewatering properties of industrial waste waters [J]. Water Science & Technology, 1998,38(3):119-126.
    90) Neyens E, Baeyens J, Creemers C. Alkaline Thermal Sludge Hydrolysis [J]. Journal of Hazardous Mterials,2003,97:295-314.
    91) Neyens E, Baeyens J. A review of thermal sludge pre-treatment process to improve dewater abilitiy [J]. Journal of Hazardous Materials,2003,98(123):51-67.
    92) Nielsen J L, Juretschko S, Wagner M, et al. Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and micro auto radio graphy[J]. Applied and Environmental Microbiology,2002,68(9):4629-4636.
    93) Nowakowski Danie J, Woodbridge C R, Jones J M. Phosphorus catalysis in the pyrolysis behaviour of biomass [J]. Journal of Analytical and Applied Pyrolysis.2008 (83):197-204.
    94) Ogawa M. Symbiosis of people and nature in the tropics [J]. Farming Japan,1994,28(5):10-30.
    95) Onwudili J A, Radhakrishnan P, Williams P T. Application of hydrothermal oxidation and alkaline hydrothermal gasification for the treatment of sewage sludge and pharmaceutical waste waters [J]. Environmental Technology,2013,34(4):529-537.
    96) Peterson A A, Vogel F, Lachance R P, et al. Thermo-chemical biofuel production in hydrothermal media:a review of sub and supercritical water technologies [J]. Energy & Environmental Science, 2008,1:32-65.
    97) Pilli S, Bhunia P, Yan S, et al. Ultrasonic pretreatment of sludge:A review [J]. Ultrasonics Sonochemistry,2011,18(1):1-18.
    98) Rajan R V, Lin J, Ray B T. Low-level chemical pre-treatment for enhanced sludge solubilization [J]. Research Journal of the Water Pollution Control Federation,1989,61:1678-1683.
    99) Rajkovich S, Enders A, Hanley K, et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils,2012,48:271-284.
    100) Raveendrn K, Ganesh A, Khilart K C. Influence of mineral matter onbiomass pyrolysis characteristics [J]. Fuel,1995,74(12):1812-1822.
    101) Richardson S M, Gray M R. Enhancement of residue hydro processing catalysts by doping with alkali metals [J]. Energy Fuel,1997,11:1119-1126.
    102)Rickard B, Svante W, Yvonne W, et al. Ca2+ protects of factory receptor function against acute Cu(II) toxicity in Atlantic salmon [J]. Aquatic Toxicology,1993,25(1-2):125.
    103) Rogers S L, MeLaughlin M J. Relationship between biosolid metal concentration, metal Fraction and bioavallability. In:Wenzel W W., Adriano D C, Alloway B J, et al., Eds. Fifth International Conference on the Biogeoehemistry of Trace Elements. Vienna, Austria,1999,280-281.
    104)Ross D S, Loo B H, Tse D S, et al. Hydrothermal treatment and the oxygen functionalities in Wyodak coal. Fuel,1991,70:289-295.
    105) Ryan J A, Bell R M, Davidson J M. plant uptake of non-ionic organic chemicals from soil [J]. Chemosphere,1988,17:2299-2323.
    106)Scancar J, Milacic R, Strazar M, et al. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge [J]. The Science of the Total Environment,2000,250: 9-19.
    107)Seshardi K, Shamsi A. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor [J]. Industrial andEngineering Chemistry Research,1998,37(12):3830-3837.
    108) Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry-A European Journal,2009a,15:4195-4203.
    109) Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon,2009b,47:2281-2289.
    110) Shie J L, Lin J P, Chang C Y, et al. Pyrolysis of oil sludge with additives of catalytic solid wastes [J]. Journal of Analytical and Applied Pyrolysis,2004,71:695-707.
    111) Shie J L, Lin J P, Chang C Y,et al. Pyrolysis of oil sludge with additives of sodium and potassium compounds resource [J]. Conservation and Recycling,2003,39:51-64.
    112) Singh B P, Hatton B J, Singh B, et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality,2010,39:1224-1235
    113)Sohi S P, Krull E, Lopez-Capel E, et al. A review of biochar and its use and function in soil. Advances in Agronomy,2010,105:47-82.
    114)Steiner C, Teixeira W G, Lehmann J, et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant and Soil,2007,291:275-290.
    115) Stuckey D C, McCarty P L. The effect of thermal pre-treatment on the anaerobic biodegradability and toxicity of waste activated sludge, Water Research,1984,18:1343-1353.
    116) Stuckey D C, McCarty P L, Thermochemical pre-treatment of nitrogenous materials to increase methane yield, Biotechnol Bioeng Symp,1979,8:219-233.
    117)Tabatabai M A. Soil enzymes. In:Page A L., Millar E M., Keeney D R, Eds. Methods of Soil Analysis. ASA and SSSA, Madison, WI,1982,501-538.
    118)Taya T, Ucarb S, Karagoz S. Preparation and characterization of activated carbon from waste biomass[J]. Journal of Hazardous Materials,2009,165:481-485.
    119) Tekin K, Karago z S. Non-catalytic and catalytic hydrothermal liquefaction of biomass [J]. Research on Chemical Intermediates,2013,39:485-498.
    120)Thomas R, Richard M J, Bryers W, et al. Alkais in alternative biofuels [C]. Combustion Modeling, Scaling and AirToxins ASME,1994,18:211-219.
    121)Timpe R C, Mann M D, Pavlish J H, et al. Organic sulfur and hap removal from coal using hydrothermal treatment. Fuel Process Technol,2001,73:127-141.
    122)Unger R, Killorn R. Bio-char and nitrogen effects on corn grain yield. Paper presented at the Nitrogen and Phosphorus Management 2008 Joint Annual Meeting, Iowa State University, Ames, Iowa,2008.
    123) Uzoma K C, Inoue M, Andry H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management,2011,27:205-212.
    124) Vaccari F P, Baronti S, Lugato E, et al. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy,2011,34:231-238.
    125) Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil,2009, DOI 10.1007/s111009-0050-x.
    126) Verheijen F G A, Jeffery S, Bastos A C, et al. Biochar Application to Soils-A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. EUR 24099 EN, Office for the Official Publications of the European Communities, Luxembourg,2010.
    127) Vlyssides A G, Karlis PK. Thermal alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion [J]. Bioresource Technology,2004,91:201-206.
    128) Wang Z J, Wang W, Zhang X H, et al. Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor [J]. Journal of Hazardous Materials,2009,162 (223):799-803.
    129) Wornat M J, Nelson P F. Effects of ion-exchanged calcium on brown coal tar composition as determined by fourier transform in fra red spectroscopy [J]. Energy & Fuels,1992,6(2): 136-142.
    130) Xue T, Huang X. Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge [J]. Journal of Environmental Sciences,2007,19:1153-1158.
    131) Yang S J,He H P,Lu S L,et al. Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China [J]. Atmospheric environment,2008,42(9):1961-1969.
    132) Yao F X, Arbestain M C, Virgel S, et al. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere,2009,80:724-732.
    133) Yeboah E, Ofori P, Quansah G W, et al. Improving soil productivity through biochar amendments to soils. African Journal of Environmental Science and Technology,2009,3 (2):34-41.
    134)Yeh T M, Dickinson J G, Franck A, et al. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass [J]. Journal of Chemical Technology and Biotechnology,2013, 88:13-24.
    135) Yoshizawa S. Application of charcoal compost mixture technology to bio-toilet [J], New sletter (MEISEI University),2008,8:5-10.
    136) Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management,2011,27:110-115.
    137) Yutaka. Studies on the direct liquefaction of protein-contained biomass:the distribution of nitrogen in the productions. PII:S0961-9534(96)00045-1.
    138) Zanzi R. Pyrolysis of biomass [D]. London:Royal Institute of Technology Department of Chemical Engineering and Technology,2001.
    139) Zavalloni C, Alberti G, Biasiol S, et al. Microbial mineralization of biochar and wheat straw mixture in soil:A short-term study. Applied Soil Ecology,2011,50:45-51.
    140) Zhang A F, Liu Y M, Pan GX, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil,2011, DOI10.1007/s114-011-0957-x.
    141) Zhong Z K. The physical and chemical properties of bamboo charcoal and its application as a soil conditioner [M], Proceedings of International Agrichar Initiative (IAI) 2007 Conference. New South Wales, Australia,2007,36-37.
    142)安淼,周琪,李永秋.城市污泥中重金属的形态分布和处理方法的研究[J].农业环境科学学报,2003,22(2):199-202.
    143)安载学,穆楠,李万良.吉林省玉米秸秆资源量及综合利用情况分析[J].安徽农业科学,2012,40(2):937-938,941.
    144)陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,5(23):561-569.
    145)陈艳丹,丁凌云,蓝崇钰,等.不同改良剂对重金属污染农田水稻产量和重金属吸收的影响[J].生态环境,2006,15(6):1204-1208.
    146)陈燕.MAD工艺对城市剩余污泥中病原菌的杀灭效应研究[D],硕士学位论文,江苏:江南大学,2012.
    147)陈燕丹,黄明增,黄彪.富钾商陆原位活化制备活性炭及其表征[J].东北林业大学学报,2010,38(6):87-90.
    148)单洪涛,吴跃明,刘建新.秸秆饲料化技术的研究进展[J].中国饲料,2007,4:34.
    149)邓可蕴.21世纪我国生物质能发展战略[J].中国电力,2000,9(33):82-84.
    150)丁德才,李润生,李贵平,等.氯化铁在香港城市生活污水处理中的应用.全国水处理技术研讨会论文集,2007:287-290.
    151)丁凌云,蓝崇钰,林建平,等.不同改良剂对重金属污染农田水稻产量和重金属吸收的影响[J].生态环境,2006,15(6):1204-1208.
    152)杜彩艳,祖艳群,李元施.用石灰对Pb、Cd、Zn在土壤中的形态及大白菜中累积的影响[J].生态环境,2007,16(6):1710-1713.
    153)高利伟,王方浩,马林,等.河北省作物秸秆资源及其利用状况分析[J].安徽农业科学,2009,37(23):11079-11083.
    154)高祥照,马文奇,马常宝,等.中国作物秸秆资源利用现状分析[J].华中农业大学学报,2002,21(3):242-247.
    155)顾钢.生物质液化燃料的前景与应关注的问题[J].国际技术经济研究,2005,8(2):24-28.
    156)顾克军,张斯梅,许博,等.江苏省水稻秸秆资源量及其可收集量估算[J].生态与农村环境学报,2012,28(1):32-36.
    157)郭秀兰,黄鹤,周强,等.生物质焦油裂解催化剂研究进展[J].可再生能源,2004,113:9-13.
    158)国家环境保护局.GB11914-89,水质化学需氧量的测定-重铬酸盐法[S].北京:中国标准出版社,1991.
    159)杭世,陈吉宁.污泥处理处置的认识误区与控制对策[J].2004年国际污泥无害化经验交流会论文汇编.2004,1-5.
    160)郝蓉,彭少麟,宋艳暾,等.不同温度对黑碳表面官能团的影响[J].生态环境学报,2010,19(3):528-531.
    161)何玉凤,杨凤林,胡绍伟等.碱处理促进剩余污泥高温水解的试验研究[J].环境科学,2008,29(8):2261-2265.
    162)贺利民.炼油厂废水处理污泥热解制油技术研究[J].湘潭大学自然科学报,2001,23(2):74-76.
    163)胡佳佳,白向玉,刘汉湖,等.国内外城市剩余污泥处置与利用现状[J].徐州工程学院学报(自然科学版),2009,24(2):45-49.
    164)黄平,张佳宝,朱安宁等.黄淮海平原典型潮土的酸碱缓冲性能[J].中国农业科学,2009,42(7):2392-2396.
    165)贾铭勋,孙镜明.木炭的土地利用及碳汇效应[J].吉林林业科技,2009,38(5):45-55.
    166)江茂生,黄彪,陈学榕,等.木材炭化机理的FT-IR光谱分析研究[J].林产化学与工业,2005,25(2):16-20.
    167)姜军,徐仁扣,赵安珍.用酸碱滴定法测定酸性红壤的pH缓冲容量[J].土壤通报,2006,37(6):1247-1248.
    168)瞿广飞,宁平,李军燕,等.剩余污泥低温裂解催化剂的筛选研究[J].武汉理工大学学报,2007,11(29):44-46.
    169)李娣,陈建林,杨英杰,等.污水污泥制油技术研究进展[J].环境保护科学,2007,33(6):71-73,88.
    170)李久义,吴晓清,陈福泰,等.Fe3+对活性污泥絮体结构和生物絮凝作用的影响[J].环境科学学报,2003,5(23):582-587.
    171)李庆康,吴雷,刘海琴.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251-254.
    172)李伍刚,李瑞阳,郁鸿凌,等.生物质热解技术研究现状及其进展[J].能源研究与信息,2001,17(4):210-216.
    173)李艳霞,陈同斌,罗维,等.中国城市污泥有机质及养分含与土地利用[J].生态学报,2003,23(11):2464-2474.
    174)李洋洋,金宜英,李欢,等.碱热联合处理对剩余污泥干燥特性影响[J].高校化学工程学报,2011,25(5):877-881.
    175)廖艳芬,王树荣,骆仲泱,等.纤维素快速热裂解试验研究及分析[J].浙江大学学报:工学版,2003,37(5):582-587.
    176)廖艳芬,王树荣,骆仲泱,等.金属离子催化生物质热裂解规律及其对产物的影响[J].林产化学与工业,2005,25(2):25-30.
    177)刘晓光,董滨,戴翎翎,等.污泥中重金属的稳定化研究进展与去除方法简述[J].四川环境,2012,31(3):98-105.
    178)刘秀梅,聂俊华,王庆仁.植物对污泥的响应及其根系对重金属的活化作用[J].农业环境保护,2002,21(5):447-449.
    179)刘巽浩,高旺盛,朱文珊.秸秆还田的机理与技术模式[M].北京:中国农业出版社,2001,55-61.
    180)刘振刚.废弃生物质转化功能炭化材料的研究[D].北京:中国科学院,2009.
    181)刘志坤,叶黎佳.生物质炭化材料制备及性能测试[J].生物质化学工程,2007,41(5):28-32.
    182)罗爱香,刘玉环,万益琴,等.催化剂对竹废料微波裂解的影响[J].福建林业科技.2008,2(35):82-86.
    183)罗凯,陈汉平,王贤华,等.生物质焦及其特性[J].可再生能源,2007,25(1):17-22.
    184)煤炭科学研究总院.GBT212-2008,煤的工业分析方法[S].北京:中国标准出版社,2008.
    185)米铁,陈汉平,高斌,等.生物质的流化床热解实验研究[J].华中科技大学学报(自然科学版),2005,33(9):71-74.
    186)潘碌亭,王键束,玉宝等.污泥减量化与资源化研究进展[J],环境污染与防治,2008,30(4):73-77.
    187)彭军霞,赵增立,李海滨,等.生物质焦制备条件对甲苯裂解特性的影响[J].农业工程学报,2010,26(6):251-256.
    188)全国农业技术推广服务中心.中国有机肥料资源.北京:中国农业出版社,1999,121-139.
    189)荣湘民,宋海星,何增明.几种重金属钝化剂及其不同添加比例对猪粪堆肥重金属(As、Cu、 Zn)形态转化的影响[J].水土保持学报,2009,23(4):136-141.
    190)史明,胡林潮,黄兆琴,等.生物质炭的加入对土壤吸附菲能力以及玉米幼苗对菲吸收量的影响[J].农业环境科学学报,2011,30(5):912-916.
    191)宋秀杰.我国农作物秸秆资源[M].北京:化学工业出版社,2000,125.
    192)孙雪萍,王安亭,李新豪等.热水解法处理污泥过程中重金属的迁移规律[J].中国给水排水,2010,26:66-72.
    193)孙颖.污泥中重金属性质分析及处理方法试验研究[J].江苏环境科技,2003,16(4):4-6.
    194)孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,2(126):78-82.
    195)谭洪,王树荣,骆仲泱,等.木质素快速热裂解试验研究[J].浙江大学学报(工学版),2005,39(5):710-714.
    196)谭洪,王树荣,骆仲映,等.金属盐对生物质热解特性影响试验研究[J].工程热物理学报,2005,26(5):742-744.
    197)万晓,张妍,张超.水热技术在污泥减量化和资源化中的应用[J].水工业市场,2010,8:55-57.
    198)王白雪.改性粉煤灰钝化污泥重金属及其应用研究[D],重庆大学硕士学位论文,2007.
    199)王凯军,贾立敏.城市污水生物处理新技术开发与应用[J].北京:化学工业出版社,2001.
    200)王璐,肖健.农作物秸秆利用技术现状及发展对策[J].安徽农学通报,2010,16(15):166-168.
    201)王睿坤,刘建忠,虞育杰,等.城市污泥特性及其干化技术[J].给水排水,2010,36(增刊):153-158.
    202)王硕,鲍建国,刘成林.城市污泥特性研究与园林绿化利用前景分析[J].环境科学与技术,2010,33(6E):238-247.
    203)王亚娥,冯娟娟,李杰.不同Fe(Ⅲ)对活性污泥异化铁还原及除磷影响研究[J].中国环境科学,2013,33(6):993-998.
    204)王治军,王伟.剩余污泥的热水解试验[J].中国环境科学,2005,25(增刊):56-60.
    205)魏赛金,曾研华,倪国荣,等.江西省水稻秸秆综合利用现状[J].科技广场,2012,12:179-185.
    206)温俨,武果香,崔桂芬.用BOD-COD相关原理分析城市废水的可生化性[J].科技情报开发与经济,1999,3:21-22,61.
    207)吴倩芳,张付申.水热炭化废弃生物质的研究进展[J].环境污染与防治,2012,34:70-74.
    208)武伟男.污水污泥热解技术研究进展[J].环境保护与循环经济,2009,29(12):50-52.
    209)武卫荣,崔淑贞,高文超.生物质气化技术的研究进展[J].化工新型材料,2012,40(12):22-24.
    210)夏洲,王伟,王治军,等.城市污泥低压氧化的中试研究[J].哈尔滨商业大学学报(自然科学版),2005,21(2):153-156.
    211)辛芬.预处理对生物质热解特性影响的试验研究[D].武汉:华中科技大学,2006.
    212)徐加庆.粉煤灰钝化城市污泥中重金属赋存形态及其生物有效性的研究[D].华侨大学,2012.
    213)许洁,颜涌捷,李文志,等.生物质裂解机理和模型(Ⅰ)-生物质裂解机理和工艺模式[J].化学与生物工程,2007,24(12):1-4.
    214)许美芝,申哲民,董宇,等.水热污泥渣活性炭的制备及其应用[J].净水技术,2012,31(4):114-118.
    215)荀锐,王伟,乔玮,等.城市污泥处理现状与强化脱水的水热减量化技术[J].环境卫生工程,2008,16(2):28-32.
    216)杨昌炎,姚建中,吕雪松,等.生物质中K+、Ca2+对热解的影响及机理研究[J].太阳能学报,2006,27(5):496-502.
    217)杨连玉,张国梁,赵颖彩,等.玉米秸秆利用途径及其在农业生态系统中的综合利用对策[J].饲料工业,2005,26(23):42-45.
    218)杨修春,韦亚南,李伟捷.焦油裂解用催化剂的研究进展[J].化工进展,2007,26(3):326-330.
    219)杨中平,郭康权,杨林青,等.玉米秸秆的综合利用技术[J].国土与自然资源研,1997(1):76-79.
    220)姚志彪,李云全.应用生物质气化技术实现农业废弃物资源化[J].能源研究与利用,2005,3:35-37.
    221)易四勇,王先友,李娜,等.活性炭活化处理技术的研究进展[J].材料导报,2008,22(3):72-75.
    222)余杰,田宁宁,王凯军,等.中国城市污水处理厂污泥处理、处置问题探讨分析[J].环境工程学报,2007,1(1):82-86.
    223)袁金华,徐仁扣.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010,26(5):472-476.
    224)翟修彩,刘明,李忠佩,等.不同添加剂处理对水稻秸秆腐解效果的影响[J].中国农业科学,2012,45(12):2412-2419.
    225)赵丽媛,吕剑明,李庆利,等.活性炭制备及应用研究进展[J].科学技术与工程,2008,8(11):2914-2919.
    226)钟哲科,李伟成,刘玉学,等.竹炭的土壤环境修复功能[J].竹子研究汇刊,2009,28(3):5-9.
    227)周航,曾敏,刘俊,等.施用碳酸钙对土壤铅、镉、锌交换态含量及在大豆中累积分布的影响[J].水土保持学报,2010,24(4):123-126.
    228)周立祥,沈其荣,陈同斌,等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态[J].环境科学学报,2000,20(3):269-274.
    229)朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700