用户名: 密码: 验证码:
城市雨水径流污染控制与排水管道缺损状况量化评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表雨水径流污染与地下排水管道损漏是城市面源污染的主要来源,如何有效控制城市雨水径流污染与进行污水管道损漏评价与修复,是控制城市面源污染的关键。本文研究制备高效改性磷吸附剂,开发针对雨水径流的截流渗滤工艺技术,有效控制雨水径流污染;基于排水管道视频检测技术,以模糊数学方法为核心,建立排水管道缺损状况的综合评价模型,实现对我国2个城市部分排水管道缺损状况的量化评价。主要取得如下研究成果:1、采用硼氢化钠还原法成功制备了纳米铁,并用于对多种吸附材料的改性,处理雨水径流时,对其中磷的吸附容量最高提高至改性前的75倍,且可使出水中总磷(TP)浓度低于0.02mg/L;2、在我国南方A市试验区设计和实施道路雨水径流截流渗滤工艺,其对径流中悬浮固体(SS)、化学需氧量(COD)、总氮(TN)和总磷浓度的平均去除率分别为98.6%、65.4%、55.1%和92.6%;设计和实施绿地雨水径流原位渗滤工艺,其对不同水力负荷的模拟径流处理效果均较好,长期运行后,对SS和TP等的去除效率均稳定在60%左右;3、成功开发具有自主知识产权的管道视频检测机器人THUSIR-2,并用于对试验区内部分排水管道的缺损状况进行视频检测;4、采用模糊综合评判法(FCE)与层次分析法(AHP),综合考虑排水管道的密封性、稳定性和功能性指标,建立针对排水管道缺损状况的综合量化评价模型;5、利用所建立的评价模型,对我国南方2个城市的部分排水管道的视频数据进行计算评价,结果表明:A市所评价管道中,约30%管道属于严重缺损或紧急状况,主要缺损类型为管道变形与堵塞,约20%管道缺损属于中等状况,主要缺损类型为沉积物堵塞,其余管道为轻微缺损或良好状态;B市所评价管道中,约15%管道属于严重缺损状况,约15%管道属于中等缺损状况,主要缺损类型均为堵塞与接口错位,其余管道为轻微缺损或良好状态。
The rainwater surface runoff pollution and the underground sewer exfiltrationcaused by pipe defects are the two main sources of the urban non-point source pollution.How to effectively control the pollution from rainwater runoff and to assess andrehabilitate the sewer, becomes the key of controlling the urban non-point sourcepollution. In this study, several high adsorption capacity media were produced to adsorbphosphorus in rainwater runoff; novel rainwater collection and treatment processes weredeveloped to reduce the rainwater runoff pollution; a comprehensive sewer defectcondition evaluation model was established based on sewer pipe video inspection andfuzzy mathematic methods, and partial sewers in two southern Chinese cities werequantitatively assessed by the aforesaid model. The following conclusions came outwith this study:1. Nano iron particle was prepared using ferric ion reduction by NaBH4to modify phosphorus adsorption materials. The adsorption capacity of the modifiedmedia was increased at most up to75folds when treating phosphorous in rainwaterrunoff and the total phosphorus in the effluent was below0.02mg/L;2. A novel processcombining sedimentation and infiltration was designed and carried out to treat rainwaterrunoff from street in a southern Chinese city, City A. The system reached averageremoval efficiencies of98.6%,65.4%,55.1%and92.6%for SS, COD, TN and TP,respectively. An infiltration process was also built for the grassland rainwater runofftreatment, and it achieved high removal efficiencies under different hydraulic loadingrates. The removal efficiencies for SS and TP were around60%after a long periodoperation;3. An independently designed sewer inspection robot THUSIR-2was alsostudied and manufactured, and put into use for partial sewer video data collection inCity A.4. A comprehensive sewer defects evaluation model based on FuzzyComprehensive Evaluation (FCE) and Analytical Hierarchy Process (AHP) concerningthe function, structure and stability of the sewer was developed, which concerned all thedefects with different damage levels in one pipe during the evaluation and provided aquantitative index H to represent the defects conditions of the pipe;5. Partial sewervideo data from two southern Chinese cities, City A and City B, were analyzed by theaforesaid evaluation model, and results showed that, around30%of the pipes examined in City A were categorized in severe or urgent level, and the main occurring defecttypes were deformation and clogging, while20%were in moderate level with maindefects like clogging, and the rest were in slight-defecting or good condition. About15%of the examined pipes in City B were in severe level and another15%were in moderatelevel, both with main defects like clogging and joint damage, and the rest were in goodcondition.
引文
[1] Otterpohl R, Albold A, Oldenburg M. Source control in urban sanitation and wastemanagement: ten systems with reuse of resources [J]. Water Science and Technology,1999,39(5):153-160.
    [2] Maniquiz M C, Young L S, Hyung K L. Long-Term Monitoring of Infiltration Trenchfor Nonpoint Source Pollution Control [J]. Water Air and Soil Pollutin,2010,212(1-4):13-26.
    [3] Field R, Pitt R. Urban storm-induced discharge impact [J]. Water EnvironmentalTechnology.1990,3(6):47-49.
    [4] US EPA. National Management Measures to Control Non-point Source Pollution fromUrban Areas [R]. Washington, DC.2005.
    [5] Fletcher T D, Mitchell V G, Deletic A. Is stormwater harvesting beneficial to urbanwaterway Environmental flows?[J]. Water Science and Technology,2007,55(4):265-272.
    [6] US EPA.Preliminary Data Summary of Urban StormWater Best Management Practices
    [R].Washington, DC: Office of Water.1999.
    [7] Revitt D M, Scholes L, Ellis J B. A pollutant removal prediction tool for stormwaterderived diffuse pollution [J]. Water Science and Technology,2008,57(8):1257-1264.
    [8] Gromaire M C, Garnaud S. Characterization of urban runoff pollution in Paris [J].Water Science and Technology,1999,39(2):1-8.
    [9] Wei Q S, Zhu G F, Wu P, et al. Distributions of typical contaminant species in urbanshort-term storm runoff and their fates during rain events: A case of Xiamen City [J].Journal of Environmental Sciences,2010,22(4):533-539.
    [10] Walker W J. The Potential contribution of urban runoff to surface sediment of thePassaic river: Source and chemical characteristics [J]. Chemosphere,1999,38(2):363-377.
    [11] Bourgues S, Hart B T H. Nitrogen removal capacity of wetlands: sediment versusepiphytic biofilms [J]. Water Science and Technology,2007,55(4):175-182.
    [12] Huerwang A C, Jeng, et al. Impact of urban stormwater runoff on estuarineenvironrnental quality [J]. Estuarine Coastal and Shelf Seience,2005,63(4):513-526.
    [13] Wheeler A P, Angermeier P L, Rosenberger A E. Impacts of New Highways andSubsequent Landscape Urbanization on Stream Habitat and Biota [J]. Reviews inFisheries Science,200513(3):141-164.
    [14] Gromaire M C, Garnaud S.Contribution of different sources to the pollution of wetweather flows in combined sewers [J].Water Research,2001,35(2):521-533
    [15] Sinha S K, Paul W F. Morphological segmentation and classification of undergroundpipe images [J]. Machine Vision and Applications,2006,17(1):21-31.
    [16] Jung Y J, Stenstrom M K, Jung D I, et al. National pilot projects for management ofdiffuse pollution in Korea [J]. Desalination,2008,226(1-3):97-105.
    [17] Goulding G, Barrack B, Jaligoma G, et al. Urban Wet-Weather Flows [J]. WaterEnvironment Research,2010,82(10):941-996.
    [18] Ball J E, Jenks R, Aubourg D. An assessment of the availability of pollutantconstituents on road surfaces [J]. Science of the Total Environment,1998,209(1):243-254.
    [19]许静.屋面雨水水质监测与生态处理[D].西安:西安建筑科技大学硕士学位论文,2009.
    [20] Fulkerson M, Nnadi F, Chasar L. Characterizing Dry Deposition of Mercury in UrbanRunoff [J]. Water Air and Soil Pollution,2007,185(1):21-32.
    [21] Aryal R, Vigneswaran S, Kandasamy J, et al. Urban stormwater quality and treatment[J]. Korean Journal of Chemical Engineering,2010,27(5):1343-59.
    [22] Maniquiz M, Lee S-Y, Kim L-H. Long-Term Monitoring of Infiltration Trench forNonpoint Source Pollution Control [J]. Water, Air,& Soil Pollution,2010,212(1):13-26.
    [23] Herringshaw C, Thompson J, Stewart T. Learning about restoration of urbanecosystems: a case study integrating public participation, stormwater management,and ecological research [J]. Urban Ecosystems,2010,13(4):535-62.
    [24] Watt E D, Marsalek J, Anderson B. The Kingston Pond: A Case Study of StormwaterPond Upgrading [M]. Springer Netherlands.2005:23-32.
    [25] Phillips B M, Anderson B S, Voorhees J P, et al. The contribution of pyrethroidpesticides to sediment toxicity in four urban creeks in California, USA [J]. Journal ofPesticide Science,2010,35(3):302-309.
    [26]尹澄清.城市面源污染的控制原理和技术[M].北京:中国建筑工业出版社,2009.19-22.
    [27]边博.前期晴天时间对城市降雨径流污染水质的影响[J].环境科学,2009,30(12):3522-3526.
    [28]倪艳芳.城市面源污染的特征及其控制的研究进展[J].环境科学与管理,2008,33(2):53-57.
    [29]任玉芬,王效科,欧阳志云等.沥青油毡屋面降雨径流污染物浓度历时变化研究[J].环境科学学报,2006,26(04):601-6.
    [30]杨柳,马克明,郭青海.城市化对水体非点源污染的影响[J].环境科学,2004,25(6):32-39.
    [31] Zhou W, Beck B F, Green T S. Evaluation of a peat filtration system for treatinghighway runoff in a karst setting [J]. Environ Geol,2003,44(2):187-202.
    [32] Renman G, Hallberg M. Reactive filters for removal of dissolved metals in highwayrunoff [M], Springer Netherlands.2007:465-74.
    [33]潘国庆.不同排水体制的污染负荷及控制措施研究[D].北京:北京建筑工程学院硕士学位论文,2007.
    [34]中华人民共和国国家统计局.中国统计年鉴——2011[M]北京:中国统计出版社,2011
    [35]全国化学建材协调组.国家化学建材产业“十五”计划和2015年发展规划纲要.2000.
    [36] Li-li G, Thong-Soon L, Jian-e Zuo. A brief overview of sewer system in China––construction status, operation, maintenance problems and possible solutions.6thInternational Conference on Sewer Processes and Networks,2010
    [37]吴卫平.排污、排水管道的发展趋势[J].上海建材.2002(6):24-26
    [38]时珍宝,李田,孙跃平.高地下水位地区排水管道渗漏的确定[J].工业用水与废水.2004,35(2):61-63
    [39]刘林湘.城市污水管网的腐蚀与检测修复研究[D].重庆:重庆大学硕士学位论文,2004.
    [40]胡振华,季力,郑建翔.上海市1992-2004年急性硫化氢中毒事故分析[J].职业与健康.2006,22(11):810-812
    [41]欧军容,江世强,李羡筠.我国硫化氢中毒事故原因分析与防治对策[J].广西医学.2005,27(7):1095-1097
    [42] US EPA. Innovative Urban Wet-weather Flow Management Systems [R]. Washington.DC: US EPA Water Planning Division,1999.
    [43] Hatt B E, Deletic A, Fletcher T D.Integrated treatment and recycling of stormwater: areview of Australian practice [J].Journal of Environmental Management,2006,79(1):102–113.
    [44] Weiss P T, Gulliver J S, Erickson A J. Cost and Pollutant Removal of Storm-WaterTreatment Practices [J]. Journal of Water Resources Planning and Management,2007133(3):218-229.
    [45] Kus B, Kandasamy J. Low-Cost Filtration System to Treat First-Flush Stormwater [J].Water, Air,& Soil Pollution: Focus,2009,9(5):347-55.
    [46] Scholz M, Hedmark Constructed Wetlands Treating Runoff Contaminated withNutrients [J]. Water, Air,& Soil Pollution,2010,205(1):323-32.
    [47] Zhang W, Keller A A, Yue D p, et al. Management of Urban Road Runoff ContainingPAHs: Probabilistic Modeling and Its Application in Beijing, China(1)[J]. Journal OfThe American Water Resources Association,2009,45(4):1009-1018.
    [48] Lee J H, Band K W, Cho Y J, et al. The hydrodynamic filter separator for removal ofurban storm runoff [J]. Water Science and Technology,2006,53(7):243-252.
    [49] Chung N T, Ra J S, Park K, et al. Toxicity of artificial runoff fostered with drydeposition particulates from industrial, commercial, and highway area in Gwangju,Korea [J]. Water Science and Technology,2009,59(11):2227-2235.
    [50] Hatt B E, Deletic A, Fletcher T D. StormWater reuse: designing biofiltration systemsfor reliable treatment [J]. Water Science and Technology,2007,55(4):201-209.
    [51] Hunt W F, Smith J T, Jadlocki S J, et al. Pollutant removal and peak flow mitigationby a bioretention cell in urban Charlotte, NC [J]. Journal of EnvironmentalEngineering-ASCE,2008,134(5):403-408.
    [52] Kostarelos K, Khan E, Callipo N, et al. Field Study of Catch Basin Inserts for theRemoval of Pollutants from Urban Runoff [J]. Water Resources Management,2010,1-13.
    [53] Johir M, Lee J, Vigneswaran S, et al. Treatment of Stormwater using Fibre FilterMedia [J]. Water, Air,& Soil Pollution: Focus,2009,9(5):439-47.
    [54] Hatt B E, Siriwardene N, Deletic A. Filter media for stormwater treatment andrecycling: the influence of hydraulic properties of flow on pollutant removal [J].Water Science and Technology,2006,54(6):263–271.
    [55] Davis B S, Birch G F. Catchment-wide assessment of the cost-effectiveness ofstormwater remediation measures in urban areas [J]. Environmental Science andPolicy,2009,12(1):84-91.
    [56]谭琼.排水系统模型在城市雨水水量管理中的应用研究[D].上海:同济大学博士学位论文,2007.
    [57] Mccarthy D T. A traditional first flush assessment of E.coli in urban stormwaterrunoff. Water Science and Technology,2009,60(11):2749-2757.
    [58] Kus B, Kandasamy J. Low-Cost Filtration System to Treat First-Flush Stormwater [J].Water Air and Soil Pollution,2009,9(5-6):347-355.
    [59] Chavan P V, Dennett K E, Marchand E A. Behavior of pilot-scale constructedwetlands in removing nutrients and sediments under varying Environmental conditions[J]. Water Air and Soil Pollution,2008,192(1-4):239-250.
    [60] Manios T, Fountoulakis M S, Karathanasis A D. Construction Simplicity and Cost asSelection Criteria Between Two Types of Constructed Wetlands Treating HighwayRunoff [J]. Environmental Management,2009,43(5):908-920.
    [61] Scholz M, Hedmark A. Constructed Wetlands Treating Runoff Contaminated withNutrients [J]. Water Air and Soil Pollution,2010,204(1-4):323-332.
    [62] Scholz M, Harrington R, Carroll P, et al. Monitoring of nutrient removal withinintegrated constructed wetlands (ICW)[A]. In:1st International Conference onEnvironmental Management, Engineering, Planning and Economics (CEMEPE)[C].Skiathos Isl, GREECE,2007.356-360.
    [63] Hatt B E, Fletcher T D, Deletic A. Pollutant removal performance of field-scalestormwater biofiltration systems [J]. Water Science and Technology,2009,59(8):1567-1576.
    [64] US EPA. Results of the national urban runoff program [R]. Washington DC: US EPA,1983.
    [65] Miklas Scholz, Sara Kazemi Yazdi.Treatment of Road Runoff by a Combined StormWater Treatment: Detention and Infiltration System [J].Water Air and Soil Pollution,2009,198(1-4):55-64.
    [66] Jung Y J, Stenstrom M K, Jung D I, et al. National pilot projects for management ofdiffuse pollution in Korea [J]. Desalination,2008,226(1-3):97-105.
    [67]李俊奇,车武.德国城市雨水利用技术考察分析[J].城市环境与城市生态.2002,2,15(1):47-49.
    [68] Lucas W C. Design of Integrated Bioinfiltration-Detention Urban Retrofits withDesign Storm and Continuous Simulation Methods [J]. Journal of HydrologicEngineering,2010,15(6):486-498.
    [69] Bachand P A M, Bachand S M, Lopus S E, et al. Treatment with chemical coagulantsat different dosing levels changes ecotoxicity of stormwater from the Tahoe basin,California, USA [J]. Journal of Environmental Science and Health PartA-Toxic/Hazardous Substances and Environmental Engineering,2010,45(2):137-154.
    [70] Walsh C J, Fletcher T D, Ladson A R. Retention Capacity: A Metric to Link StreamEcology and Storm-Water Management [J]. Journal of Hydrologic Engineering,2009,14(4):399-406.
    [71] Matheson Z, Ford S, Hill S. Waste Minimization and Water Recycling-a Case Studyat the Milennium Dome [M], IWA Yearbook,2000,30-32.
    [72] Fletcher T D, Deletic A, Mitchell V G, et al. Reuse of Urban Runoff in Australia: AReview of Recent Advances and Remaining Challenges [J]. Journal of EnvironmentalQuality,2008,37(5): S116-S127.
    [73] BAI Y, ZUO J E, GAN L L, et al. Study on restoration of a simulated eutrophicatedlake by limiting phosphorous and controlling Hydraulic Retention Time (HRT)[C],Quebec: The14th IWA International Conference on Diffuse Pollution andEutrophication,2010.
    [74]近藤精一,石川达雄,安部郁夫等.吸附科学[M]北京:化学工业出版社,2005.
    [75]王媛媛,张衍林,董仁杰.对不同的人工湿地基质除磷性能的比较[C].中国农业工程学会2005年学术年会论文集:12-15.
    [76] Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid completedechlorination of TCE and PCBs[J]. Environ Sci Technol,1997,31:2154-2156.
    [77] Choe S, Chang Y Y, Hwang K Y, et a1. Kinetics of reductive denitrification bynanoscale zero-valent iron[J]. Chemosphere,2000,41(8):1307-1314.
    [78] Lien Hsing-Lung, Zhang W X. Nanoscale iron particles for complete reduction ofchlorinated ethenes [J]. Colloids and Surface, A: Physicochemical and EngineeringAspects,2001,191:97-105.
    [79] Zhang W X. Nanoscale iron particles for environmental remediation: on overview [J].Journal of Nanoparticle Research,2003,5:323—332.
    [80] Ponder S M, Darab J G, Mallouk T E. Remediation of Cr(VI)and Pb(II)aqueoussolutions using supported nanoscale zero-valent iron[J]. Environ Sci Technol,2000,34:2564-569.
    [81] Choe S. Kinetics of Reduction Denitrification by Nanoscale Zero-valent Iron[J].Chemosphere,2000,41:1307-13l4.
    [82]陈吉宁,赵冬泉等.城市排水管网数字化管理理论与应用[M]北京:中国建筑工业出版社,2010:213-215
    [83]李田,郑瑞东,朱军.排水管道检测技术的发展现状[J].中国给水排水,2006,22(12):11-13.
    [84] Costello S B, Chapman D N, Rogers C D F, et al. Underground asset location andcondition assessment technologies[J]. Tunnelling and Underground Space Technology2007(22):524-542
    [85]李卫海,林碧华,廖海山.城镇排水管道检测技术的发展与应用[J].广州建筑.2009,37(1):33-37
    [86]陈高泉.排水管道超声波成像检测系统研究与设计[D].沈阳:沈阳工业大学硕士学位论文,2005.
    [87]上海市水务局.上海市公共排水管道电视和声纳检测评价技术规程[S],上海:2005.
    [88]广州市市政工程安全质量监督站.广州市公共排水管道电视和声纳检测评价技术规范[S],广州:2008.
    [89]颜文涛.基于GIS的城市污水管网监测维护决策系统研究[D].重庆:重庆大学博士学位论文.2007.
    [90]颜文涛,龙腾锐,陈朝晖等.城市污水管道实际健康度评价模型及应用研究[J].中国给水排水.2009,25(9):79-86
    [91]颜文涛,陈朝晖,何强等.城市污水管道预报健康度评价模型及其应用研究[J].中国给水排水.2009,25(7):97-101
    [92] German DWA Rules and Standards, DWA-M149-3E Conditions and assessment ofdrain and sewer systems outside buildings Part3: condition classification andassessment [S]. Hennef: DWA German Association for Water, Wastewater and Waste,2007
    [93] Water Research Center. Manual of Sewer Condition Classification4th Edition[S].United Kingdom.2004
    [94] Juho K, Sami S B, Janne H. Measuring and modeling sewer pipes from video[J].Machine Vision and Appliation.2008(19):73-83
    [95] Petr H, Jiri K, Petr P, et al.Application of decision support system for sewer networkrehabilitation [J].Integrated Urban Water Resources Management.2006:159-170
    [96] Christoph W, Tino K, Gunnar S, et al.Architectural approach for the implementationof a position control system for a boat-like inspection robot [J].Informatics in Control,Automation and Robotics.2009:61-73
    [97] Birkenhofer C, Regenstein K, Z¨ollner J M, et al. Architecture of multi-segmentedinspection robot KAIRO-II [J]. Robot Motion and Control.2007:381-390
    [98]孙启明.环境保护使用技术的评价方法[D].北京:北京大学硕士学位论文,2009.
    [99]金菊良,魏一鸣,付强等.层次分析法在水环境系统工程中的应用[J].水科学进展.2002(13):467-472
    [100]庄锁法.基于层次分析法德综合评价模型[J].合肥工业大学学报.2000(23):582-590
    [101]彭婷,姜佩华.层次分析法在环境绩效评价中的应用[J].能源与环境.2007(1):13-14
    [102]李郑.基于模糊综合评判的小区污水管网方案优选研究[D].合肥:合肥工业大学硕士学位论文,2007.
    [103]李柏年.模糊数学及其应用[M].合肥:合肥工业大学出版社,2007:1-18,77-84,103-114
    [104]宋晓秋.模糊数学原理与方法[M].徐州:中国矿业大学出版社,2004:20-22,201-209.
    [105]梁保松,曹殿立.模糊数学及其应用[M].北京:科学出版社,2007:15-48,127-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700