用户名: 密码: 验证码:
饮用水氯化消毒副产物污染控制技术及健康风险评价的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1974年首次发现氯消毒副产物DBPs氯仿以来,人们非常关注由此带来的致畸、致癌、致突变等慢性毒性对人类健康的危害,世界各国开展了有关DBPs检测分析、处理、以及风险研究的工作,以预测区域饮用水消毒副产物的人体健康影响。饮用水消毒副产物的区域研究是环境安全领域的热点问题之一。
     本文研究了饮用水氯消毒副产物的来源及种类、氯消毒副产物的鉴定及分析技术、净化控制技术以及健康风险,重点探讨THMs和HAAs的安全控制技术和健康风险评价技术。针对钱塘江流域的饮用水安全问题,调查分析了衢县航埠(江山港)、衢州龙游(衢江)、兰溪游埠(衢江)、兰溪市区(兰江)、淳安威坪(新安江)、建德梅城(新安江)、桐庐横村(分水江)、富阳(富春江)、萧山义桥(浦阳江)、萧山章正(钱塘江)、萧山闻堰(钱塘江)、杭州九溪(钱塘江)、杭州南星桥(钱塘江)等13个水厂的THMs (CHC13、CHCl2Br、CHClBr2)和HAAs (MBAA、DCAA、BCAA、TCAA)氯消毒副产物的存在水平,研制了安全的活性炭-壳聚糖净水吸附剂,研究吸附净化CDBPs技术,在细胞水平上深入探讨了MBAA、DCAA、TCAA、BCAA、BDCM、DBCM和.CHCl3等7种DBPs的细胞凋亡毒理效应,初步评价了钱塘江流域饮用水致癌的潜在健康风险。研究结果如下:
     (1)钱塘江流域饮用水中氯消毒副产物处于相对低含量水平,各江水质的饮用水厂出水氯消毒副产物总体水平和DBPs中类存在差异。钱塘江流域15个水厂检测出13个加氯消毒剂的水厂的消毒副产物远低于国家饮用水标准,83.3%的水厂饮用水中HAAs含量大于THMs;冬季水厂出水HAAs和THMs平均浓度分别是5.87μg/L和3.34μg/L, HAAs浓度范围为0.44-13.72μg/L、THMs为0.21~15.23μg/L,其中CHCl3是THMs最普遍存在的物质,MBAA和TCAA是HAAs中普遍存在的物质;兰江段兰溪市水厂氯消毒副产物总浓度水平最高,其次为衢江段龙游、富春江段富阳、浦阳江段义桥、钱塘江段南星桥。
     (2)钱塘江源水中有机物主要是小分子量的溶解性有机物和大分子量的苯衍生物。钱塘江流域源水中DOC主要分布在分子量<2K Da,占全部分布比例的52.2%;其次是分子量5K Da-10KDa之间占18.9%。UV-254在>100K Da区间,占全部分布比例的97.9%。THMFP的主要分布区间为<2K Da,而HAAFP则以2-5K Da分子量物质为主。
     (3)自制了安全的DBPs净化壳聚糖-活性炭吸附剂。吸附剂产品直径为1-1.5mm、比表面积为303.8 m2/g、具有较大的孔容的颗粒型壳聚糖一活性炭吸附剂,该技术已于2005年获得中国发明专利。吸附剂对THMs弱极性物质具有较高吸附效率,对CHCl3和CHBrCl2的去除率可以达到79.67%和87.66%,吸附平衡时间为3小时,符合Freundrich吸附等温式,pH值和温度对净化效率的影响较小。
     (4) THMs和HAAs能诱导细胞凋亡。七种消毒副产物在O.1μg/-10μg/L的范围内,诱导2小时,均能明显地引起鲫鱼淋巴细胞发生凋亡;低剂量(0.1μg/L,2h)诱导实验表明,低氯代的MBAA、BCAA和DBCM诱导组产生明显的早期细胞凋亡细胞形态学特征。分子结构中含有2-3个氯原子的DCAA、TCAA、BCAA、CHC13和BDCM诱导组产生明显的晚期细胞凋亡细胞形态学特征;流式细胞仪的定量测定结果表明七种消毒副产物引起细胞凋亡的能力为TCAA> CHC13>BDCM>DCAA>DBCM>BCAA>MBAA.
     (5)钱塘江流域饮用水氯消毒副产物THMs的暴露健康风险低。钱塘江流域THMs平均癌风险为3.59×10-5,富阳地区THMs暴露癌风险最高达1.48×10-4,CHClBr2是引起THMs癌风险的最主要致癌因子,癌风险贡献率达60%以上;钱塘江流域饮用水THMs的非致癌性风险评价结果表明,流域危险指数平均危险指数为6.99×10-8,最高与最低地区分别为兰溪(2.33×10-7)和章正(1.08×10-8)。
With the public health triumph of the 20th century in chemical disinfection of water for dramatic decreasing in waterborne diseases, chronic exposure to a very large number of chlorinated disinfection byproducts(CDBPs),which formed through reaction of the chlorine disinfectant with naturally occurring inorganic and organic material in the source water. The health effects and risk of DBPs have been focused in the range of world.
     This thesis provides an overview of CDBPs research on pollution control and risk assessment. The purpose is to address concerns related to CDBPs pollution control technology and health risk from levels of CDBPs in drinking water to impossible control technology to exposure within Qiantangjiang watershed in Zhejiang province, China.. Seven types of CDBPs were studied including THMs (CHC13, CHCl2Br and CHClBr2) and HAAs (MBAA, DCAA, BCAA and TCAA) in thirteen drinking water plants, located in Jiangshan Harbor, Qu River, Lan River, Xinan River, Fenshui River, Fuchun River, Puyang River in the watershed. The research results are showed as follows:
     (1) The levels of CDBPs in 13 drinking water plants with chlorine disinfectants of the watershed were relatively low, and there were significant differences between total CDBPs levels and CDBPs type.the levels of HAAs were higher than THMs at 83.3% of drinking water plants; the average levels of HAAs and THMs in the finished water were 5.87μ.g/L and 3.34μg/L, respectively in winter; the levels of HAAs were between 0.44 and 13.72μg/L and the levels of THMs were between 0.21 and 15.23μg/L; CHC13 was the most detected THMs, and MBAA and TCAA were the most detected HAAs; the total CDBPs levels in Lanxi of Lan River were the highest, and secondly in Longyou of Qu River, Fuyang of Fuchun River, Duanyiqiao of Puyang River and Nanxingqiao of Qiantang River.
     (2) The dissolved small molecular weight organic compounds and big molecular weight aromatic substance were the main organic compounds in the source water of Qiantang River. The dissolved organic carbons (DOC) in the source water of Qiantang River were mainly distributed lower than 2K Dalton molecular weights, which the proportion was 52.2%; secondly, the proportion of the molecular weights distributed between 5K and 10K Dalton was 18.9%; according to the UV-254 detection the proportion of the molecular weights that were>100K Dalton was 97.9%. The molecular weights of THMFP were mainly below 2K Dalton, but the molecular weights of HAAFP were between 2K and 5K Dalton.
     (3) A kind of safety activated carbon-chitosan water-cleaning adsorbent was modified. The diameter of the adsorbent was 1 to 1.5 mm, and the specific surface area was 303.8 m2/g. This adsorbent had very high cleaning efficiency for THMs, and the efficiencies for CHC13 and CHBrCl2 were 79.67% and 87.66%, respectively; the adsorption equilibrium time was only three hours; both pH and temperature have little influence on the cleaning efficiency. This modified technology has obtained the Chinese invention patent in 2005.
     (4) Both THMs and HAAs can induce apoptosis. All the seven CDBPs can induce obvious apoptosis on crucian carp(Carassius auratus) lymphocytes in vitro for two hours at the exposed levels of 0.1μg/L and 10μ.g/L. The low exposed level (0.1μg/L) induction experiments showed that typical morphological characteristics of early apoptosis could be found after the induction by MBAA, BCAA and DBCM which were low chlorine substituted compounds, however typical morphological characteristics of later apoptosis could be observed after the induction by TCAA, BCAA, CHCl3 and BDCM which have 2-3 chlorine atoms in the molecular structures. According to the quantitative determination by flow cytometry, the apoptosis induction abilities of all the seven CDBPs were TCAA>CHCl3>BDCM>DCAA>DBCM>BCAA>MBAA.
     (5) The exposure health risk of THMs in the watershed of Qiantang River was low. The average cancer risk of THMs in the watershed was 3.59×10-5, but the cancer risk of THMs in Fuyang area was up to 1.48×10-4. Among all the THMs, CHClBr2 was the main carcinogenic factor with the cancer contribution efficiency of over 60%. The non-cancer risk assessment results also showed that the average risk index in the watershed was 6.99×10-8, and Lanxi and Zhangzheng were the highest with the risk index of 2.33×10-8 and 1.08×10-8, respectively.
引文
(1)Amy G.,Chadik P.A..,Chowhury Z.K.. Developing models for predicting trihalomethane formation potential and kinetics. J.Am.Water Works Assoc., 1987,79(7):89-97
    (2)Ashbolt N.J..Risk analysis of drinking water microbial contamination versus disinfection by-products(DBPs).Toxicology.2004,198:255-262
    (3)Bao M.L., Griffini O.,Santianni D.,etal.Removal of bromate ion from water using granular activated carbon. Water Research.1999,33(13):2959-2970.
    (4)Bellar T.A.,Lichtenberg J.J.,Kroner R.C.The occurrence of organohalides in chlorinated drinking water. J. Am. Water Works Assoc.1974,66(12):703-706
    (5)Benderitter M, Durand V, Caux C, et al. Clearance of radiation-induced apoptotic lymphocytes:Ex vivo studies and an in vitro co-culture model [J]. Radiation research,2002,158:464-474
    (6)Bove, F.J., Fulcomer, M.C., Klotz, J.B., Esmart, J., Duf.cy, E.M., Savrin, J.E., 1995. Public drinking water contamination and birth outcome. Am. J. Epidemiol. 141,850-862.
    (7)Boorman G.A., Dellarco V., Dunnick J. K, Chapin R.E., Hunter S., Hauchman F., Gardner H., Cox M., Sills R.C..Drinking water disinfection byproducts:Review and approach to toxicity evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 1999.107:207-217
    (8)Cannon F.,Snoeyink V.,Lee R.,Dagois G.,Dewolfe J..Effect of calcium on thermal regeneration of GAC. J.Am.Water Works Assoc.1993,84,73-80
    (9)Cantor, K.T.. Drinking water andcancer. Cancer Causes Control,1997,8: 292-308.
    (10)Cantor K.P.,Lynch C.F.,Hildesheim M.E.,et al..Drinking water source and chrorination by-products I.Risk of bladder canner. Epidemiology,1998,9(1):21-28
    (11)Chung Y.C., Wang H.L., Chen Y.M.et al.Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens.Bioresource Technology,2003,88:179-184.
    (12)Clark R.M., Goodrich J.A., Deininger R.A.. Drinking Water and Cancer Mortality. Sci. Total. Environ.1986,53:153-172
    (13)Craun G.F,1993. Safety of water disinfection:balancing chemical and microbial risks.International Life Science Institute,Washington,DC.
    (14)Coleman, W. E.; Munch, J. W.; Kaylor, W. H.; Streicher, R. P.; Ringhand, H. P.; Meier, J. R. Environ. Sci. Technol.1984,18,674 681.
    (15)Davies, J.M., Mazumder,A.. Health and environmental policy issues in Canada: the role of watershed management in sustaining clean drinking water quality at surface sources. Journal of Environmental Management 68 (2003) 273-286
    (16)Deangelo AB, McMillan LP. The carcinogenicity of the chlorinated acetic acids. USEPA, Health Effect Research Laboratory, Cincinnati, Ohio,1988.
    (17)Desbrow C.,Routledge E.J.,Brighty G.C.,Sumpter J.P.,Waldcock M.. Environ.Sci.Technol.1998,32:1549-1558
    (18)Dojlido J, Zbiec E., Swietlik R.. Formation of the haloacetic acids during ozonation and chlorination of water in Warsaw wter works (poland). Water Res., 1999,33(14):3111-3118
    (19)Doyle, T.J., Zheng, W., Cerhan, J.R., Hong, C.P., Sellers, T.A., Kushi, L.H., Polsom, A.R.,1997. The association of drinking water source and chlorination by-products with cancer incidence among postmenopausal women in Iowa:a prospective cohort study. Am. J. Public Health 87,1168-1176
    (20)Dunnick, J.K., Melnick, R.L.,1993. Assessment of the carcinogenic potential of chlorinated water:experimental studies of chlorine, chloramine, andtrihalometh anes. J. Natl. Cancer Inst.85,817-822.
    (21)Driedger M.S.,Eyles J.,Elliott S.D.,Cole D.C.. Constructing Scientific Authorities:Issue Framing of Chlorinated Disinfection Byproducts in Public Health.Risk Analysis.2002,22(4):789-793
    (22)Enanou D.B., Acobase F., Satajnbok P.. Analysis of haloacetic acids in water by a novel technique:simultaneous extraction-derivatization. Water Res., 1998,32(9):2798-2806
    (23)Gadgil, A.,1998. Drinking water in developing countries. Annual Review of Energy and the Environment 23,253-286.
    (24)Golstein P.. Cell death in us and others.Science,1998,281:1283
    (25)Emmert G.L.,Cao G.,Geme G.,Joshi N.,Rahman M..Methods for real-time measurement of THMs and HAAs in distribution systems.2004, AWWARF and AWWA, Denver, Co.
    (26)Fawell J.,Robinson D.,Bull R.,Birnbaum L.,Boorman G.,Butterworth B.,Daniel P.,Galal-Gorchev H.,Hauchman F.Julkunen P.,Klaassen C.,Krasner S.,Orme-Zavaleta J.,Reif J.,Tardiff R..Disinfection bu-products in drinking water:critical issues in health effects research.Environ.Health.Perspect.1997,105(1).
    (27)Flaten, T.P.. Chlorination of drinking water and cancer incidence in Norway. Int. J.Epidemiol,1992,21,6-15.
    (28)Fritz, J.S., Schenk, G.H.,1987. Quantitative Analytical Chemistry. Prentice-Hall, Englewood Cliffs, NJ, USA.
    (29)Gallagher, M.D., Nuckols, J.R., Stallones, L., Savitz, D.A.. Exposure to trihalomethanes and adverse pregnancy outcomes. Epidemiology,1998,9 (5), 484-489.
    (30)Gratt, L.B.,1996. Air Toxic Risk Assessment andManage ment. Van NostrandReinhold, New York, NY.
    (31)Gadgil, A.,1998. Drinking water in developing countries. Annual Review of Energy and the Environment 23,253-286.
    (32)Green D.R.,Reed J.C.. Mitochondria and apoptosis. Science,1998,281(28):1309-1312
    (33)Honglay C.P.. Removing aquatic organic substances by anion-exchange resin and activated carbon. Environment International.1999,25(5):655-662.
    (34)HKWSD (Hong Kong Water Supply Department),2002. Web-site: http://www.info.gov.hk/wsd/hkwint.htm.
    (35)Health Canada,1995,1995. A National Survey of Chlorinated Disinfection By-products in Canadian Drinking Water, Health Protection Branch, Cat. H46-2/95-197E.
    (36)Health Canada,1996. Guidelines for Canadian Drinking Water Quality. http://www.hc-sc.gc.ca/ehp/ehd/catalogue/bch_pubs/dwsixth.htm
    (37)Houston, A.C.,1913. Studies in Water Supply. Macmillan & Co., London.
    (38)Hsu, C.-H.,Jeng, W.-L., Chang, R.-M., Chien, L.-C., Han, B.-C. Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan. Environ. Res.2001,85,77-82.
    (39)Hutcheson, M.S., Dupuy, C.J., Matyas, B., McGeorge, L., Vanderslice, R.,1995. Reconciling science and policy in setting federal drinking water standards—four states'perspectives. Regulatory Toxicology and Pharmacology 22,11-23
    (40)Hwang, B.F., Jaakkola, J.J.. Water chlorination andbirth defects:a systematic review and meta-analysis. Arch. Environ. Health,2003,58:83-91.
    (41)IARC (International Agency for Research on Cancer),1987. Monograph on Chloroform. International Agency for Research on Cancer, Lyon.
    (42)ILSI. An evaluation of EPA's proposed guidelines for carcinogen risk assessment using chloroform and dichloroacetate as case studies:Report of an expert panel.New York:International Life Sciences Institute and Health and Environmental Sciences Institute.
    (43)ILSI Risk Science Institute,1998. Assessing the Toxicity of Exposure to Mixtures of Disinfection By-products, ILSI Risk Science Institute, Washington, DC.
    (44)Jo, W.K., Weisel, C.P., Lioy, P.J.. Routes of chloroform exposures and body burden from showering with chlorinated tap water. Risk Anal.1990,10, 575-580.
    (45)Julien F.,Baudu M.,Mazet M..Relationship between chemical and physical surface properties of activated carbon. Wat.Res.1998,32(11):3414-3424
    (46)Kargalioglu Y.,McMillan B.,Minear R.A.,Plewa M.J.. Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium. Teratogenesis,Carcinogenesis,Mutagenesis.2002,22:113-128
    (47)Kemenade B M L V, Weyts F A A, Debets R, et al. Carp macrophages and neutrophilic granulocytes secrete an interleukin-1-like factor [J]. Dev Comp Immunol,1995,19,59-70
    (48)Ketola R.A.,Virkki V.T.,Ojala M et al.Talanta,1997,44(3):373-382
    (49)Khan, E., Babcock, R.W., Suffet, I.H., Stenstorm, M.K..Biodegradable dissolved organic carbon for indication wastewater reclamation plant performance and treated wastewater quality. Water Environ. Res.1998.70, 1033-1040.
    (50)Kim, Y.M., Harrad, S., Harrison, R.M.. Levels and sources of personal inhalation exposure to volatile organic compounds. Environ. Sci. Technol.2002, 36,5405-5410.
    (51)Kim J.S., Chung Y., Shin D.C., Kim M.. Chlorination by-products in surface water treatment process. Desalination,2002,151:1-9
    (52)Kim K.S., Oh B.S., Kang J.W., et.al., Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Ozone-Science and Engineering,2005,27(1):69-79.
    (53)Kim M.H.,Yu M.J..Characterization of NOM in the Han river and evaluation of treatability using UF-NF membrane. Environmental Research,2005,97:116-123.
    (54)Koivusalo, M., Vartiainen, T.. Drinking water chlorination by-products and cancer. Rev. Environ. Health,1997,12:81-90.
    (55)Kopfler, F. C.; Melton, R. G.; Lingg, R. D.; Coleman, W. E. In Identification and Analysis of Organic Pollutants in Water; Ann Arbor Science:Ann Arbor, MI,1976; p 87.
    (56)Kramer, M.D., Lynch, C.F., Isacson, P., Hanson, J.W.. The association of waterborne chloroform with intrauterine growth retardation. Epidemiology. 1992,3,407-413.
    (57)Krasner S.W., McCuire MJ, Jacangelo J G, et al. J. AWWA,1995,87(10): 83-92
    (58)Krasner S.W.,1999. Chemistry of disinfection by-product formation.In:Singer,P.C. (Ed), Formation and Control of Disinfection By-Products in Drinking Water, American Water Works Association,Denver,CO,Chapter 2,pp:197-210
    (59)Kuivinen J; Johnsson H. Determination of trihalomethanes and some chlorinated solvents in drinking water by headspace technique with capillary column gas-chromatography. Water Res.,1999,33(5):1201-1208
    (60)Kurita K.,Sannant,Iwakuar Y.Studies on Chtin VI.Binding of metal cations[J].J Appl. Polym. Sci.1979,23:511-515.
    (61)Lafrance P.,Yaacoubi A.,Mazet M.. The influence of metal ions released by an activated carbon on the adsorption of organics:the role of calcium ions. Water Res.1988,22,1321-1329
    (62)Lee K.J., Kim B.H., Hong J.E., et al.. A study on the distribution of chlorination by-products(CBPs) in treated water in Korea. Water Res.,2000.35(12):2861-2872
    (63)Loos R.,Barcel D.. J.Chromatogr.A,2001,938(1/2):45-55
    (64)Magnuson M.L.,Kelty C.A..Anal.Chem.2000,72(10):2308-2312
    (65)Mazumder A.,Davies J.-M.. Health and environmental policy issues in Canada.the role of watershed management in sustaining clean drinking water quality at surface sources. J. Environment Management,2003,68:273-286
    (66)McGeehin, M.A., Reif, J.S., Becher, J.C., Mangione, E.J.. Case-control study of bladder cancer and water disinfection methods in Colorado. Am. J. Epidemiol. 1993,138,492-501.
    (67)Minissi, S., Ciccotti, E., Rizzoni, M.. Micronucleus test in erythrocytes of Barbus plebenius (Teleostei, Pisces) from two natural environments:a bioassay for the in situ detection of mutagens in freshwater. Mutat. Res.,1996,367, 245-251.
    (68)Mitch, William A.; Gerecke, Andreas C.; Sedlak, David L. A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater.Water.Res.,2003,37(15):3733-3741
    (69)Monarca, S., Pasquini, R., Scassellati Sforzolini, G..Mutagenicity assessment of different drinking water supplies before andafter treatments. Bull. Environ. Contam. Toxicol.1985,34:815-823.
    (70)Monarca S., Zani C., Richardson S.D.,Thruston Jr.A.D., Moretti M., Feretti D., Villarini M. A new approach to evaluating the toxicity andgenotoxicity of disinfected drinking wate.Water Res.2004,38:3809-3819
    (71)Morris R.D., Audet A.M., Angelillo I.F., Chalmers T.C., Musteller F.. Chlorination, chlorination byproducts and cancer:a meta-analysis.Am. J. Public Health.1992,82(7),955-963
    (72)Morris, R.D.. Drinking water andcancer. Environ. Health Perspect.1995,103 (Suppl.8),225-231
    (73)National Cancer Institute Report on Carcinogenesis Bioassay of Chloroform, Carcinogenesis Program, Division of Cancer Cause and Prevention, Bethesda, MD, Mar 1976.
    (74)National Interim Primary Drinking Water Regulations. Fed.Regist.1979,44, 68624.
    (75)Nieuwenhuijsen M.J.,Toledano M.B.,Eaton N.E.,Fawell J.,Elliott P..Chlorination Disinfection Byproducts in Water and Their Association with Adverse Reproductive Outcomes:a review. Occup Environ Med.2000,57:73-85
    (76)Nishijima W.,Fahmi,Mukaidani T.,Okada M.. DOC removal by multi-stage ozonation-biological treatment. Water Research,2003,37:150-154
    (77)Nikolaou A.D., Lekkas T. D., Golfinopoulos S. K., Kostopoulou M.N..Application of different analytical methods for determination of volatile chlorination by-products in drinking water. Talanta 2002,.56:717-726
    (78)Nil R S, Takeshi U, Yuzuru S. A double staining flow cytometric assay for the detection of steroid induced apoptotic leucocytes in comm.on carp (Cyprinus carpio). Dev Comp Immunol,2003,27,351-363
    (79)Nokes C.J., Fenton E., Randall CJ. et al.. Modeling the formation of brominated trihalomethanes in chlorinated drinking waters. Water Res.1999.33(17):3557-356.
    (80)Palacios M, Pampillon J F, Rodriguez ME.Organohalogenated compounds levels in chlorinated drinking waters and current compliance with quality standards throughout the European Union. Water Res,2000,34(3):1012-1016
    (81)Piechotta G, Lacorn M, Lang T, et al. Apoptosis in dab (Limanda limanda) as possible new biomarker for anthropogenic stress [J]. Ecotoxicology and environmental safety,1999,42:50-56
    (82)Pilotto, L.S.. Disinfection of drinking-water, disinfection by-products and cancer—what about Australia. Aust. J. Pub. Health,1995,19(1),89-93.
    (83)Razvigoroa M.,Budinova N., Minkova V.. Purification of water by activated carbons from apricot stones lignites and anthracite.Water Res.1998,32(7):2135-2139.
    (84)Reuber, M.D.. Carcinogenicity of chloroform. Environ. Health Perspect.1979, 31,171-182.
    (85)Reynaud S, Duchiron C, Deschaux P.3-Methylcholanthrene induces lymphocyte and phagocyte apoptosis in common carp(Cyprinus carpio L) in vitro [J]. Aquatic toxicoloty,2004,66,307-318
    (86)Richardson, S. D. Drinking Water Disinfection By-products. In The Encyclopedia of Environmental Analysis and Remediation; John Wiley & Sons: New York,1998; Vol.3, p 1398.
    (87)Richardson S.D., Thruston A.D.,Caughran T.V.,et al. Identification of New Drinking Water Disinfection Byproducts Formed in the Presence of Bromide. Environ.Sci.Technol.,1999,33(19):3368-3377
    (88)Rook, J. Formation of haloforms during chlorination of natural water. Water Treat. Exam.1974,23(2),234-243.
    (89)Sadiq R.,Rodriguez M.J.. Fuzzy synthetic evaluation of disinfection by-products-a risk-based indexing system. Journal of Environmental Management. 2004,73:1-13.
    (90)Schnoor, J.L., Nitzschke, J.L., Lucas, R.D., Veenstra, J.N.. Trihalomethanes yields as a function of precursor molecular weight. Environ. Sci. Technol.1979, 13,1134-1138.
    (91)Serodes J.-B., Rodriguez M.J.,Li H.,Bouchard C. Occurrence Of THMs And HAAs in experimental chlorinated waters of the Quebec city aera (Canada). Chemsphere,2003,51:253-263
    (92)Siddiqui, M.S., Amy, G.L., Murrhy, B.D. Ozone enhanced removal of natural organic matter from drinking water source. Water Res.1997,31,3098-3106.
    (93)Sohn J.,Gatel D.,Amy G. Monitoring and modeling of disinfection by-products. Environmental Monitoring and Assessment,2001,70:211-222
    (94)Sohn J.,Amy G,Cho J.,Lee Y.,Yoon Y.. Disinfectant decay and disinfection by-products formation model development:chlorination and ozonation by-products. Water Res.,2004,38:2461-2478
    (95)Teuschler LK, Gennings C, Stiteler WM, et al. A multiple-purpose design approach to the evalution of risks from mixtures of disinfection by-products.Drug Chem Toxicol,2002,23(1):307-321
    (96)Thurman, E.M.,1985. Organic Geochemical of Natural Waters. Kluwer Academic, Boston, MA, USA, pp.497-498
    (97)Tseng R.L.,Tseng S.K. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. J.Colloid Interface Sci.2005,287,428-437
    (98)Urbansky, E. T. J. Environ. Monit.2000,2,285291.
    (99)Urbansky E.T., Magnuson M.L..Analyzing Drinking water for disinfection byproducts Anal. Chem,2002; 74(9); 260 A-267 A.
    (100)USEPA,1986. Guidelines for Carcinogen Risk Assessment. U.S. Environmental Protection Agency, Washington DC. EPA/600/8-87/045.
    (101)USEPA, National primary drinking water regulations; Disinfectants and disinfection byproducts; Proposed rule. Federal Register,1994.59:145:38667.
    (102)USEPA,1995. Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction. Derivatization and Gas Chromatography with electron capture detection,552.2-11:8.3
    (103)USEPA,1996. ProposedGuid elines for Carcinogen Risk Assessment. U.S. Environmental Protection Agency, Washington DC. EPA/600/P-92/003C.
    (104)US Environmental Protection Agency. EPA Document No.815-F-98-010, GPO, Washington, DC,1998
    (105)USEPA,1999. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington DC. NCEA-F-0644 (Revisedd raft).
    (106)USEPA,2002. IntegratedRisk Information System (Electronic database). U.S. Environmental Protection Agency, Washington DC. Available on line: http://www.epa.gov/iris
    (107)Vartiainen, T., Liimatainen, A., Kauranen, P., Hiisvirta, L.. Relations between drinking water mutagenicity and water quality parameters. Chemosphere. 1988,17,189-202
    (108)Wagner C, Steffen R, Koziol C, et al. Apoptosis in marine sponges:a biomarker for environmental stress (cadmium and bacteria). Marine biology,1998,131 411-421
    (109)Wallace, L.A.. Comparison of risks from outdoor and indoor exposure to toxic chemicals. Environ. Health Perspect.1991,95,7-13.
    (110)Waller, K., Swan, S.H., De Lorenzo, G., Hopkins, B..Trihalomethanes in drinking water and spontaneus abortion.Epidemiology,1998,9:134-140.
    (111)Weisel, C.P., Jo, W.-K.. Ingestion, inhalation andd ermal exposure to chloroform and trichloromethane from tap water. Environ. Health Perspect. 1996104,48-51.
    (112)Weisel, C.P., Chen, W.J.,1994. Exposure to chlorination by-products from hot water uses. Risk Analysis 14,101-106.
    (113)White, G.C.,1992. The Handbook of Chlorination and Alternative Disinfectants, 3rdEdtion. Van Nostrand Reinhold, New York, NY.
    (114)WHO (WorldHealth Organization),1993. Guidelines for Drinking-Water Quality,2ndEdition. WHO, Geneva
    (115)World Health Organization. World Health Organization Guidelines for Drinking Water Quality (2nd ed.) Addendum to Volume 2.Health Criteria and Other Supporting Information. Geneva,1998
    (116)Weinberg H.S. Anal.Chem.,1999,71(23):801 A-808A
    (117)Wilcox, P., Williamson, S.. Mutagenic activity of concentratedd rinking water samples. Environ. Health Perspect.,1986,69:141-149.
    (118)Wu W.W., Benjamin M.M., Korshin, G.V. et al., Effects of Thermal Treatment on Halogenated Disinfection By-Products in Drinking Water. Water Res..2001,35(15):3545-3550.
    (119)Xie Y. F. Analyzing haloacetic acids using gas chromatography/mass spectrometry. Water Res.2001,35(6):1599-1602
    (120)Yang, C.Y., Chiu, H.F., Cheng, M.F., Tsai, S.S.. Chlorination of drinking water and cancer mortality in Taiwan. Environ. Res.1998,78,1-6.
    (121)Yang, C.Y., Cheng, B.H., Tsai, S.S., Wu, T.N., Lin, M.C., Lin, K.C.. Association between chlorination of drinking water and adverse pregnancy outcome in Taiwan. Environ. Health Perspect.2000,108 (8),765-768.
    (122)Yu, J.C., Cheng, L.-N.. Speciation and distribution of trihalomethanes in the drinking water of Hong Kong. Environ. Int.1999,25 (5),605-611.
    (123)Zhang M.M.,Li C.,Benjamin M.M.,Chang Y.J..Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment. Environ.Sci.Technol.,2003,37:1663-1669
    (124)Zhang X.R., Roger A.M., Sylvia E.B. Characterization of high molecular weight disinfection byproducts from chlorination of humic substances with/without coagulation pretreatment using UF-SEC-ESI-MS/MS. Environ.Sci.Tech..2005,39:963-972
    (125)Yoon, Jeyong; Choi, Youshik; Cho, Soonhang; Lee, Dongsoo. Low trihalomethane formation in Korean drinking water. The Science of the Total Environment,2003,302(1-3):157-166
    (126)董秉直,曹达文,范瑾初等,黄浦江水源的溶解性有机物分子量分布变化的特点.环境科学学报,2001,21(5):553-556.
    (127)方华丰,唐爱军,等.壳聚糖处理水中三氯甲烷的研究.环境导报,2000,1,19-20.
    (128)高娟,华珞,李贵宝,刘晓茹.生活饮用水水质标准发展及特点.世界标准化与质量管理.2005,5:51-55
    (129)杜精锐.钱塘江流域水系致突变性追踪研究.中华医学信息导报.2001,16(23):13-14
    (130)韩文亚,张彭义,祝万鹏,李雪婷.水中微量消毒副产物的光催化降解.环境科学,2005,26(3):92-95
    (131)黄崇元.甲壳素资源的综合利用与发展.湿法冶金,1995,53(3):4--18.
    (132)蒋庭大.甲壳素.北京:中国环境科学出版社,1995.
    (133)金鹿年,焦荔.钱塘江水资源的危机及防护.科技通报,1995,11(6):335-340
    (134)刘国廉.2000.细胞毒理学.军事医学科学出版社,北京.
    (135)马峥,张振良,于惠芳.活性炭对水中有机物去除的研究.环境保护.1999,5:41-44.
    (136)宁永成,有机化合物结构鉴定与有机波谱学,北京:清华大学出版社,1989.
    (137)谭欣,何振雄,霍爱群.非整比纳米TiO2-x膜光催化降解水中微量卤代烃[J].天津大学学报,2000,33(3):360-362
    (138)王占生,刘文俊,微污染水源饮用水处理.北京:中国建筑工业出版社,1999.
    (139)汪昆平,齐嵘,张昱,杨敏,邓荣森..5种颗粒活性炭对水中卤乙酸的等温吸附试验.环境科学.2005,26(3):96-99
    (140)马时雍主编.杭州的水.杭州出版社.2003
    (141)慧聪网水工业行业频道http://www.east001.com2005年3月7日11:20
    (142)董丽丽,黄骏雄.饮用水消毒副产物及其分析技术.化学进展,2005,17(2):350-358
    (143)钱学武.德国威斯巴登市锡约石台因水厂的制水工艺.中国给水排水,2005,21(5):104-106.
    (144)鄂学礼,凌波.饮用水深度净化与水质处理器.化学工业出版社.2004.北京
    (145)姚润丰 新华网2005年3月22日 中国发展门户网www.china.org.cn
    (146)王琳,王宝贞.饮用水深度处理技术.化学工业出版社.2002.北京.
    (147)朱建文,许阳,汪大翚.臭氧活性炭工艺在杭州南星桥水厂的应用.中国给水排水.2005,21(6):84-87
    (148)中华人民共和国卫生部(Minitry of Health of PRC),生活饮用水卫生规范(Hygiene Regulation of Drinking Water).北京,2001.1-8
    (149)张昱,杨敏,郭召海,何文杰,刘天亮,韩砚萍.日本几种不同类型的饮用水深度处理技术.给水排水.2005,31(5):32-36
    (150)张镇南,辛、辛汎峰,梁淑婷,以臭氧氧化及薄膜法降低生成消毒副产物之探讨.东海大学,1999,东海科学第一卷:79-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700