用户名: 密码: 验证码:
基于仿射变换的曲线曲面约束变形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几何造型是CAD/CAM、CAGD和CG等领域的重要研究内容,曲线曲面变形技术作为几何造型的重要组成部分,是数字化产品快速开发和创新设计的关键技术之一,灵活简便的变形技术对缩短产品设计周期、提高建模效率具有重要意义。本文从变形的本质出发,结合仿射变换思想,对曲线曲面约束变形技术进行了深入研究,主要研究内容和成果如下:
     针对参数曲线约束变形,提出了一种伸缩矩阵作用下的参数曲线约束变形算法。首先利用多项式定义了一种带参数的伸缩因子,它既保持了现有伸缩因子的特性,还具有区间峰值性。然后利用由伸缩因子构成的变形矩阵作用于待变形曲线方程,直接对待变形曲线进行仿射变换,从而得到约束变形和周期变形结果。该算法简单易操作,无需借助其它辅助工具,在控制变形范围、变形边界处的光滑度、变形方向和变形幅度等方面有较好的效果,且对Bézier、B样条、NURBS曲线的作用结果仍可表示成其原有形式。
     提出了一种伸缩矩阵作用下的参数曲面约束变形算法,并进一步给出了参数曲面的周期变形算法。利用由多项式伸缩因子构成的变形矩阵直接作用于待变形曲面方程,实现了基于点控制的参数曲面一般约束变形。该算法中的各变形控制参数均具有明确的几何意义,能够直观有效地控制变形区域、峰值区域、伸缩幅度、边界光滑度等。同时将变形区域由圆域推广至矩形域,从而使曲面变形的效果更加丰富。通过引入脊曲线的概念,利用脊曲线对曲面进行控制变形,实现了参数曲面的线约束变形,并在此基础之上结合压缩平移的方法,实现了参数曲面的周期控制变形。实例表明,该算法简单直观且便于操作,无需任何辅助工具,可灵活地对参数曲面进行特征造型设计。
     将伸缩矩阵作用下的参数曲面约束变形算法推广至网格曲面,给出了一种参数曲面驱动的网格模型局部约束变形算法。通过将待变形网格曲面参数化到规范参数域上,并对待变形网格曲面进行B样条曲面重建,建立网格曲面与参数曲面的映射,然后运用伸缩矩阵作用下的参数曲面约束变形方法对参数曲面进行约束变形,进而根据映射关系实现网格曲面的约束变形。通过引入不同的伸缩因子,实现了网格模型的点约束、线约束局部变形及周期变形。与传统的网格曲面变形方法相比,本文算法几何意义明确、易于操作,能精确控制变形范围和变形幅度,在变形区域与非变形区域之间实现较为光滑的过渡。
     结合仿射变换思想和广义元球变形技术,研究了基于空间变换的网格模型约束变形算法。通过给定变形约束源和变形目标,并利用带势函数的约束变形模型作用于网格的骨架或直接作用于网格顶点,实现了骨架驱动的网格模型约束变形和基于测地距离的网格模型约束变形。前者通过创建与网格模型拓扑关系一致的骨架模型,进而由骨架模型的约束变形来带动网格模型发生变形;后者则是根据变形区域内网格顶点与约束源之间的测地距离,来确定各点处的变形权值,从而直接对网格模型进行约束变形。两者均可实现网格模型的旋转、平移、缩放变形及其复合变形,都能很好地满足预先设定的约束要求,且操作简单直观。前者更适用于具有明显骨架语义的网格模型大变形情形,但变形约束源只能是一点;而后者则对一般网格模型均适用,且变形约束源可以是点、线或面。
Geometric modeling is an important research content in areas of CAD/CAM, CAGD, CG and soon. As an important part of geometric modeling, deformation technique of curves and surfaces is oneof the key techniques in the rapid development and innovative design of digital products. A flexibleand handy deformation technique is extremely significant to shorten the design cycle of products andimprove the efficiency of modeling. Based on the essence of the deformation and the idea of affinetransformation, research on constrained deformation technology of curves and surfaces is deeplystudied in this paper. The major contents and achievements of the study are as follows:
     In order to realize the constrained deformation of parametric curves, a new constraineddeformation algorithm based on scaling matrix is proposed for parametric curves. Firstly, constructinga new polynomial scaling factor with parameters, the new factor not only brings the excellence of theexisted scaling factors, but can also get its maximum in the region. And then, multiplying the equationof the curve by the scaling matrix, the constrained deformation and periodic deformation of the curvecan be achieved. The new algorithm is simple and easy to control without any auxiliary tools. It alsocan achieve good results in controlling the region of deformation, the amplitude of deformation, thedirection of deformation, the continuity and smoothness of junction between deformed andundeformed portions. The closure property can be kept in the deformations of Bézier curves, B-splinecurves and NURBS curves.
     According to scaling matrix, a new constrained deformation algorithm for parametric surfaces isproposed. On this basis, a periodic deformation algorithm is presented. By applying scaling matrix tothe pending equation of the surface, the algorithm can achieve the point-constraint deformation of thesurface. Every certain control parameter in the algorithm has its own geometric property. The newalgorithm can intuitively and effectively control the region of deformation, the region of peak value,the amplitude of deformation, the smoothness of boundary, etc. In order to obtain more deformationeffects of parametric surfaces, the region of deformation can be extended from circle area to rectanglearea. With the introduction of the ridge curves, the line-constraint deformation of parametric surfacescan be achieved by the ridge curves. Besides, the periodic deformation of parametric surfaces can alsobe achieved. The example proves that the algorithm is simple, intuitive and easy to control withoutany auxiliary tools. The deformation algorithm can flexibly realize the feature modeling design ofparametric surfaces.
     Extending from the constrained deformation algorithm for parametric surfaces, a new localconstrained deformation algorithm driven by parametric surfaces is proposed for triangular meshsurfaces. The mapping between the mesh surface and the parametric surface can be created after thetriangular mesh surface is parameterized to a specification parameter domain. And then, a B-splinesurface could be reconstructed from the triangular mesh surface. The constrained deformation of themesh surface can be achieved through the mapping and the constrained deformation method ofparametric surfaces. Based on the above method, the periodic deformation method and localconstrained deformation method with point-constraint and line-constraint are fulfilled by introducingsome different scaling factors. Compared with traditional deformation methods of triangular meshsurfaces, the new algorithm has definitely geometric meanings, and is easy to operate. At the sametime, it can exactly control the region of deformation, the amplitude of deformation and thesmoothness of boundary, etc.
     Combining with the affine transformation and the generalized metaball deformation technology,a constrained deformation algorithm for mesh models based on space transformation is carried out. Byspecifying a series of constraint sources and targets, applying the constrained deformable model withpotential function to the skeleton model or vertexes of the mesh, two constrained deformationalgorithms can be achieved. One is based on skeleton-driven, and the other is based on geodesicdistance. The former constructs a skeleton model which has the same topological relation to the meshmodel, and then the deformation of the mesh model can be obtained by what has built. The latterobtains the deformation weights of the vertices in the deformation region, which can be determined bythe geodesic distances between the vertices and the constraint sources, and then the constraineddeformation of the mesh model can be achieved directly. Both of the two algorithms are simple andintuitive, and can commendably meet the need of specified geometric constraints and flexibly realizethe model deformation such as rotation, translation, scaling and other operations. The former is moresuitable for the large deformation of the mesh models with obvious skeleton features, but theconstraint source is just limited to one point. The latter is suitable for all mesh models, and theconstraint sources may consist of points, lines and faces.
引文
[1]蔡青,高光焘. CAD/CAM系统的可视化、集成化、智能化、网络化.西安:西北工业大学出版社,1996.
    [2]王隆太.机械CAD/CAM技术.北京:机械工业出版社,2001.
    [3]朱心雄.自由曲线曲面造型技术.北京:科学出版社,2000.
    [4]王国瑾,汪国昭,郑建民.计算机辅助几何设计.北京:高等教育出版社,2001.
    [5]施法中.计算机辅助几何设计与非均匀有理B样条.北京:北京航空航天大学出版社,1994.
    [6]苏步青,刘鼎元.计算几何.上海:上海科学技术出版社,1981.
    [7]孙家广,陈玉健,辜凯宁.计算机辅助几何造型技术.北京:清华大学出版社,1990.
    [8]周蕴时,苏志勋,奚勇江,等. CAGD中的曲线曲面.长春:吉林大学出版社,1993.
    [9] Schoenberg I J. Contributions to the problem of approximation of equidistant data by analyticfunctions. Quarterly Applied Mathematics,1946,4:45~99,112~114.
    [10] Ferguson J C. Multivariable curve interpolation. Journal of ACM,1964,11(2):221~228.
    [11] Coons S A. Surfaces for computer-aided design of space figures. MAC-M-255, MIT, January1964.
    [12] Coons S A. Surfaces for computer-aided design of space forms. MAC-TR-41, MIT, June1967.
    [13] Bézier P E. Numerical Control-Mathematics and Applications (Translated by Forrest A R). JohnWiley and Sons, London,1972.
    [14] Bézier P E. Mathematical and practical possibilities of UNISURF, in: Barnhill R E andRiesenfeld R F, eds., Computer Aided Geometric Design. Academic Press,1974,127~152.
    [15] Bézier P E. The Mathematical basis of the UNISURF CAD system. Butterworth, England,1986.
    [16] Forrest A R. Interactive interpolation and approximation by Bézier polynomials. ComputerJournal,1972,15(1):71~79.
    [17] Gordon W J, Riesenfeld R F. Bernstein-Bézier methods for the computer-aided design offree-form curves and surfaces. Journal of ACM,1974,21(2):293~310.
    [18] de Boor C W. On calculation with B-spline. Journal of Approximation Theory,1972,6:50~62.
    [19] Cox M G. The numerical evaluation of B-splines. Journal of the Institute of Mathematics andIts Applications,1972,10:134~149.
    [20] Gordon W J, Riesenfeld R F. B-spline curves and surfaces. In: Barnhill R E and Riesenfeld R F,eds., Computer Aided Geometric Design, Academic Press,1974:95~126.
    [21] Boehm W. Inserting new knots into B-spline curves. Computer Aided Design,1980,12(4):199~201.
    [22] Prautzsch H. Degree elevation of B-spline curves. Computer Aided Geometric Design,1981,1:193~193.
    [23] Versprille K J. Computer-aided design applications of the rational B-spline approximation form
    [D]. New York: Syracuse University,1975.
    [24] Tiller W. Rational B-spline for curves and surfaces representation. IEEE Computer Graphicsand Applications,1983,3(6):61~69.
    [25] Piegl L, Tiller W. Curve and surface constructions using rational B-spline. Computer AidedDesign,1987,19(9):485~498.
    [26] Piegl L. Modifying the shape of rational B-spline, Part1: Curves. Computer Aided Design,1989,21(8):509~518.
    [27] Piegl L. Modifying the shape of rational B-spline, Part2: Surfaces. Computer Aided Design,1989,21(9):538~546.
    [28] Vergeest S M. CAD Surface data exchange using STEP. Computer Aided Design,1991,23(4):269~281.
    [29] Sederberg T W. Techniques for cubic algebraic surfaces, Part One. IEEE Computer Graphicsand Applications,1990,10(4):14~25.
    [30] Sederberg T W. Techniques for cubic algebraic surfaces, Part Two. IEEE Computer Graphicsand Applications,1990,10(5):12~21.
    [31]莫堃.基于隐式函数的曲面重构方法及其应用,[博士学位论文].武汉:华中科技大学,2010.
    [32]格列菲斯P(Griffiths P).代数曲线.北京:北京大学出版社,1985.
    [33] Sederberg T W. Piecewise algebraic surface patches. Computer Aided Geometric Design,1985,2:53~59.
    [34] Patrikalakis N M, Kriezis G A. Representation of piecewise continuous algebraic surfaces interms of B-splines. The Visual Computer,1989,5:360~374.
    [35] Bajaj C. Surface fitting using implicit algebraic surface patches. In: SIAM Topics in surfacemodeling (Hans Hagen eds.),1992:23~52.
    [36] Bajaj C, Ihm I.C1smoothing of polyhedra with implicit algebraic splines. Proceeding ofSIGGRAPH’92, Computer Graphics,1992,26(2):79~88.
    [37] Bajaj C, Ihm I. Algebraic surface design with Hermite interpolation. ACM Transactions onGraphics,1992,11(1):61~91.
    [38] Bajaj C, Ihm I, Warren J. Exact and least-Square approximateG kfitting of implicit algebraicsurfaces. ACM Transactions on Graphics,1992.
    [39] Bajaj C, Ihm I, Warren J. Higher-order interpolation and least-square approximate usingimplicit algebraic surfaces. ACM Transactions on Graphics,1993,12(4):327~347.
    [40]张宏鑫.复杂形体建模与绘制的离散方法研究,[博士学位论文].浙江:浙江大学,2002.
    [41] Blinn J F. A generalization of algebraic surface drawing. ACM Transaction on Graphics,1982,1(3):235~256.
    [42] Nishimura H, Hirai M, Kawai T, et al. Object modeling by distribution function and a methodof image generation. Transactions of the Institute of Electronics and Communication Engineersof Japan,1985, J68-D(4):718~725.
    [43] Wyvill G, McPheeters C, Wyvill B. Data structure for soft objects. The Visual Computer,1986,2:227~234.
    [44] Xu J B, Song H C, Wu L D, et al. A seamless representation of multi-scale clouds. Proceedings ofthe2009Fifth International Joint Conference on INC, IMS and IDC, Piscataway: IEEE,2009:1255~1260.
    [45] Goldman R N, Sederberg T W, Anderson D C. Vector elimination: A technique for theimplicitization, inversion, and intersection of planar parametric rational polynomial curves.Computer Aided Geometric Design,1984,1:327~356.
    [46] Sederberg T W, Chen F L. Implicitization using moving curves and surfaces. Proceedings of the22nd Annual Conference on Computer Graphics and Interactive Techniques, New York: ACM,1995:301~308.
    [47]陈长松.分片代数曲面造型的研究,[博士学位论文].合肥:中国科学技术大学,2000.
    [48] Turk G, O’Brien J. Shape Transformation Using Variational Implicit Functions. Proceedings ofthe26th Annual Conference on Computer Graphics and Interactive Techniques, New York:ACM,1999:335~342.
    [49] Barr A H. Global and local deformations of solid primitives. Computer Graphics,1984,18(3):21~30.
    [50] Ugur Güdükbay, Bülentüzgüc. Free-form solid modeling using deformations. ComputerGraphics,1990,14(3/4):491~500.
    [51] Watt A, Watt M. Advanced animation and rendering techniques: theory and practice. Boston:Addison-Wesley,1992.
    [52]金小刚,鲍虎军,彭群生.一种新的基于factor curve的变形控制方法.软件学报,1996,7(9):537~541.
    [53] Sederberg T W, Parry R. Free-form deformations of solid geometric models. ComputerGraphics,1986,20(4):151~160.
    [54] Griessmair J, Purgathofer W. Deformation of solid with trivariate B-spline. Proceeding ofEurographics’89, North-Holland: Eurographics Association,1989:137~148.
    [55] Kalra P, Mangil A, Thalmann N M, et al. Simulation of facial muscle action based on rationalfree-form deformation. Computer Graphics Forum,1992,11(3):59~69.
    [56] Lamousin H J, Waggenspack W N. NURBS-based free-form deformation. IEEE ComputerGraphics and Applications,1994,14(6):59~65.
    [57] Coquillart S. Extended free-form deformation: A sculpting tool for3D geometric modeling.Computer Graphics,1990,24(4):187~196.
    [58] MacCracken R, Joy K I. Free-form deformations with lattices of arbitrary topology.Proceedings of the23rd Annual Conference on Computer Graphics and Interactive Techniques,New York: ACM,1996:181~188.
    [59] Hus W M, Hughes J F, Kaufman H. Direct manipulation of free-form deformation. ComputerGraphics,1992,26(2):177~184.
    [60] Hu S M, Zhang H, Tai C L, et al. Direct manipulation of FFD: Efficient explicitsolutions anddecomposable multiple point constraints. The Visual Computer,2001,17(6):370~379.
    [61]张慧,孙家广.基于NURBS权因子调整的FFD直接操作.计算机学报,2002,25(9):910~915.
    [62] Lazarus, Coquillart S, Jancene P. Axial deformation: An intuitive technique. Computer AidedDesign,1994,26(8):607~613.
    [63] Chang Y K, Rockwood A P. A generalized de casteljua approach to3D free-form deformation.Proceedings of the21st Annual Conference on Computer Graphics and Interactive Techniques,New York: ACM,1994:257~260.
    [64] Singh K, Fiume E. Wires: A geometric deformation technique. Computer Graphics,1998,32(3):405~414.
    [65] Kho Y, Garland M. Sketching mesh deformations. Proceedings of the2005Symposium onInteractive3D Graphics and Games, New York: ACM,2005:147~154.
    [66]王隽,张宏鑫,许栋,等.勾画式泊松网格编辑.计算机辅助设计与图形学学报,2006,18(11):1723~1729.
    [67] Feng J Q, Ma L Z, Peng Q S. New free-form deformation through the control of parametricsurfaces. Computer&Graphics,1996,20(4):531~539.
    [68] Chen B Y, Ono B, Johan H, et al.3D model deformation along a parametric surface.Proceedings of International Conference on Visualization, Imaging and Image Processing,Berlin: Springer,2002:282~287.
    [69] Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. ACMTransactions on Graphics,2005,24(3):561~566.
    [70]张湘玉,廖文和,刘浩.基于细分曲面的泊松网格编辑.计算机辅助设计与图形学学报,2010,22(1):76~84.
    [71]王仁芳,许秋儿,汪沁,等.基于最小二乘网格的模型变形算法.计算机辅助设计与图形学学报,2010,22(5):777~783.
    [72] Wang Xiaoping, Ye Zhenglin, et al. Space Deformation Based on Extention Factor ofParametric Surfaces. International Journal of CAD/CAM,2001,1(3):39~58.
    [73] Wang Xiao-ping, Ye Zheng-lin, LI Hong-da, et al. The Technique of Free-Form DeformationBased on Extension Function for Planar Parametric Curve. Journal of Engineering Mathematics,2002,19(1):115~119.
    [74] Wang Xiaoping, Ye Zhenglin, et al. Shape Modification and Deformation of ParametricSurfaces. Computer Aided Drafting, Design and Manufacture,2002,12(1):1~7.
    [75] Wang X P, Zhou R R, Ye Z L, et al. Shape modification of parametric curves. Chinese Journalof Aeronautics,2004,17(4):251~259.
    [76]王小平.参数曲线曲面变形技术及其应用研究,[博士学位论文].西安:西北工业大学,2002.
    [77] Wang X P, Liu S L, Zhang L Y. Constructing surface features through deformaitong.International Journal of Image and Graphics,2010,10(1):41-56.
    [78] Borrel P, Bechmann D. Deformation of N-dimensional objects. International JournalComputational Geometry and Applications,1991,1(4):427~453.
    [79] Borrel P, Rappoport A. Simple Constrained Deformation for Geometric modeling andInteractive Design. ACM Transaction on Graphics,1994,13(2):137~155.
    [80]金小刚,彭群生.基于广义元球的一般约束变形.软件学报,1998,9(9):677~682.
    [81] Jin X G, Li Y F, Peng Q S. General constrained deformation based on generalized meatballs.Computer&Graphics,2000,24(2):219~231.
    [82] Hu S M, Zhou D W, Sun J G. Shape modification of NURBS curves via constrainedoptimization. Proceeding of CAD/Graphics’99, Shanghai: Wen Hui Publishers,1999:958~962.
    [83] Hu S M, Zhu X, Sun J G. Shape modification of NURBS surfaces via constrained optimization.Journal of software,2000,11(12):1567~1571.
    [84] Hu S M, Li Y F, Ju T, et al. Modifying the shape of NURBS surfaces with geometric constraints.Computer Aided Design,2001,33(12):903~912.
    [85] Zhou Y, Jin X G, Feng J Q. Constrained deformations based on convolution surfaces. Journal ofComputational Information Systems,2006,2(2):513~520.
    [86]栗雷雷,莫国良,张三元.一类交互式网格曲面编辑工具的设计.计算机应用研究,2004,21(12):149~151.
    [87]张新宇,张三元,叶修梓.交互式自由雕刻变形.计算机辅助设计与图形学学报,2005,17(11):2420~2426.
    [88]张慧,孙家广.一种面片约束的变形技术.计算机辅助设计与图形学学报,2003,15(4):389~392.
    [89]秦绪佳,王青,华炜,等.网格模型的局部编辑算法.计算机辅助设计与图形学学报,2004,16(4):444~448.
    [90] Terzopoulos D, Platt J, Barr A. Elastically deformable models. Computer Graphics,1987,24(4):205~214.
    [91] Terzopoulos D, Witkin A. Physically based models with rigid and deformable components.IEEE Computer Graphics and Applications,1988,8(6):41~51.
    [92] Terzopoulos D, Fleischer K. Modeling inelastic deformation: visoelasticity, plasticity, fracture.Computer Graphics,1988,22(4):269~278.
    [93] Terzopoulos D, Platt J, Fleischer K. Heating and melting deformation models. Proceedings ofGraphics Interface’89,1989:219~226.
    [94] Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form shapedesign. Computer Graphics,1991,25(4):257~266.
    [95] Celniker G, Welch W. Linear constraints for deformable B-spline surface. Proceedings of the1992Symposium on Interactive3D Graphics, New York: ACM,1992,61~68.
    [96] Terzopoulos D, Qin H. Dynamic NURBS with geometric constraints for interactive sculpting.ACM Translations on Graphics,1994,13(2):103~136.
    [97] Qin H, Terzopoulos D. Dynamic NURBS swung surfaces for physics-based shape design.Computer Aided Design, l995,27(2):111~127.
    [98] Qin H, Terzopoulos D. Triangular NURBS and their dynamic generalization. Computer AidedGeometric Design,1997,14(4):325~347.
    [99] Qin H, Mandal C, Vemuri B C. Dynamic Catmull-Clark subdivision surface. Visualization andComputer Graphics,1998,4(3):215~229.
    [100]关志东,经玲,宁涛,等.基于物理模型的变形曲线曲面的研究及应用.计算机学报,1996,19(2):188~194.
    [101] Guan Z D, Jing L, Ning T, et al. Study and application of physics-based deformable curves andsurfaces. Computer&Graphics,1997,21(3):305~313.
    [102]经玲,席平,唐容锡.有限元法在变形曲线曲面造型中的应用.计算机学报,1998,21(3):245~251.
    [103]李永林,王启付,钟毅芳,等.基于物理的准D-NURBS造型方法.计算机仿真,1998,15(2):46~50.
    [104] Wang Z G, Zhou L S, Wang X P. Direct manipulation of B-spline surfaces. Chinese Journal ofMechanical Engineering,2005,18(1):103~108.
    [105] Wang Z G, Wang X P, Bao Y D, et al. Shape modification by beam model in FEM. ChineseJournal of Aeronautics2010,23(2):246~251.
    [106] X G Cheng. Shape modification of B-spline surface via external loads. Journal of MechanicalEngineering,2011,47(9):146~150.
    [107]程仙国,刘伟军,卞宏友.基于外载荷的B样条曲面变形.机械工程学报,2011,47(09):146~150.
    [108]程仙国,刘伟军.外载荷的B样条曲线变形.中国图像图形学报,2011,16(5):898~902.
    [109] Yu C S, Zhou L S, Wang Z G, et al. Shape modification of B-spline surfaces based on rigidframe via geometric constraint optimization. Proceedings of the conference on intelligentHuman-machine Systems and Cybernetices, Hangzhou: IEEE,2011:120~124.
    [110]于超升.基于刚架模型的复杂多曲面光滑协调变形算法研究,[硕士学位论文].南京:南京航空航天大学,2012.
    [111]李运平,王志国,王海峰,等.基于有限元刚架模型的骨架驱动网格变形算法.计算机辅助设计与图形学学报,2011,23(10):1700~1706.
    [112]李运平,周来水,王琳,等.刚架模型驱动网格曲面保特征变形.南京航空航天大学学报,2012,44(4):526~531.
    [113] Fowler B, Bartels R. Constraint-based curve manipulation. IEEE Computer Graphics andApplications,1993,13(5):43~49.
    [114] Au C K, Yuen M M F. Unified approach to NURBS curves shape modification. Computer AidedDesign,1995,27(2):85~93.
    [115] Sánchez Reyrs J. A simple technique for NURBS shape modification. IEEE Trans ComputerGraphics&Applications,1997,17(1):52~59.
    [116]蒋大为,缑秦东.有理Bézier曲线的权因子计算.航空学报,1993,14(11):666~669.
    [117]张乐年,周来水,周儒荣. NURBS曲线曲面的可控修形研究.工程图学学报,1995,16(1):21~27.
    [118]王志国.曲线曲面形状修改和变形关键技术研究,[博士学位论文].南京:南京航空航天大学,2006.
    [119]董洪伟.网格变形综述.中国图象图形学报,2011,16(12):2095~2014.
    [120] Magnenat-Thalmann N, Laperrire R, Thalmann D. Joint-dependent local deformations for handanimation and object grasping. Proceedings of Graphics Interface’88, Edmonton: CanadianMan-Computer Communication Society,1988:26~33.
    [121] Capell S, Green S, Curless B, et al. Interactive skeleton-driven dynamic deformations. ACMTransactions on Graphics,2002,21(3):586~593.
    [122] Yoshizawa S, Belyaev A G, Seidel H P. Free-form skeleton driven mesh deformations.Proceedings of the eighth ACM Symposium on Solid Modeling and Applications, New York:ACM,2003:247~253.
    [123] Yan H B, Hu S M, Martin R R, et al. Shape Deformation Using a Skeleton to Drive SimplexTransformations. IEEE Transactions on Visualization and Computer Graphics,2008,14(3):693~706.
    [124]许秋儿,谭光华,张三元,等.保持几何特征的均值骨架子空间网格变形.计算机辅助设计与图形学学报,2009,21(3):289~294.
    [125]许秋儿.网格变形技术研究,[博士学位论文].杭州:浙江大学,2009.
    [126]胡事民,杨永亮,来煜坤.数字几何处理研究进展.计算机学报,2009,32(8):1451~1469.
    [127] Taubin G. A signal processing approach to fair surface design. Proceedings of the22nd AnnualConference on Computer Graphics and Interactive Techniques, New York: ACM,1995:351~358.
    [128] Zorin D, Schr der P, Sweldens W. Interactive multiresolution mesh editing. Proceedings of the24th Annual Conference on Computer Graphics and Interactive Techniques, New York: ACM,1997:259~268.
    [129]张亚萍,熊华,姜晓红,等.大型网格模型简化和多分辨率技术综述.计算机辅助设计与图形学学报,2010,22(4):559~568.
    [130]张湘玉.基于细分的曲线曲面变形技术研究,[博士学位论文].南京:南京航空航天大学,2010.
    [131] Yu Y, Zhou K, Xu D, et al. Mesh editing with poisson-based gradient field manipulation. ACMTransactions on Graphics,2004,23(3):644~651.
    [132] Rhaleb Zayer, Christian R ssl, Z K, et al. Harmonic guidance for surface deformation.Computer Graphics Forum,2005,24(3):601~609.
    [133] Alexa M. Differential coordinates for local mesh morphing and deformation. The VisualComputer,2003,19(2):105~114.
    [134] Lipman Y, Sorkine O, Cohen-Or D, et al. Differential coordinates for interactive mesh editing.Proceedings of the Shape Modeling International2004. Genova: IEEE,2004:181~190.
    [135] Sorkine O, Cohen-Or D, Lipman Y, et al. Laplacian surface editing. Proceedings of the2004Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, New York: ACM,2004:175~184.
    [136] Feguson J. Multivariable curve interpolation. Journal of Association for Computing Machinery,1964,11(2):221~228.
    [137]王拉柱,左万利,唐泽圣.曲面转换中的一个定理.清华大学学报(自然科学版),1998,38(3):16~19.
    [138] Sun Y F, Nee A Y, Lee K S. Modifying free-formed NURBS curves and surfaces for offsettingwithout local self-intersection. Computer Aided Design,2004,36(12):1161~1169.
    [139] Filip D, Magedson R, Markot R. Surface algorithms using bounds on derivatives. ComputerAided Geometric Design,1986,3(3):295~311.
    [140] Piegl L A, Tiller W. Computing Offsets of NURBS curves and surfaces. Computer AidedDesign,1999,31(3):147~156.
    [141]朱宁,魏生民,杨晓强等.自由变形统一模型研究.现代制造工程,2006:44~46.
    [142]赵红星,叶正麟,宋文龙,等.基于仿射变换和B样条的参数曲面变形方法.西北工业大学学报,2006(24):384~388.
    [143]周正华,叶正麟,罗卫民.基于伸缩矢量函数的平面参数曲线的插值变形.工程图学学报,2006(2):139~143.
    [144]刘植. CAGD中基于Bézier方法的曲线曲面表示与逼近,[博士学位论文].合肥:合肥工业大学,2009.
    [145] Tutte W. How to draw a graph. Proceedings of the London Mathematical Society,1963,3(13):743~768.
    [146] Floater M S. Parameterization and smooth approximation of surface triangulations. CAGD,1997,14(3):231~250.
    [147] Floater M S. Mean value coordinates. Computer Aided Geometric Design,2003,20(1):19~27.
    [148]神会存.高质量工程曲面的重建与曲面品质检查分析,[博士学位论文].南京:南京航空航天大学,2005.
    [149] Xiao-Ping Wang, Wei Wei. Projecting curves onto free-form surfaces. International Journal ofComputer Applications in Technology,2010,37(2):153~159.
    [150]黄宣国.空间解析几何与微分几何.上海:复旦大学出版社,2003:98~100.
    [151]罗崇善.高等几何.北京:高等教育出版社,1999:18~19.
    [152]孙家广.计算机图形学.北京:清华大学出版社,1998:361~365.
    [153] Nishita T, Nakamae E. A method for displaying metaballs by using Bézier clipping. ComputerGraphics Forum,1994,13(3):271~280.
    [154] Bao Hujun, Jin Xiaogang, Peng Qunsheng. Point constrained deformations based on metaballs.Proceedings of CAD/Graphics'97, Shenzhen: International Academic Publishers,1997:327~331.
    [155]李凌丰.基于Metaball约束的曲面几何变形研究及应用,[博士学位论文].浙江:浙江大学,2005.
    [156]李凌丰,谭建荣,张谦. Metaball势函数的若干性质研究.浙江大学学报,2004,31(4):404~408.
    [157] Capell S, Green S, Curless B, et al. Interactive skeleton-driven dynamic deformations. ACMTransactions on Graphics (TOG),2002,21(3):586~593.
    [158]周艳,刘圣军,金小刚,等.基于测地距离的多边形网格模型约束变形.软件学报,2007,18(6):1543~1552.
    [159] Sharir M, Schorr A. On shortest path in polyhedral spaces. SIAM Journal on Computing,1986,15(1):193~215.
    [160] Chen J D, Han Y J. Shortest paths on a polyhedron, part I: Computing shortest paths.International Journal of Computational Geometry&Applications,1996,6(2):127~144.
    [161] Kapoor S. Efficient computation of geodesic shortest paths. Proceedings of the31st AnnualACM Symposium on Theory of Computing, New York: ACM,1999:770~779.
    [162]肖春霞,冯结青,缪永伟,等.基于Level Set方法的点采样曲面测地线计算及区域分解.计算机学报,2005,28(2):250~258.
    [163] Kimmel R, Sethian J A. Computing geodesic paths on manifolds. Proceedings of the NationalAcademy of Sciences,1998,95(15):8431~8435.
    [164] Kanai T, Suzuki H. Approximate shortest path on a polyhedral surface and its applications.Computer Aided Design,2001,33(11):801~811.
    [165] Novotni M, Klein R. Computing geodesic distances on triangular meshes. Journal of WSCG,2002,10(2):341~347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700