用户名: 密码: 验证码:
超高压交流输电线路行波电流积分差动保护算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国坚强智能电网战略的不断推进,超(特)高压电网建设也加快了推进步伐。因此,电网的安全稳定运行对继电保护的动作速度提出了更高的要求。传统的输电线路纵联电流差动保护由于动作灵敏、能够可靠地保护线路的全长,不受系统振荡和运行方式变化的影响,因此得到了广泛应用。但是,由于它是基于工频故障信息的,动作速度较慢,且受电流互感器饱和及过渡电阻、线路分布电容等因素影响,难以适应超(特)高压、长距离输电技术发展的需要。因此,国内外学者提出了基于故障暂态电气量的超高速继电保护方案,其中行波差动保护是一个重要的研究领域。
     行波差动保护利用线路两侧方向电流行波的差值构成保护判据,动作速度极快,且不受过渡电阻、分布电容、系统振荡、电流互感器饱和、母线结构等因素的影响,具有很大的实用价值。本文在前人研究成果的基础上,围绕行波差动保护特征量的选取、利用、去噪、适用范围等问题开展研究工作。本文的主要研究内容和取得的成果包括如下几个方面。
     1、系统地研究了超(特)高压输电线路的波过程。首先研究了单相分布参数导线的波动方程及其在给定边界条件下的解析解,探明了行波在输电线路上的传播规律,以及在波阻抗不连续点(即母线处)行波的折反射规律。然后,将单相导线波过程演绎到三相输电线路的情况,引出了相模变换概念。在分析了常用相模变换(克拉克变换和凯伦贝尔变换)存在问题后,导出了一种新的相模变换方法及相模变换矩阵。利用该方法进行相模变换后,所获得的任意一种线模量(1模量或者2模量)都能够反映任何类型的故障。凯伦贝尔相模变换和克拉克相模变换中的任意一种线模量不能反映所有类型的故障,在构造保护算法时,不得不同时采用两种线模量(1模和2模),因此使得保护的计算量增大。采用本文导出的新型相模变换方法,只需要应用一种线模量来构造行波保护算法,因此减少了计算工作量,提高了保护的动作速度。
     本文还提出了选用较大的线模量构造保护算法的方法,即虽然本文导出的新相模变换方法可以只用一种线模量,但是应该选用较大的线模量以提高保护的灵敏性。具体方法是:当故障选相元件给出的是BG、BC、AB等三种故障类型时,应选用1模量;当选相元件给出的是AG、CG、CA等三种故障类型时,应选用2模量;而当故障选相元件给出的是BCG、ABG、CAG及ABC等四种故障类型时,应比较1模量和2模量,选用较大者。
     2、为了解决行波信号的去噪问题,本文系统地研究了形态学滤波器和形态梯度算法。本文从集合论的角度研究了形态学基本运算——腐蚀和膨胀的运算规律及其对结构元素的要求,强调为了行波保护准确地提取到行波波头到达母线的时间,结构元素的几何中心必须选择在原点。然后,分别研究了形态开-闭滤波器和形态闭-开滤波器、形态交替组合滤波器、多分辨率形态滤波器以及形态梯度算法,在此基础上,选择了一种结构元素长度线性增长的多分辨交替组合滤波器作为前置滤波器,并且利用交替组合滤波输出结果构成的抗噪形态梯度算法作为提取方向行波突变时刻的工具。
     3、在总结前人研究成果的基础上,提出了利用保护安装处的线模方向电流行波波头的积分值作为保护的特征量,以线路两端特征量的差值来构成行波差动保护的动作判据的方法。
     以500kV电网为例,通过对被保护线路内、外部发生经各种过渡电阻发生各种类型短路情况的大量仿真计算,验证了所提出的行波差动保护方案的正确性和有效性。
     4、由于超(特)高压输电线路为了解决工频过电压、运行电压过高、单相重合闸期间潜供电弧熄灭等问题,往往会在线路两端安装中性点带小电抗的三相并联电抗器。为了探究本文提出的行波差动保护方法是否适用于带并联电抗器的输电线路,研究了带并联电抗器的输电线路在内外部发生短路故障时,行波在跨越并联电抗器安装点前后的传播规律,从理论和仿真计算两方面证明了本方法适用于带并联电抗器的输电线路。
With the development of the strategy of the diversion of natural electricity from the western to the eastern regions, the EHV/UHV grid is building rapidly. Consequently, the speed of action of the relay protections must be higher than beforetime to meet the demands for the safe and stable operation of the EHV/UHV grid. The conventional current differential protection of transmission line acts sensitivity, and can protect the total track length of transmission line reliably. And it doesn't be affected by the oscillation of power system and operation scheme changes. Therefore,it is widely used.But the conventional current differential protection acts more slowly because it works based on power frequency signals, and it may be affected easily by the saturation of the current transformer,transition resistor,distribution capacitance,and so on. Therefore it difficults to adapted to need of development of the EHV/UHV grid and long distance power transmission. Some scholars at home and abroad put forward several schemes of ultra high-speed relay protection based on fault transients, the travelling wave differential protection is an important research field.
     The travelling wave differential protection makes up the action criterion with the differentials of the direction current travelling wave both ends of transmission line. Its action speed is very rapidly, and it doesn't be affected by the transition resistance, distribution capacitance, oscillation of power system, saturation of the current transformer,busbar structure and so on. Therefore it is very useful. This dissertation systematically researches the choose of the characteristic quantity of the travelling wave differential protection,the uses of,the filtering,the applicative range of the protection. The main contents and contributions of this dissertation are as follows:
     1. The travelling wave process on the EHV/UHV transmission line is systematically and completely researched in this dissertation. First of all the analytic solutions of the wave equations of the single phase distribution parameter lead wire at given the boundary conditions are investigated, and the travelling wave spreading law on the transmission line and the refraction and the reflection law of it at the point of the wave impedance discontinuousness are discussed.Afterward, the travelling wave process of single phase lead wire is deducted into the three-phase transmission line, the concept of phase-mode transformation is led out. After analyzing the problems of the frequently-used phase-mode transformation (Clarke and Karenbauer), this dissertation deduces a novel phase-mode transformer and its new transformation matrix. By using this new phase-mode transformation we can obtain any one of the line mode quantity (1mode or2mode) which can reflect all types of fauls. Any one of the line mode quantity of the Clarke phase-mode transformation and Karenbauer phase-mode transformation can not reflect all types of fauls, two line mode quantities have to be used as constructing the algorithm of the relay protection, for this reason, the calculated amount of the algorithm is huge. By new phase-mode transformation, only one line mode quantity is used for constructing the algorithm of the relay protection. Therfore, the calculation workload is decrease, the action speed of the protection is increase.
     A menthod of selecting bigger one both of the1mode and2mode quantity in constructing the algorithm of the protection is proposed too in this dissertation, which can improve the sensitivity of the travelling wave differential protection. The pratical methods are:while the phase selector exports the BG,BC,AB,we must choose1mode quantity,while the phase selector exports the AG,CG,CA,we must choose2mode quantity.If phase selector exports the BCG,ABG,CAG or ABC,we mast choose bigger one both of the1mode and2mode quantity.
     2. In order to filter out the noise in the travelling wave, this dissertation systematically researches the morphological filters and the morphological gradient. In this dissertation, we research the corrosion operation and expand operation from the standpoint of the set theory. For the sake of accurately measuring the time of the head wave arrived the busbar, the geometry center must be at coordinate origin. After discussing respectively the morphological open-close filter and close-open filter, the morphological alternation combination filter, the multiresolution morphological filter, and the morphological gradient, this dissertation presents a new multiresolution morphological alternation combination filter whose structure element's length is growing linearly and a new noise cancelling morphological gradient whose input signal is the export of the multiresolution morphological alternation combination filter.
     By simulation computation, a multiresolution morphological alternation combination filter applicable to the travelling wave differential protection and a noise cancelling morphological gradient are selected.
     3. On the basis of the research achievements of our predecessors, the novel method that selects the integral quantity of the direction current travelling wave in between head wave and very short time after as the characteristic quantity of the travelling wave differential protection is proposed in this dissertation. The new action criterion of the travelling wave differential protection is the differentials of the characteristic quantities both ends of the protected transmission line.
     Take some500kV power grid for illustration, by large numbers of simulation computation, the correctness and the effectiveness of the new travelling wave differential protection are verified.
     4. In order to verify the proposed travelling wave differential protection is true of the transmission line with the shunt reactor or not, the. travelling wave transmition law when it across the point of a shunt reactor set up is studied whateyer the fault takes place inside of the transmission line with the shunt reactor or outside.By theory and practice of simulation, we full prove the proposed method is true of the transmission line with the shunt reactor.
引文
[1]刘振亚.中国特高压交流输电技术创新[J].电网技术,2013,37(3):T1-T8
    [2]刘振亚.中国电力与能源[M].北京:中国电力出版社,2012
    [3]刘振亚,舒印彪,曾庆禹,等.特高压电网[M].北京:中国经济出版社,2005
    [4]Shu Yinbiao. Current Status and Development of National Grid in China[C].2005 IEEE/PES T&D Conference. Dalian,China,2005
    [5]刘振亚,舒印彪,刘泽洪,等.特高压交流输电技术研究成果专辑(2005年)[M].北京:中国电力出版社,2005
    [6]刘振亚,舒印彪,孙昕,等.特高压交流输电技术研究成果专辑(2006年)[M].北京:中国电力出版社,2006
    [7]刘振亚,舒印彪,孙昕,等.特高压交流输电技术研究成果专辑(2007年)[M].北京:中国电力出版社,2007
    [8]刘振亚,陈维江,谷定燮,等.特高压交流输电技术丛书特高压交流输电系统过电压与绝缘配合[M].北京:中国电力出版社,2008
    [9]杜至刚,牛林,赵建国.发展特高压交流输电建设坚强的国家电网[J].电力自动化设备,2007,27(5):1-5
    [10]张保会,尹项根,电力系统继电保护[M].中国电力出版社,2005年5月,北京.
    [11]贺家李,葛耀中,超高压输电线路故障分析与继电保护[M].科学出版社,1987年,北京.
    [12]葛耀中,新型继电保护与故障测距的原理与技术[M].西安交通大学出版社,1996年,西安.
    [13]许继电气股份有限公司,WXH-llx系列微机线路保护装置技术说明书.
    [14]罗四倍,段建东,张保会,基于暂态量的EHV/UHV输电线路超高速保护研究现状与展望[J].电网技术,2006,30(22):32-41.
    [15]Takagi T, Baba J, Uemura K, et al. Fault Protection Based on Traveling Wave Theory,Part 1:Theory[C]. IEEE PES Summer Meeting, MexicoCity,1977.
    [16]Takagi T, Baba J, Uemura K, et al. Fault Protection Based on Traveling Wave Theory,Part 2:Sensitivity Analysis and Laboratory Test[C]. IEEE PES Winter Meeting, New York,1978.
    [17]苏斌,董新洲,孙元章,基于小波变换的行波差动保护[J].电力系统自动化,2004,28(18):25-29+35.
    [18]苏斌,董新洲,孙元章,特高压带并联电抗器线路的行波差动保护[J],电力系统自动化,2004,28(23):41-44+70.
    [19]白嘉,徐玉琴,田彬等,基于形态综合算法的行波差动保护方案[J],电网技术,2006,30(9):98-102.
    [20]董杏丽,董新洲,张言昌,郭效军,葛耀中,基于小波变换的行波极性比较式方向保护原理研究[J],电力系统自动化,2000,24(23):11-15+29.
    [21]张武军,王慧芳,何奔腾.T接线行波差动保护.电力系统自动化[J],2007,31(3):61-66
    [22]苏斌,董新洲,孙元章,串联电容补偿线路行波差动保护研究[J].清华大学学报(自然科学版),2005,45(1):137-140
    [23]张武军,何奔腾,沈冰.特高压带并联电抗器线路的行波差动保护[J],中国电机工程学报,2007,27(10):56-61
    [24]赵臻峰,曾祥君,秦小安,张小丽.基于希尔伯特-黄变换的超高压输电线路行波差动保护[J].中国电力,2011,44(2):10-13
    [25]Jing Cai,HengXu Ha,Yang Yu,Z.Q.Bo,Bo Chen. A Novel Traveling Wave Based Differential Protection for Distributed Parameter Line.2011,Asia-Pacific Power and Energy Engineering Conference (APPEEC),2011
    [26]Zou Gui-bin,Gao Hou-lei.The Current Differential and Travelling Wave Based Algorithm for Ultra High Speed Hybrid Protection. Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies,2008. DRPT 2008.
    [27]HengXu Ha; Zhi Qiang Zhang; YuZhen Tan; Zhi Qian Bo; Bo Chen. Novel Transient Differential Protection Based on Distributed Parameters for EHV Transmission Lines.Developments in Power System Protection,2008. DPSP 2008. IET 9th International Conference on
    [28]Su Bin; Dong Xinzhou; Sun Yuanzhang. A new Traveling Wave Differential Relay for Series Compensated EHV Transmission Line.Developments in Power System Protection,2004. Eighth IEE International Conference on
    [29]Zhaoqiang Yuan,Chengxue Zhang. Studies of an Algorithm of High Speed Travelling Wave Differential Protection for EHV/UHV Transmission Line.2012, Asia-Pacific Power and Energy Engineering Conference (APPEEC),2012
    [30]袁兆强,张承学.超(特)高压输电线路高速行波差动保护[J].电力自动化设备,2012,32(3):13-17
    [31]段建东,张保会,周艺.超高速暂态方向继电器的研究[J].中国电机工程学报,2005,25(4):7-12
    [32]胡文丽,焦彦军,崔鸿斌.基于小波变换的新型暂态行波方向保护[J].电网技术,2005,29(3):68-71+80
    [33]邹贵彬.输电线路积分型行波方向纵联保护研究[D].山东大学博士论文,2009
    [34]董杏丽,董新洲,张言苍,郭效军,葛耀中.基于小波变换的行波极性比较式方向保护原理研究[J].电力系统自动化,2000.7.25:11-15+29
    [35]张举,张晓东,林涛.基于小波变换的行波电流极性比较式方向保护[J].电网技术,2004,28(4):51-54
    [36]邹贵彬,高厚磊,江世芳,徐丙垠.新型暂态行波幅值比较式超高速方向保护[J].中国电机工程学报,2009,29(7):84-90
    [37]路玉芹,翟蕾.输电线路行波电流极性比较式纵联保护方案研究[J].山东理工大学学报(自然科学版),2013,27(1):75-78
    [38]刘琨,董新洲.基于方向行波的电力线路保护与检测技术[J].广东电力,2012,25(10):22-27+32
    [39]Wei Chen; Malik, O.P.; Xianggen Yin; Deshu Chen; Zhe Zhang. Study of Wavelet-based Ultra High Speed Directional Transmission Line Protection. IEEE Transactions on Power Delivery, Vol.18, No.4, October 2003
    [40]Carlos Aguilera;Eduardo Orduna;Giuseppe Ratta. Directional Traveling-Wave Protection Based on Slope Change Analysis. IEEE Transactions on Power Delivery, Vol.22, No.4, October 2007
    [41]Lyonette, D.R.M.; Bo, Z.Q.; Weller, G.; Jiang, F. Anew Directional Comparison Technique for the Protection of Teed Transmission Circuits.Power Engineering Society Winter Meeting,2000. IEEE
    [42]Bo, Z.Q.; He, J.H.; Dong, X.Z.; Klimek, A. Protection of Transmission Systems Using Transient Polarity Comparison Technique.Universities Power Engineering Conference,2007. UPEC 2007.42nd International
    [43]Xiang-ning Lin; Wenjun Lu; Qing Tian; Hanli Weng; Pei Liu. A Novel Duplicated Main Protection Scheme Suitable for Both Transmission Lines and Busbars.Power Engineering Society General Meeting,2006. IEEE
    [44]Li Zou; Qingchun Zhao; Xiangning Lin; Pei Liu. Applications of Multi-resolution Morphological Analysis in Ultra High Speed Protection of Transmission Line.Power Engineering Society General Meeting,2005. IEEE
    [45]DUAN Jian-dong,;ZHANG Bao-hui,; LUO Si-bei;ZHOU Yi. Transient-based Ultra High Speed Directional Protection Using Wavelet Transforms for EHV Transmission Lines.2005 IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific,Dalian, China
    [46]董杏丽,葛耀中,董新洲.基于小波变换的无通道全线速动行波保护[J].电力系统自动化,2001,25(10):18-22
    [47]张保会,哈恒旭,吕志来.利用单端暂态量实现高压输电线路全线速动保护新原理研究(一)——故障暂态过程分析及实现单端暂态量保护的可行性[J].电力自动化设备,2001,21(6):1-5
    [48]张保会,哈恒旭,吕志来.利用单端暂态量实现高压输电线路全线速动保护新原理研究(二)——保护判据的研究[J].电力自动化设备,2001,21(7):1-6
    [49]林湘宁,刘沛,杨春明,等.基于小波分析的超高压输电线路无通道全线速动保护方案[J].中国电机工程学报,2001,21(6):10-15
    [50]张霖,吕艳萍.基于多分辨形态梯度的超高压输电线路无通道全线速动保护新方法[J].电网技术,2008,32(13):100-104
    [51]J.D. Duan; B.H. Zhang; S.B. Luo; J.F. Ren. Study of Non-unit Transient-based Protection for EHV Transmission Lines Using Backward Traveling-wave.2006 International Conference on Power System Technology
    [52]Duan Jiandong; Wang Li; Tong Xiangqian. Study of Single-ended Traveling-wave Protection for Transmission Line Unsymmetrical Grounded Faults..Power and Energy Engineering Conference,2009. APPEEC 2009. Asia-Pacific
    [53]Lin Zhang; Yan ping Lu; Heng Yin. A multi-resolution Morphology Gradient Based Non-communication Protection Scheme for Transmission Lines.Electric Utility Deregulation and Restructuring and Power Technologies,2008. DRPT 2008. Third International Conference on
    [54]Qin Xiao'an; Zeng Xiangjun; Xu Yao; Pan Hui; Wang Yang. HHT Energy Spectrum Based Non-unit EHV Line Protection Using Traveling Wave. Proceedings of the 2010 International Conference on Modelling, Identification and Control, Okayama, Japan, July 17-19,2010
    [55]魏军,罗四倍.基于信号奇异性检测的行波启动元件算法的探讨[J].继电器,2007,35(21):1-6
    [56]段建东,张保会.行波启动元件的算法研究[J].中国电机工程学报,2004,24(9):30-36
    [57]袁兆强,张胤羿.用于行波保护的启动新算法研究[J].三峡大学学报(自然科学版),2008,30(6):52-56
    [58]罗四倍,段建东,张保会.基于暂态量的EHV/UHV输电线路超高速保护研究现状与展望[J].电网技术,2006,30(22):32-41
    [59]孔凡坊,王三桃,潘佩芳,吴军基.基于小波变换模之和的奇异性检测启动元件算法[J].电力系统保护与控制,2009,37(11):24-27
    [60]苏煜,罗四倍,王薇.基于形态梯度与小波变换模之和的行波启动元件[J].电力系统保护与控制,2009,37(23):5-8+34
    [61]董新洲,贺家李,葛耀中,徐丙垠.基于小波变换的行波故障选相研究第2部分仿真试验结果[J].电力系统自动化,1999,23(1):20-22
    [62]陈双,何正友,李小鹏.基于行波固有频率的特高压输电线路故障选相[J].电网技术,2011,35(6):15-21
    [63]李勋,龚庆武,贾晶晶.采用形态小波变换原理的超高速故障选相算法研究[J].电力系统保护与控制,2011,39(15):57-62
    [64]杨明玉,王世旭,张举.基于数学形态学梯度的快速选相方案[J].电网技术, 2006,30(7):64-68
    [65]王兴国,黄少锋,刘千宽.一种利用电压模故障分量的选相元件[J].电力系统自动化,2008,32(9):42-46+99
    [66]梁景芳,高厚磊,苏文博,王大鹏,邹贵彬.一种适用于特高压线路的快速选相方法[J].电力系统保护与控制,2010,38(15):95-99+131
    [67]董杏丽,葛耀中,董新洲.行波保护中雷电干扰问题的对策[J].中国电机工程学报,2002,22(9):74-78
    [68]哈恒旭,张保会.输电线路边界保护中雷电冲击与故障的识别[J].继电器,2003,31(4):1-5
    [69]邹贵彬,高厚磊,朱峰,王昊.输电线路雷击与故障的积分识别方法[J].电力系统保护与控制,2012,40(9):43-48
    [70]束洪春,张斌,张广斌,刘可真,孙士云.基于可拓融合的±800kV直流输电线路雷击干扰识别方法[J].中国电机工程学报,2011,31(7):102-111
    [71]张欣,雷震,许栋栋.雷电波对电力系统行波故障测距的影响分析[J].江苏电机工程,2012,31(1):24-27
    [72]田庆.天广工程直流线路突变量保护误动作分析[J].高压电器,2012,48(4):33-38
    [73]肖先勇,李逢,邓武军.雷击与短路故障的S变换特征量识别方法[J].高电压技术,2009,35(4):817-822
    [74]赵军,吕艳萍,王汉广.基于多尺度形态分解的特高压线路雷击干扰识别新方法[J].高电压技术,2009,35(5):994-998
    [75]吴昊,肖先勇,邓武军.输电线路行波测距中雷击与短路故障的识别[J].高电压技术,2007,33(6):63-67
    [76]吴昊,肖先勇,沈睿佼.小波能量普和神经网络法识别雷击与短路故障[J].高电压技术,2007,33(10):64-68
    [77]段建东,张保会,郝治国,哈恒旭.超高压线路暂态保护中雷电干扰与短路故障的识别[J].电力系统自动化,2004,28(18):30-35
    [78]段建东,任晋峰,张保会,罗四倍.超高速保护中雷电干扰识别的暂态法研究[J].中国电机工程学报,2006,26(23):7-13
    [79]Shang L, Herold G, Jaeger J. A new Approach to High-speed Protection for Transmission Line Based on Transient Signal Analysis Using Wavelets[J]. Developments in Power System Protection IEE 2001,2001,173-176
    [80]董杏丽,葛耀中,董新洲.行波保护中合闸到故障线路的检测方法[J].中国电机工程学报,2002,22(10):77-80
    [81]孙向飞,束洪春,司大军.输电线路不同期合闸操作的行波特性分析[J].中国电机工程学报,2006,26(24):31-36
    [82]段建东,罗四倍,张保会,薛晶.超高速保护中合闸于故障线路的识别方法[J].中国电机工程学报,2007,27(10):78-84
    [83]束洪春,孙向飞,司大军.一种考虑不同期合闸的行波合闸保护新方法[J].电力系统自动化,2007,31(2):41-45+50
    [84]束洪春,司大军,孙向飞.考虑断路器非同期合闸的行波数据采集方案及保护算法[J].电网技术,2005,29(22):80-84
    [85]钟超,陈皓.输电线路合闸于故障保护原理综述[J].四川电力技术,2010,33(2):70-73
    [86]江泽佳.电路原理(第三版)(上、下)[M].北京,高等教育出版社.1993
    [87]周守昌.电路原理(上、下)[M].北京,高等教育出版社.1999
    [88]孙韬.传输线方程解析解的研究[D].重庆大学博士学位论文.2005年6月
    [89]宋国兵,李森,康小宁,周德生,杨忠礼,索南加乐.一种新相模变换矩阵[J],电力系统自动化,2007,31(14):57-60.
    [90]王国兴,黄少锋.一种基于屏蔽滤波的行波信号消噪方法[J].电力自动化设备,2008,29(6):35-39
    [91]姜晟,舒乃秋,胡芳,周静.基于小波变换的含噪声行波信号奇异点检测[J].电网技术,28(10):59-62
    [92]艾斌,吕艳萍.基于小波模极大值极性的行波信号识别[J].电网技术,27(5):55-57+71
    [93]吴军基,吴伊昂,贺济峰,杨伟.数学形态学在行波滤波中的应用[J].继电器,33(17):21-26
    [94]宗孔德,胡广书.数字信号处理[M].北京,清华大学出版社,1988
    [95]张贤达.现代信号处理[M].北京,清华大学出版社,1995
    [96]国家自然科学基金委员会.电子学与信息系统——自然科学学科发展战略调 研报告[M].北京,科学出版社,1995
    [97]N.Wiener.Nonlinear Problems in Random Theory.New York.The Technology Press.MIT and John Wiley & Sons,Inc.,1958
    [98]J.Serra,L. Vincent. An Overview of Morphological Filtering.Circuits,Systems, Signal Process.1992,11(1):47-108
    [99]J.Serra.Introduction to Mathematical Morphology.Computer Vision,Graphics. Image Processing.1986,35(3):283-305
    [100]Hong Shu, Yi Wang. Detection of Voltage Flicker Based on Mathematical Morphology Filter and Teager Energy Operator.2006 International Conference on Power System Technology.
    [101]Ouyang Sen. Application of Improved Mathematical Morphology Method in the Power Quality Monitoring.2006 International Conference on Power System Technology.
    [102]Li Chunzhi, Cheng Jiajun. Mathematical Morphological Filter and Its Application in Removing Noises in Vibration Signal. The Eighth International Conference on Electronic Measurement and Instruments, ICEMI'2007
    [103]Yang Tingfang, Liu Pei, Zeng Xiangjun, K.K.Li. Application of Adaptive Generalized Morphological Filter in Disturbance Identification for Power System Signatures.2006 International Conference on Power System Technology.
    [104]Hui Zhou, Jing Zhou, Zhi-ping Qi. Fast Voltage Detection for a Single-phase Dynamic Voltage Restorer (DVR) Using Morphological Low-pass Filters. DRPT2008 6-9 April 2008 Nanjing China.
    [105]Yanqiu Bi, Jianguo Zhao, Lin Jiang, Dahai Zhang, Rongfang He. Faulty Feeder Detection of Single-phase-to-ground Network Using Improved Morphological Hybrid Filter. IEEE International Symposium on Industrial Electronics (IS1E 2009) Seoul Olympic Parktel, Seoul, Korea July 5-8,2009.
    [106]Yong Huang, Yongqiang Liu, Zhiping Hong. Detection and Location of Power Quality Disturbances Based on Mathematical Morphology and Hilbert-Huang Transform. The Ninth International Conference on Electronic Measurement & Instruments(ICEMI'2009)
    [107]Yang Jie, Zheng Haiqi, Wang Yangang. Research on Vibration Signal De-noising of Gearbox Based on Quantum-Inspired Morphological Filter.2010 International Conference on Intelligent Computation Technology and Automation.
    [108]M. Khodadadi, S. M. Shahrtash. A New Noncommunication-Based Protection Scheme for Three-Terminal Transmission Lines Employing Mathematical Morphology-Based Filters. IEEE TRANSACTIONS ON POWER DELIVERY, VOL.28, NO.1, JANUARY 2013
    [109]高艳,林湘宁,刘沛.基于广义形态开闭变换的小电流接地选线算法[J].中国电机工程学报,2006.7,26(14):1-6
    [110]舒泓,王毅.基于数学形态滤波和Hilbert变换的电压闪变测量[J].中国电机工程学报,2008.1,28(1):111-114
    [111]刘双宝,吕超,王立欣,于继来.应用组合广义形态学滤波器抑制变压器局放信号窄带干扰[J].高电压技术,2009.9,35(9):2163-2168
    [112]李杰祎,胡少强,贺振华.一种新的小电流接地选线算法[J].继电器,2008.2,36(3):10-14
    [113]陈丽安,张培铭.基于形态小波的低压系统短路故障早期监测[J].中国电机工程学报,2005.5,25(10):24-28+88
    [114]曲轶龙,谭伟璞,杨以涵.基于形态滤波的谐振接地系统故障选线新方法[J].电力系统自动化,2008.6,32(12):73-77
    [115]李肖博,肖仕武,刘万顺,郑涛.基于形态滤波的变压器电流相关保护方案[J].中国电机工程学报,2006.3,26(6):8-13
    [116]尹文琴,刘前进.数学形态学在电力系统中的应用综述[J].继电器,2007.10,35(19):76-83
    [117]邹力,刘沛,赵青春.级联形态梯度变换及其在继电保护中的应用[J].中国电机工程学报,2004.12,24(12):113-118
    [118]马静,徐岩,王增平.利用数学形态学提取暂态量的变压器保护新原理[J].中国电机工程学报,2006.3,26(6):19-23
    [119]Zhang D,Li Q,Zhang J,et al. Improving the Accurary of Single-ended Transient Fault Locators Using Mathematical Morphology. Presented at IEEE/CSEE International Conference on Power System Technology,Kunming,China,2002
    120]林湘宁,刘海峰,鲁文军,刘沛,薄志谦.基于广义多分辨形态学梯度的自适应单相重合闸方案[J].中国电机工程学报,2006.4,26(7):101-106
    121]黄少锋,赵月,申洪明.一种高压输电线路故障暂态分量自由振荡主频率的估算方法[J].电网技术,2012,36(9):187-192
    122]毕天姝,于艳莉,黄少锋,杨奇逊.超高压线路差动保护电容电流的精确补偿方法[J].电力系统自动化,2005,29(15):30-34
    [123]LIU Wei,NING Wen-hui,HUANG Dong-shan. Analysis and Modification of a 500kV Transmission Line Overvoltage Problem.2010 China International Conference on Electricity Distribution.ppl-6
    [124]Yang Huping,Wu Dongwen,Gu Yin,Bi Zhipeng.Analysis on Fault Voltage and Secondary Arc Current of Single Phase Refusing-Shunt of the 500kV Extra High Voltage Transmission Ling.2009 2nd International Conference on Power Electronics and Intelligent Transportation System.pp9-12
    [125]徐振宇.1000kV特高压输电线路保护的现状及发展[J].电力设备,2008,9(4):17-20
    [126]孙秋芹,李清泉,李庆民,王冠.特高压线路熄灭潜供电弧的方法比较[J].电力自动化设备,2009,29(4):76-80
    [127]陈禾,陈维贤.并联电抗器中性点小电抗的选择[J].高电压技术,2002,28(8):9-10
    [128]林莘,谢寅志,徐建源.特高压交流输电线路潜供电弧的抑制措施[J].高电压技术,2012,38(9):2150-2156
    [129]林军,熊启新,朱菁.带并补的超高压输电线非全相运行的暂态分析模型[J].电力自动化设备,2010,30(2):48-52
    [130]陈水明,许伟,何金良.1000kV交流输电线路的工频暂态过电压研究[J].电网技术,2005,29(19):1-5
    [131]H.N. Scherer,N.N. Belyakov, B.R. Shperling, V.S. Rashkes,etc. Singel Phase Switching Tests on 765kV and 750kV Transmission Lines.IEEE Transactions on Power Apparatus and Systens, Vol.PAS-104,No.6,June 1985
    [132]Yan Xie,Baichao Chen.Research on Operating Characteristic and Controllability of the Neutral Inductance of Shunt Reactor.2009 International Conference on Industrial Mechatronics and Automation:260-263
    [133]Haijun Liu,Jun Wen,Minxiao Han,Huiyuan Zhang,Xiangning Xiao,Xiuyu Chen.Research And Design About the Neutral Reactors Compensation on UHV Double-Circle Lines.Proceedings of the 2009 IEEE International Conference on Industrial Mechatronics and Automation August 9-12,Changchun,China: 3050-3054
    [134]蔡汉生,张丽泉.500kV线路并联电抗器过补偿运行时的计算与分析[J].中国电力,1996,29(3):38—42+53
    [135]张健康,粟小华,胡勇,李怀强.750kV输电线路远跳保护配置方案探讨[J].电力系统自动化,2008,32(12):94—96
    [136]北京大学数学力学系几何与代数教研室代数小组编,高等代数[M],北京:人民教育出版社,1978,pp338-370
    [137]罗承沐,张贵新,王鹏.电子式互感器及其技术发展现状[J].电力设备,2007,8(1):20-24
    [138]方琼,张会建,付艳华,刘宝成.电子式互感器概述及工程应用分析[J].华北电力技术,2008,第11期:22-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700