用户名: 密码: 验证码:
与PRRSV结合的受体SN氨基酸及其在PRRSV感染偏嗜性中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪繁殖呼吸综合征PRRS (Porcine reproductive and respiratory syndrome,又称蓝耳病)是由PRRSV (Porcine reproductive and respiratory syndrome virus)感染引起的,目前在世界范围内广泛流传,并且造成了感染猪繁殖障碍、免疫力低下、发病率和死亡率较高,给养猪业造成巨大经济损失,并带来肉产品安全及环境安全等隐患。
     PRRSV感染而导致猪免疫抑制及其免疫机制复杂,至今还没有防治PRRSV的有效药物与疫苗。PRRSV具有极强的宿主偏嗜性,只感染家猪和野猪,也不感染其它动物。目前在猪PRRSV主要感染猪宿主PAM (Porcine Alveolar Macrophage)肺泡巨噬细胞,也从该细胞中鉴定出来了有CD163, CD169(SN, Sialoadhesin)等受体分子。在猪的SN受体具有黏附病毒唾液酸分子,介导病毒感染细胞的能力,受体基因位点直接影响与PRRSV结合力,对PRRSV受体研究是致病机理和抗病机理研究的趋势之一。
     因此,本研究从PPRSV细胞受体SN基因角度,以受体分子与PRRSV相互作用为重点,分析受体SN基因与PRRSV结合的重要氨基酸位点,研究该位点在与PRRSV结合和在PRRSV物种感染偏嗜性中的作用,探讨受体和PRRSV的相互作用的机理,为抗PRRSV感染的防治药物研制提供分子靶标,为抗病分子育种提供参考。
     一、利用生物信息学预测与PRRSV结合的SN氨基酸位点:
     1、将鼠SN中PDB数据库所有SN蛋白模板和唾液酸的配体进行了结构重叠和比对,确定了在6.5A范围内对结合唾液酸最关键的氨基酸;明确了唾液酸分子衍生物都有差异,但是鼠唾液酸分子都有保守的Neu5Ac的母核,而且在不同的PDB(Protein Data Bank)模板中,该母核位置保守和其形成氢键相互作用的氨基酸也是保守的。
     2、根据猪SN基因cDNA及氨基酸序列,在Signal IP信号肽预测和蛋白结构功能Smart预测的网站上进行预测,参照PDB上鼠SN的模板结构,猪SN信号肽剪接位点可能在第19-20位氨基酸之间。
     3、利用Smart对SN蛋白的结构和功能进行预测,确定猪SN参与病毒唾液酸结合的功能区域为N末端的150个氨基酸以内的区域。
     4、利用糖基化预测网站和软件,预测猪pSN的S107, T3,T78等位点,在PRRSV感染的过程中可能发生了糖基化。
     5、根据猪SN和鼠SN的多序列进行比对和结构重叠的结果,R97,R105氨基酸在PRRSV感染的过程中可能发生侧链方向的改变,而且提供氢键以利于病毒唾液酸的结合。W106,W2氨基酸在结合唾液酸时,因为巨大侧链空间阻碍和方向不变,可能限制PRRSV的唾液酸母核结合SN时的方向。
     6、利用多序列比对和同源模建及分子动力学优化等,分别构建了猪SN和牛SN的蛋白结构模型;然后与PDB数据库中报道的鼠SN的蛋白结构模型进行了结构比对和重叠;再用Chimera软件构建分子突变体,最后观察猪SN、牛SN蛋白结构的变化。结果表明:猪SN蛋白分子表面形成一个明显的较深的孔洞,而牛的则不明显;将猪SN的S107突变为牛SN的V107时,猪SN的孔洞空间缩小,反之将牛SN的V107突变为猪SN的S107时,牛SN的孔洞空间略有增加,因此预测猪SN的S107在PRRSV结合时可能具有重要作用。
     7、通过比较分析猪SN的结构,发现猪SN相对于鼠和牛的SN有其特异性,其表面的107位点是特异的亲水氨基酸;在结合病毒唾液酸的过程中,很可能提供了氢键和一个特异的亲水区域以容纳病毒的唾液酸,从而增加了病毒和猪SN的结合能力,这也许是猪个体间存在PRRSV易感性或抗性差异、不同物种间(猪、牛、鼠等)存在PRRSV感染偏嗜性差异的原因之一。此外,猪SN的2,44,45,97,105,106,109等位点的氨基酸,都参与了亲水空间区域的形成。
     二、利用分子生物学技术分析和验证生物信息预测的PRRSV结合的重要SN氨基酸位点及其作用:
     1、为了研究生物信息学预测的SN受体氨基酸位点(3、78和107)与PRRSV相互作用,根据猪pSN受体和牛cSN受体(不结合PRRSV唾液酸)序列,利用pEGFP-N1载体和定点突变技术分别构建了猪和牛SN的2个野生型和4个突变体。它们包括2个野生型(pSN-GFP、cSN-GFP)、4个突变体(pSN-S107V-GFP, pSN-T3V-GFP, pSN-T78V-GFP和cSN-V3T-V78T-V107S-GFP)。
     2、利用pEGFP-N1载体分别构建了GFP和SN融合蛋白的表达载体,并在293T细胞中进行融合表达,利用采用超滤离心技术从细胞培养液中获得了纯度较高的6个SN-GFP融合蛋白(pSN-GFP、cSN-GFP、pSN-S107V-GFP, pSN-T3V-GFP, pSN-T78V-GFP和cSN-V3T-V78T-V107S-GFP),用于在分子水平研究受体SN与PRRSV的结合力的研究。
     3、在SN-GFP载体的后端加上SN的跨膜片段M,分别构建了6个表达SN-GFP-M载体(pSN-S107V-GFP-M, pSN-T3V-GFP-M, pSN-T78V-GFP-M, cSN-V3T-V78T-V107S-GFP-M, pSN-GFP-M, cSN-GFP-M)和1个对照GFP-M载体,在293T细胞中表达7个SN-GFP-M融合蛋白,用于在细胞水平分析受体SN与PRRSV的相互作用的分析。
     4、利用WB (Western Blot)技术证明和鉴定了本研究所表达蛋白分别为6个SN-GFP融合蛋白、7个SN-GFP-M融合蛋白。
     5、分别利用FAR-WB (FAR-Western Blot)技术、ELISA(Enzyme Linked Immunosorbent Assay)技术分析了SN-GFP蛋白和PRRSV的结合活性。分别分析了2个SN野生型融合蛋白(pSN-GFP、cSN-GFP)和4个突变体融合蛋白(pSN-S107V-GFP, pSN-T3V-GFP, pSN-T78V-GFP和cSN-V3T-V78T-V107S-GFP)与PRRSV的结合力,结果表明:猪野生型pSN-GFP蛋白的结合高于其它5种蛋白的结合,发生突变后的猪SN蛋白(pSN-S107V-GFP, pSN-T3V-GFP, pSN-T78V-GFP)的结合力都降低,特别是pSN-S107V-GFP蛋白结合力显著的下降;而牛野生型cSN-GFP蛋白不能与PRRSV结合,但发生突变(cSN-V3T-V78T-V107S-GFP)蛋白能与少量PRRSV结合。
     6、利用免疫细胞荧光技术,分析了SN-GFP-M蛋白和PRRSV的结合活性。在293T细胞中分别表达了6个带SN的跨膜片段M的SN-GFP-M和1个对照GFP-M蛋白,利用免疫细胞荧光技术,分别探讨了猪和牛SN野生型融合蛋白、3个猪突变体融合蛋白、1个牛突变体融合蛋白、1个对照GFP-M蛋白与PRRSV的结合力,试验结果与利用FAR-WB技术分析的结果相类似。
     7、以上所有结果表明猪SN基因中第T3、T78和S107氨基酸在与PRRSV结合中具有一定的作用,特别是S107位具有重要的作用。
     8、猪pSN野生型具有强的PRRSV结合能力,本试验将猪相应氨基酸替换成牛的氨基酸,猪pSN突变型pSN-T78V、pSN-T3V降低了结合PRRSV能力,pSN-S107V显著地降低了结合能力。而将牛SN进行cSN-V107S突变,将牛替换成了猪的氨基酸,生物信息分析显示可以恢复部分的结合PRRSV的能力;并且牛的突变体cSN-V3T-V78T-V107S-GFP在一定程度上也能与PRRSV结合,因此推测:这些位点在不同猪个体对PRRSV敏感性或抗性存在差异、不同物种对PRRSV感染偏嗜性中具有一定的作用。
PRRS (Porcine reproductive and respiratory syndrome)disease is caused by PRRSV (Porcine reproductive and respiratory syndrome virus)infection worldwide. Infection of PRRSV for pig leads to reduce reproduction, low immunity, high mortality. It causes meat product safety, environment and serious problems.
     The mechanism for PRRSV infection immunity and immunity restraint is very complicate and unclear. The traditional vaccine and drug is ineffective for PRRSV. The PRRSV has a strong host tropism which can infect domestic and wild pigs but not infect other animals. PAM (Porcine Alveolar Macrophage) cells are main host cell in pigs, and CD163and CD169(SN, Sialoadhesin) are as main receptor molecules on PAM cells. pSN (Pig SN) receptor adheres to sialic acid molecules on the surface of virus, which mediates the virus-infected cells. Some sites on receptor directly affect receptor binding activity of PRRSV, so it is a direction for mechanism research on infection immunity and immunity restraint.
     Interaction of receptor and PRRSV is the novel idea of this paper to analysis specificity of pSN molecule, which is an important amino acid sites for PRRSV infection tropism. Therefore, the receptor resistant mechanism is the main focus of this study which is also an important molecular target and reference of drug design, genetics and breeding subject.
     1. Predicted PRRSV binding site on SN based on bioinformatics analysis
     (1) According to the mSN (mouse SN) PDB database, SN protein templates and sialic acid ligands structure of the template structure were superposed and compared to critical amino acid within6.5A. The results showed that the sialic acid molecule derivatives had great variation, but the mouse sialic acid molecule has a conservative Neu5Ac mother nucleus. In PDB (Protein Data Bank) template, the position of the mother nucleus and the formation of hydrogen bonding interactions of amino acids is also conservative.
     (2)According to pig SN gene cDNA and protein amino acids sequence, pSN signal peptide cutting sites were predicted on Signal IP and Smart protein structure domain websites. Referring the PDB on mSN template structure, pSN signal peptide cutting sites might be were between amino acids19-20sites.
     (3)By Smart protein domain prediction, pSN and virus sialic acid-binding region was within the N-terminal,150amino acid region on pSN.
     (4)Glycosylation prediction has showed on pSN S107, T3, T78etc. Glycosylation may only happen during PRRSV infection.
     (5)Based on the results of pig and mouse multiple sequence alignment and structure superimposition result. R97, R105amino acid in PRRSV binding process, they may change of side chain direction and hydrogen. And, R106, R2amino acid, with huge side chain as hindrance. They could limit binding direction during the PRRSV sialic acid nucleus when sialic acid combined with SN.
     (6)Based on multiple sequence alignment, homology modeling and molecular dynamics optimization steps, pSN and cSN (cow SN) protein structure homology models were built. pSN and cSN were superposed with mSN template. SN some of amino acid mutants were built using chimera software for observation. The results determined a cavity could be formed on the surface of pSN and it seems that cavity was not on the surface of mSN and cSN. When S107V on pSN was replaced for V107, cavity became small. On the contrary, it would improve more space for interaction. So,S107was very key site for PRRSV binding.
     (7)To observe the structure specificity among pSN, mSN and cSN, their surface of107was a specific hydrophilic amino acid, in the process of binding the virus sialic acid. It was possible to provide a hydrogen bond and a specific hydrophilic region to accommodate the sialic acid of the virus. Thereby, it would increase the binding capacity of the virus and pSN. Perhaps, this was the difference in sensitivity and resistant reason between species. Moreover, other amino acid sites of the pig2,44,45,97,105,106,109, etc., were also involved in the formation of the hydrophilic region.
     2. Validated key PRRSV binding sites on SN and their function using experiments
     (1) In order to analyze3,78and107sites role on SN interaction with PRRSV in bioinformatics, we used and site-directed technology the pEGFP-Nl vector for expression SN and GFP fusion protein in293T cells. According to pSN and cow cSN receptor (cSN not binding with PRRSV sialic acid) sequence, results showed2kinds of wild type pSN-GFP, cSN-GFP and4kinds of mutant type pSN-S107V-GFP, pSN-T3V-GFP, pSN-T78V-GFP, SN-V3T-V78T-V107S-GFP.
     (2) By pEGFP-N1vector, SN-GFP expression vector were built.6kinds of high dose of chimera protein were expressed in293T cells and secreted into cell medium and abstracted by ultra filtration and centrifugation. They are pSN-GFP, cSN-GFP, pSN-S107V-GFP, pSN-T3V-GFP, pSN-T78V-GFP and cSN-V3T-V78T-V107S-GFP, and can be used in molecular level of examination about binding activity of SN and PRRSV.
     (3) In order to study the SN and PRRSV interaction on cell level, an M transmembrane domain was constructed into SN-GFP vector, so that expression of the vector SN-GFP-M were performed including M transmembrane fragments. They were pSN-S107V-GFP-M, pSN-T3V-GFP-M, pSN-T78V-GFP-M, CSN-V3T-V78T-V107S-GFP-M, pSN-GFP-M, cSN-GFP-M and GFP-M control.
     (4) Total6kinds of SN-GFP and7kinds of SN-GFP-M target protein were detected by anti-GFP antibody on WB (Western Blot.)
     (5) Using for Far-Western Blot and ELISA (En2yme Linked Immunosorbent Assay) method, SN wild type protein and the mutant type were detected in vitro interaction with the PRRSV virus including2kinds of wild type pSN-GFP, cSN-GFP and4kinds of mutant type pSN-S107V-GFP, pSN-T3V-GFP, pSN-T78V-GFP and cSN-V3T-V78T-V107S-GFP. The result shown that the binding activity of pSN wild type was better than that of other5kinds of SN-GFP chimera protein. Mutant type pSN-S107V-GFP, pSN-T3V-GFP, pSN-T78V-GFP binding activity were reduced, especially on pSN-S107V-GFP. cSN wild type could not bind with virus well, but another mutant type cSN-V3T-V78T-V107S-GFP also were bind with little PRRSV.
     (6)Immunofluorescence experiments for PRRSV and SN-GFP-M interaction also were studied. The6kinds of SN-GFP-M vector and a contrast GFP-M containing the SN transmembrane M segments were transfected and expressed into293T cells to examine the binding ability with PRRSV by Immunofluorescence experiments. The pig and cow SN wild type chimera protein,3kinds of pSN mutant type, a cSN mutant type, and a contrast GFP-M were performed binding activity examination. The result was similar with FAR-WB.
     (7) The above experimental results showed that pSN sites of T3、T78and S107were of great importance for binding with PRRSV, especially S107.
     (8) The pSN wild-type and the PRRSV virus had a strong binding ability. In our experiment, some amino acids were replaced from pig to cow in pSN. Pig mutant type pSN-T78V, pSN-T3V especially pSN-S107V reduced binding ability of the virus. But, cow cSN of the107replaced for pig as cSN-V107S, it could restore part of the binding ability of the virus from bioinformatics analysis. The mutant type cSN-V3T-V78T-V107S-GFP also could bind with some PRRSV. So, it could be inferred that these key sites are very important and special for resistance in different breeds of pig and other species infection by PRRSV.
引文
1崔艳芳.液体高分辨核磁共振在蛋白质研究中的方法及其应用.[博士学位论文].中国科学院研究生院:武汉物理与数学研究所,2003.
    2操继跃.猪呼吸系统感染性疾病药物治疗.养殖与饲料,2005,4:39-43.
    3陈炎,戴成吉.浅谈猪瘟病毒,猪圆环病毒,猪蓝耳病病毒的致病机理.中国猪业,2008,3:28-31.
    4.丁彦蕊,蔡宇杰,孙俊.用同源建模法探索提高脂肪酶的耐热性.计算机与应用化学,2007,24:1535.
    5仇华吉,童光志,郭宝清,王柳,张绍杰,王玫,于力,刘宝全.猪生殖-呼吸道综合征病毒(PRRSV) CH-la株N基因的分子克隆,序列测定及其比较分析.中国畜禽传染病,1998,4:29-34.
    6戴杰.猪繁殖与呼吸综合症病毒引发的免疫抑制.内蒙古畜牧科学,2002,4:15-18.
    7丰秀静,曹少先,孟春花,刘铁铮,王锋.猪对PRRSV易感性差异的研究进展.畜牧与兽医,2010,12:032.
    8冯丽丽.PRRSV ADE途径感染对猪肺泡巨噬细胞TNF-α的表达调控.[硕士学位论文].郑州:河南农业大学,2009.
    9郭宝清,陈章水.从疑似PRRS流产胎儿分离PRRSV的研究.中国畜禽传染病,1996:1-5.
    10郭莹莹,吴春艳,王靖飞.禽流感分离株GD/1/96 (H5N1)非结构蛋白结构建模.中国预防兽医学报,2010:171-174.
    11贺光,孙开来.生物信息学在蛋白质研究中的应用.国外医学遗传学分册,2002,25:156-158.
    12江凡.蛋白质空间结构的实验技术和理论方法.物理,2007,36:0-0.
    13江云波,肖少波,谢甜甜,陈焕春.猪繁殖与呼吸综合征病毒(PRRSV) GP5-M在大肠杆菌中的融合表达及其ELISA诊断方法的建立.生物工程学报,2005.2:15-20.
    14梁刚锋.蛋白质二级结构的建模与预测.[硕士学位论文].长沙:国防科学技术大学,2005.
    15李丽琴.高致病性猪蓝耳病弱毒疫苗与灭活苗免疫特性的研究.[硕士学位论文].北京:中国农业科学院,2010.
    16雷文福.最急性型猪蓝耳病的防控.福建畜牧兽医,2010,32:46-47.
    17刘萍,陈苗苗,乔莉萍,王凡,刘学荣,牟克斌,黄银君.猪繁殖与呼吸综合征病毒致病机理的研究进展.中国畜牧兽医,2010:158-161.
    18李清州,达龙珠,鲍登克,陈海燕,杨春英,刘毓霞,乔松林.猪繁殖与呼吸综合征病毒细胞受体研究进展.动物医学进展,2010,31:100-103.
    19雪芽,方维焕,猪生殖与呼吸综合征病毒的分子生物学研究进展.中国兽医科技,2001,31:14-17.
    20宁正元,林世强.蛋白质结构的预测及其应用.福建农林大学学报:自然科学版,2006,35:308-313.
    21靳利霞,唐焕文.蛋白质结构预测方法简述.自然杂志,2001,23:217-221.
    22陆杰,王静康.蛋白质沉淀结晶研究进展.化学工程,2001,29:52-56.
    23刘辉,熊金凤,邹浩勇,陈杨,杨维红,何启盖.猪瘟病毒,猪繁殖与呼吸障碍综合征病毒和乙型脑炎病毒多重RT-PCR检测方法的建立.华中农业大学学报,2008,27:12-18.
    24李华,杨汉春,黄芳芳,刘平黄,高云,陈艳红.猪繁殖与呼吸综合征病毒感染抑制猪瘟疫苗的免疫应答.中国兽医学报,2001,21:219-222.
    25刘光清,云涛,王根荣,倪征.猪生殖与呼吸综合征病毒的基因组及致病的分子基础.病毒学报,2007,23:79-83.
    26兰海楠,赵小丽,闫峰,王珊珊,吴杭格,宋海龙,郑鑫.猪蓝耳病病毒CH-IR株(PRRSV-CH-IR)在猴肾细胞(Marc-145)中的培养.见:赖长华主编,2008年学术年会暨第六届全国畜牧兽医青年科技工作者学术研讨会论文集.中国畜牧兽医学会.北京,2008,北京:中国畜牧兽医学会,2008.
    27阳芳平,徐慧,郭爱敏,李燕峰.分子模拟方法及其在分子生物学中的应用.生物信息学,2005,3:33-36.
    28潘青梅.一起生猪高热病的诊疗报告.畜牧兽医科技信息,2012:70-71.
    29彭长凌,高崧,刘秀梵PRRS人工单独感染及其与PCV2人工联合感染的病理学比较.徐州医学院学报,2006,26:49-52.
    30乔松林.猪IgG Fc受体及其介导PRRSV抗体依赖增强作用研究.[博士论文].郑州:河南农业大学,2009.
    31.任钰为,江一波,张淑君.唾液酸黏附素SN及其介导PRRSV感染猪肺泡巨噬细胞的研究进展.湖北农业科学,2011,50:2168-2173.
    32田宗祥.猪胚胎死亡的原因分析.猪业科学,2008,7:017.
    33童武,周艳君,肖少波,童光志,陈焕春.2010年国内部分省份猪场常见病毒性疾病的病原学调查.中国动物传染病学报,2011,19:1-7.
    34邵烈刚.猪繁殖与呼吸综合征病毒核衣壳蛋白单克隆抗体的制备.[硕士学位论文].重庆:西南大学,2009.
    35谌容,陈敏,杨春贤,廖志华.基于SWISS-MODEL的蛋白质三维结构建模.生命的化学,2006,26:54-56.
    36孙泉云,刘红,赵秋华,周光胜.猪繁殖和呼吸综合征感染产生的免疫干扰和继发感染的调查.上海畜牧兽医通讯,1998,6:27.
    37徐国恒.细胞骨架——肌动蛋白纤维.生物学通报,2005,40:43-43.
    38徐辉,李晓成,陈伟杰.“猪高热病”的流行病学调查与主要病因分析.中国动物检疫,2007,24:19-21.
    39许红民,李维华,李红芬.肾细胞癌的免疫组化研究——角蛋白,波形蛋白的表达.解放军医学杂志,1988,3:010.
    40谢印乾,沈志强,王桂花,张锋钢,高云英.猪繁殖与呼吸综合征免疫学研究进展.动物医学进展,2006,27:6-10.
    41肖吴君,杨继生.猪繁殖与呼吸综合征的诊断与防制.养殖技术顾问,2011:90-91.
    42薛青红,张彦明,刘湘涛,郎洪武,邹敏,高金源,邓永.中国部分地区2005-2007年猪繁殖与呼吸综合征病毒分离株ORF5基因和Nsp2基因遗传变异分析.中国农业科学,2009,42:1805-1812.
    43殷志祥.蛋白质结构预测方法的研究进展.计算机工程与应用,2004,40:54-57.
    44杨汉春.猪免疫抑制性疾病的流行特点与控制对策.中国畜牧兽医,2004,31:41-43.
    45杨克礼,田永祥,梁望旺,段正赢,刘泽文,郭锐,周丹娜,袁芳艳.猪肺泡巨噬细胞的分离与原代培养.国外畜牧学(猪与禽),2011,4:027.
    46阎隆飞,孙之荣.蛋白质分子结构.北京:清华大学出版社有限公司,1999,38-45.
    47杨生海,殷宏,刘永生,张杰,陈豪泰,孙德惠.猪繁殖与呼吸综合征.动物医学进展,2008,29:102-106.
    48汪家政,生物化学,范明.蛋白质技术手册.北京:科学出版社,2000,37-45.
    49万遂如.猪蓝耳病的流行特点与防控技术.吉林畜牧兽医,2006,12:23-26.
    50吴志新,何辉,宋天保.波形蛋白在肾细胞癌组织中的表达及其临床意义.陕西医学杂志,2006,35:1425-1427.
    51吴建秋,景在平.乙酰肝素酶——细胞与基质间相互作用的新型调节剂.中国病理生理杂志,2002,18:580-583.
    52王猛,刘永生,张杰.猪繁殖与呼吸障碍综合征病毒结构蛋白的研究进展与应用.中国农学通报,2010,26:1-6.
    53王凤雪,师新川,温永俊,胡嘉欣,刘准,武华.高致病性PRRSVNsp2基因RNA干扰对病毒复制的影响.生物技术通报,2012:132-137.
    54伟铭,姚建.人肾间质细胞培养的研究.上海第二医科大学学报,1998,18:455-457.
    55王玉娥,杨汉春,郭鑫,陈艳红,查振林.用噬菌体随机肽库分析猪繁殖与呼吸综合征病毒(PRRSV)N蛋白单克隆抗体识别的表位.农业生物技术学报,2004,12:175-178.
    56吴艳,朱平.同源性检测矩阵法的建立及应用倡.计算机应用研究,2012,29.
    57文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术.力学进展,2003,33.
    58郑浩平.蛋白质分子电子结构的第一性原理从头计算.物理学进展,2000,20:291-300.
    59周盛华,崔尚金.猪繁殖与呼吸综合征病毒的分子生物学.畜禽业,2008,227:10-12.
    60张红英,崔沛,崔保安,王学斌,陈红英,金钺,赵献敏,赵金凤.板蓝根多糖对PRRSV弱毒苗免疫猪抗体和T细胞亚群的影响.中国农学通报,2008,24.
    61曾炳佳,曹以诚,杜正平,陈晓曦.同源建模关键步骤的研究动态.生物学杂志,2008,25:7-10.
    62周傲,陈星,张滢寅,张淑君.CD169基因及其蛋白性质和结构的生物信息学分析.中国农学通报,2011,27:52-59.
    63张波,杜红红.猪繁殖与呼吸综合征研究进展.中国畜牧兽医文摘,2011,27:119-120.
    64朱维良,蒋华良,陈凯先,嵇汝运,曹阳.生物大分子体系量子化学计算方法新进展.化学进展,1999,11:367-375.
    65卓曲,武力,陈宝妮,蔡鑫华,冯宝仪.蓝耳病病毒对猪肺泡巨噬细胞的影响.养猪,2009,5:037.
    66张林吉,李明义,杜元钊,刘秀梵.猪繁殖与呼吸综合征病毒分子结构与功能研究进展.上海畜牧兽医通讯,2007.
    67周伦江,王隆柏,方勤美,吴学敏,车勇良,陈如敬,魏宏,庄向生.高致病性猪繁殖与呼吸综合征病毒感染MARC-145细胞的差异蛋白.中国农业科学,2012,45:786-793.
    68章漳,王硕,邱宏,王峥涛,丁侃.硫酸乙酰肝素蛋白聚糖与病毒感染.中国医疗前沿,2009.
    69张青娴,王克领,张立宪,郎利敏,游一,郑万录.高致病性蓝耳病的研究进展.中国畜牧兽医,2008,35:105-107.
    70周艳,郑海红,高飞,田德斌,袁世山.猪繁殖与呼吸综合征病毒RNA依赖性RNA聚合酶中SDD功能区的突变分析.中国科学:生命科学,2011,41:649-659.
    71. Azuma T, Hirai M, Ito S, Yamamoto K, Taggart RT, Matsuba T, et al. Expression of cathepsin E in pancreas:a possible tumor marker for pancreas, a preliminary report. International journal of cancer 1996,67:492-497.
    72 An TQ, Tian ZJ, He YX, Xiao Y, Jiang YF, Peng JM, et al. Porcine reproductive and respiratory syndrome virus attachment is mediated by the N-terminal domain of the sialoadhesin receptor. Veterinary microbiology 2010,143:371-378.
    73 Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M. CHARMM:A program for macromolecular energy, minimization, and dynamics calculations. Journal of computational chemistry 1983,4:187-217.
    74 Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In:SC 2006 Conference, Proceedings of the ACM/IEEE:IEEE; 2006. pp.43-43.
    75 Bloemraad M, de Kluijver EP, Petersen A, Burkhardt GE, Wensvoort G. Porcine reproductive and respiratory syndrome:temperature and pH stability of Lelystad virus and its survival in tissue specimens from viraemic pigs. Veterinary microbiology 1994,42:361-371.
    76 Bendtsen JD, Nielsen H, Von HG, Brunak S. Improved prediction of signal peptides:SignalP 3.0. J Mol Biol 2004,340:783-795.
    77 Blom N, Sicheritz PT, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004,4:1633-1649.
    78 Buechler C, Ritter M, Orso E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger receptor CD 163 expression in human monocytes and macrophages by pro-and antiinflammatory stimuli. Journal of Leukocyte Biology 2000,67:97-103.
    79 Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography 2009,66:12-21.
    80 Charerntantanakul W, Platt R, Johnson W, Roof M, Vaughn E, Roth JA. Immune responses and protection by vaccine and various vaccine adjuvant candidates to virulent porcine reproductive and respiratory syndrome virus. Veterinary immunology and immunopathology 2006,109:99.
    81 Couvreur J, Azuma T, Miller D, Rocchi M, Mohandas T, Boudi F, et al. Assignment of cathepsin E (CTSE) to human chromosome region 1 q31 by in situ hybridization and analysis of somatic cell hybrids. Cytogenetic and Genome Research 2008,53:137-139.
    82 Corrada D, Dursi P, Botti S, Luperini A, Milanesi L, Rovida E.3D-Structure Prediction of the Modular Protein Sialoadhesin Using a Multi-step Modelling Strategy. In:Sysbiohealth Symposium Medicine and disease:a system biology perspective:BUP-Bononia University Press; 2008.
    83 Calvert JG, Slade DE, Shields SL, Jolie R, Mannan RM, Ankenbauer RG, et al. CD 163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. Journal of virology 2007,81:7371-7379.
    84 Dokland T. The structural biology of PRRSV. Virus research 2010,154:86-97.
    85 Ducreux J, Crocker PR, Vanbever R. Analysis of sialoadhesin expression on mouse alveolar macrophages. Immunology letters 2009,124:77-80.
    86 Dea S, Gagnon C, Mardassi H, Pirzadeh B, Rogan D. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates. Archives of virology 2000,145:659-688.
    87 Delputte PL, Nauwynck HJ. Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. Journal of virology 2004,78:8094-8101.
    88 Duan X, Nauwynck HJ, Favoreel HW, Pensaert MB. Identification of a putative receptor for porcine reproductive and respiratory syndrome virus on porcine alveolar macrophages. Journal of virology 1998,72:4520-4523.
    89 Duan X, Nauwynck H, Pensaert M. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Archives of virology 1997,142:2483-2497.
    90 Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp:computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic acids research 2006,34:W116-W118.
    91 Durocher JR, Payne RC, Conrad ME. Role of sialic acid in erythrocyte survival. Blood 1975,45:11-20.
    92 Delputte PL, Van GH, Favoreel HW, Hoebeke I, Delrue I, Dewerchin H, et al. Porcine sialoadhesin (CD169/Siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages. PloS one 2011,6:e16827.
    93 Delputte P, Vanderheijden N, Nauwynck H, Pensaert M. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. Journal of virology 2002,76:4312-4320.
    94 Eswar N, Webb B, Marti RMA, Madhusudhan M, Eramian D, Shen My, et al. Comparative protein structure modeling using Modeller, current protocols in bioinformatics 2006:5.6.1-5.6.30.
    95 Fabriek BO, Dijkstra CD, Vanden BTK. The macrophage scavenger receptor CD 163. Immunobiology 2005,210:153-160.
    96 Forsberg R, Storgaard T, Nielsen HS, Oleksiewicz MB, Cordioli P, Sala G, et al. The genetic diversity of European type PRRSV is similar to that of the North American type but is geographically skewed within Europe. Virology 2002,299:38-47.
    97 Geisler N, Hatzfeld M, Weber K. Phosphorylation in vitro of vimentin by protein kinases A and C is restricted to the head domain. European Journal of Biochemistry 1989,183:441-447.
    98 Graversen JH, Madsen M, Moestrup SK. CD 163:a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. The international journal of biochemistry & cell biology 2002,34:309.
    99 Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PDB Viewer:An environment for comparative protein modeling. Electrophoresis 1997,18:2714-2723.
    100 Fermentas Company. The protocol of the first Strand cDNA Synthesis Kit, Version; Boston, MA, USA:Thermo Scientific,2010.
    101 Jiang W, Jiang P, Li Y, Tang J, Wang X, Ma S. Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice. Veterinary immunology and immunopathology 2006,113:169-180.
    102 Jiao W, Ji GS, Sai JC, Tao L, Kun W, Ze KZ. A preliminary study on prokaryotic expression of ORF6 gene of porcine reproductive and respiratory syndrome virus HB-3 (cz) strain. Chinese Journal of Animal Health Inspection 2009,26:34-36.
    103 Jiang W, Jiang P, Wang X, Li Y, Du Y. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus. Virus research 2008,136:50.
    104 Kim JK, Fahad AM, Shanmukhappa K, Kapil S. Defining the cellular target (s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. Journal of virology 2006,80:689-696.
    105 Kleiboeker SB, Schommer SK, Lee SM, Watkins S, Chittick W, Polson D. Simultaneous detection of North American and European porcine reproductive and respiratory syndrome virus using real-time quantitative reverse transcriptase-PCR. Journal of veterinary diagnostic investigation 2005,17:165-170.
    106 Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007,23:2947-2948.
    107 Letunic I, Doerks T, Bork P. SMART 7:recent updates to the protein domain annotation resource. Nucleic acids research 2012,40:D302-D305.
    108 Lindahl E, Hess B, Van DSD. GROMACS 3.0:a package for molecular simulation and trajectory analysis. Molecular modeling annual 2001,7:306-317.
    109 Lee YJ, Park CK, Nam E, Kim SH, Lee OS, Lee DS, et al. Generation of a porcine alveolar macrophage cell line for the growth of porcine reproductive and respiratory syndrome virus. Journal of virological methods 2010,163:410-415.
    110 Li Y, Xie M, Zhang K. Diagnosis of mareks disease by paper immunogold-silver staining (P-IGSS). Chinese Journal of Animal and Poultry Infectious Diseases 1991.
    111 Mohammadi H. Molecular Characterization of the Nucleocapsid Protein of Arteriviruses:The University of Guelph; 2010.
    112 Meulenberg JJ. PRRSV, the virus. Veterinary Research 2000,31:11-21.
    113 Misinzo GM, Delputte PL, Nauwynck HJ. Involvement of proteases in porcine reproductive and respiratory syndrome virus uncoating upon internalization in primary macrophages. Veterinary Research 2008,39:55-55.
    114 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry 2004,25:1605-1612.
    115 Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. Journal of computational chemistry 2005,26:1781-1802.
    116 Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham III TE, DeBolt S, et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications 1995,91:1-41.
    117 Ponder J,Richards F. TINKER molecular modeling package. J, Comput, Chem 1987,8:1016-1024.
    118 Raiber EA, Tulone C, Zhang Y, Martinez PL, Steed E, Sponaas AM, et al. Targeted delivery of antigen processing inhibitors to antigen presenting cells via mannose receptors. ACS Chemical Biology 2010,5:461-476.
    119 Shen G, Jin N, Ma M, Jin K, Zheng M, Zhuang T, et al. Immune responses of pigs inoculated with a recombinant fowlpox virus coexpressing GP5/GP3 of porcine reproductive and respiratory syndrome virus and swine IL-18. Vaccine 2007,25:4193-4202.
    120 Snijder EJ, Meulenberg J. The molecular biology of arteriviruses. Journal of General Virology 1998,79:961-979.
    121 Vanderheijden N, Delputte PL, Favoreel HW, Vandekerckhove J, Van DJ, Van WPA, et al. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. Journal of virology 2003,77:8207-8215.
    121 Van GH, Van BW, Van DJ, Delputte PL, Nauwynck HJ. Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus. Journal of virology 2010,84:3101-3105.
    122 Van BW, Van GH, Zhang JQ, Crocker PR, Delputte PL, Nauwynck HJ. The M/GP5 glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner. PLoS pathogens 2010,6:e 1000730.
    123 Van RPA, Wellenberg GJ, Hakze-van DHR, Jacobs L, Moonen PL, Feitsma H. Detection of economically important viruses in boar semen by quantitative RealTime PCRTM technology. Journal of virological methods 2004,120:151-160.
    124 Yoon KJ, Wu LL, Zimmermen JJ, Hill HT, Platt KB. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs. Viral immunology 1996,9:51-63.
    125 Wang F, Qiu H, Zhang Q, Peng Z, Liu B. Association of two porcine reproductive and respiratory syndrome virus (PRRSV) receptor genes, CD 163 and SN with immune traits. Molecular biology reports 2012,39:3971-3976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700