用户名: 密码: 验证码:
交替隔沟灌溉技术与土壤水热高效利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
于2008年4~10月在甘肃省张掖市国家重点灌溉试验站研究甜椒沟灌灌溉制度,研究了不同灌溉模式下甜椒生长动态、生理指标及产量效应。试验设计了三种不同的灌溉制度,在田间进行试验。试验结果表明:
     (1)交替隔沟灌溉处理的灌溉定额较常规沟灌小,且由于交替隔沟灌溉处理的根系受到交替干旱胁迫的锻炼,所以根部的发育要较常规沟灌的好,综合起来考虑,交替隔沟灌溉对土壤容重的影响最小。
     (2)灌水质量综合有效利用率(Ed/e)综合考虑了影响灌溉质量的各个因素:灌水有效利用率(Ea)、田间灌水贮存率(Es)和田间灌水均匀度(Ed)三个指标。利用灌水质量综合有效利用率(Ed/e)对灌溉质量进行评价,发现交替隔沟灌溉和固定隔沟灌溉的灌水有效利用率基本相当,值分别为42.01%和43.39%,而固定隔沟灌溉的灌水有效利用率较低,为39.21%。因此,交替隔沟灌溉在不影响田间灌溉质量的情况下,减小了灌水定额,可以达到节水的目的。
     (3)各灌溉处理株高变化曲线都是苗期、花期快速增长,甜椒在果期以后株高逐渐变缓,采收期基本稳定。交替隔沟灌溉在处理开始前期,其株高的增长量小于常规沟灌处理,随着处理时间的推后,其增长量逐渐增加并且大于常规沟灌;各灌溉处理径粗变化曲线与株高的变化曲线相当,与株高不同的是交替隔沟灌溉处理的径粗在生育期的任何时候是最大的。茎基部直径测定结果表明,不同沟灌模式的茎杆基部直径有明显差异,交替隔沟灌溉能使茎杆明显变粗,可以使甜椒生长健壮防止倒伏。
     (4)从整个生育期来看,干物质积累总量是持续增加的,虽然从果期之后,由于叶片的枯萎和病虫害对叶片的危害,使得各处理甜椒叶片部分的干物质量均有不同程度的下降,但是由于叶片部分的干物质积累量占地面上干物质积累量的比例很低,所以对干物质积累由小到大的变化趋势影响不大。
     (5)交替隔沟灌溉,植物的根部一直遭受土壤干湿交替的胁迫锻炼,在早期,地上部会受到伤害,在伤害之前,植物会做出一些适应性反应,追逐有限的供水,根系到处延伸,追逐水源,根冠竞争碳水化合物,而为了避免水分胁迫,同化物向根系分配较多,促进根系生长,使得根冠比增大。而在后期发达的根系能够提供更多养分和水分供应,对作物抗旱增产具有重要意义。
     (6)交替隔沟灌的灌水定额仅为常规沟灌的1/2,且有一半左右的地表面积处于相对干燥的状态,且根系层中为容纳水分备有较大的土壤库容,在降水和灌溉时,实施隔沟灌溉的地块将有更多的水分渗入到土壤中,而且使水分较多地储存在土壤剖面的根系层中。
     (7)三种沟灌方式,甜椒生长期内,土壤棵间蒸发符合叶面积指数大,E/ET值小的变化规律,在土壤表面湿润的条件下甜椒生育期内E/ET与LAI的相关性较好,而在土壤表面干燥的条件下E/ET与LAI的相关性较差;土壤棵间蒸发的变化趋势与0~10cm土层土壤含水率变化趋势相似,土壤蒸发与表层土壤含水率关系较密切。
     (8)交替隔沟灌溉由于侧渗的作用不仅在垂向上存在着较大的水势梯度,在水平方向上也存在着较为强大的入渗势,灌溉后水分入渗速度快,灌后湿润沟表层的土壤水分除一部分被蒸发掉外,还将有一部分在两个方向的水势梯度作用下继续下渗和侧渗,所以湿润沟表层的土壤变干的也比较快,从而减少了棵间蒸发总量。
     (9)植物能够感受土壤干旱,并产生根源信号传递到地上部调节其生理过程,ABA的增加促使气孔开度减小,蒸腾失水减少,使气孔开度优化而提高蒸腾效率。
     (10)在同一土壤水分水平下,处理AFI的产量高于CFI的产量,处理FFI的产量下降显著。从水分利用效率来看,处理AFI比CFI的水分利用效率高出46%。固定隔沟溉处理FFI由于干沟长期处于干旱状态,虽然耗水量较低,但是产量的增长大大受到限制,从而影响经济效益的提高,是不可取的。
The effects of irrigation schedule on growing trends, Physiological index and yield effect of capsicum were studied at key experimental station in an arid area of Northwest China(Zhang ye) during March to October in2008. Three kinds of irrigation schedule treatments were designed for Indigowoad Root in the field.
     (1)Scale irrigation of Alternate furrow irrigation is smaller than Conventional furrow irrigation, and as a result, the root system of Alternate furrow irrigation is exercised by alternate drought stress, so the development of the roots is better than Conventional furrow irrigation together to consider, Alternate furrow irrigation is the smallest to the effects of soil bulk density.
     (2)The various factors which impact on the quality of irrigation are considered by comprehensive and effective utilization of water quality: effective utilization of irrigation、the storage rate and uniformity of field irrigation, respectively. Using the Comprehensive and effective utilization of water quality to evaluate the quality of irrigation, finding the effective utilization of water of Alternate furrow irrigation and Fixed furrow irrigation are equal, 43.39% and 42.01%, respectively. And the effective utilization of water is 39.21% for Fixed furrow irrigation. therefore, under the Alternate furrow irrigation does not affect the quality of field irrigation, reducing the scale of irrigation can achieve the purpose of water-saving.
     (3)The plant height curves of the irrigation are rapid growth in seedling stage and flowering, the plant heights of capsicum are gradually slowing down after the fruit period and basically stable in harvest time. The growth of plant height to Alternate furrow irrigation is smaller than Conventional furrow irrigation in earlier stage of beginning to process. As time pushed back, Its growth rate is gradually increase and larger than Conventional furrow irrigation; The drive rough curves and the plant height curves of the irrigation are match, With the plant height difference is that rough track of Alternate furrow irrigation is the biggest in the reproductive age at any time. Stem-base diameter measured results show that the Stem-base diameter of different furrow irrigation model have significant difference, Stem become significantly large by Alternate furrow irrigation, thus it could make capsicum robust growth and prevent lodging.
     (4)Judging from the entire growth period, total dry matter accumulation is a continuous increase. From the fruit period, as the leaves wither and the plant diseases and insect pests to the leaves, the amount of dry matter to some of the capsicum leaves of processing have declined in vary degrees. However, due to the accumulation of dry matter in leaves accounted for part of the groundland and the proportion is very low, there are Little effect to dry matter accumulation about tendency from small to big.
     (5)To Alternate furrow irrigation, the roots of plants have been subjected to the stress hardening of alternating wet and dry soil. In the early days, the department on the ground would be harmed. Before the injury, plant will make some adaptive response: chasing a limited supply、extension of the root system around、chasing water、root and crown will compete carbohydrates. In order to avoid water stress, the allocation of more assimilates to root, promoting root growth and making the ratio of root and crown increase. while in the late, well-developed root system can provide more nutrients and water supply, it is important to crop drought and production.
     (6)Irrigation fixed of Alternative furrow irrigation is only a half of the Conventional furrow irrigation, and there is about half the surface area lie in a relatively dry state. Root layer is a larger storage capacity of soil to accommodate available water. When precipitation and irrigation, the land of Furrow irrigation will make more water into the soil, and more water will be stored in the root layer of the soil profile.
     (7)Three furrow irrigation methods, in growth period of capsicum, Soil between trees evaporation are conform to the changs which leaf area index is large and E/ET is small.In the wet soil surface conditions, there is a better correlation in E / Et with LAI in reproductive period of capsicum, and in the dry soil surface conditions, it is the opposite; The changs of Soil between trees evaporation with 0~10cm soil moisture content of soil are similar, soil evaporation and surface soil moisture content have relatively close relationship.
     (8)Alternate furrow irrigation has not only a large gradient of water potential in the vertical direction but also a strong Infiltration potential in the horizontal direction. Water infiltration speed is fast after irrigation, Soil moisture of moist surface groove was evaporated except a part, in addition there will be a part continued to filter down and lateral seepage under the water potential gradient in both directions, therefore, the soil of moist groove surface are relatively fast drying and reduce the total evaporation between trees.
     (9)Plants can feel the soil drought, and producing source signal and sending it to the shoot for adjusting their physiological processes, the increase in ABA can induce to reduction of stomatal aperture and transpiration loss, so achieving optimization of stomatal aperture to improve transpiration efficiency.
     (10)In the same soil moisture level, the output of AFI are higher than CFI's, FFI are significant decline in production. Judging from the water use efficiency, the water use efficiency of AFI are higher than CFI's, the value is 46%.To Fixed furrow irrigation(FFI): because of long-term drought status, although water consumption is lower, the growth of output are greatly affected, thus affecting the improvement of economic efficiency, it is not desirable.
引文
[1]陈传友,王春元.水资源与可持续发展[M].北京:中国科学技术出版社,1999,1:11-15
    [2]胡毓骐,李英能.华北地区节水型农业技术[M].北京:中国农业科技出版社,1995,2:8-11
    [3]刘昌明,何希吾.中国21世纪水问题研究[M].北京:科学出版社,1996,2:3-9
    [4]张岳.中国水资源与可持续发展[M].中国农村水利水电(农田水利与小水电),1998,5:4-6
    [5]田文苓,崔正才.水资源可持续利用与工农业可持续发展[M].海河水利,1999,2:8-10
    [6]王增发.我国水资源的供求关系与农业节水[J].西安理工大学学报,1996,12(3):263-266
    [7]冯尚友.水资源持续利用与管理导论[M].北京:科学出版社,2000,11-27
    [8]石玉林.中国农业需水与节水高效农业建设[M].北京:中国水利出版社,2001,1,11,23,87
    [9]张启舜.沈振荣.中国农业持续发展的水危机及其对策[J].作物杂志,1997,(6):9-12
    [10]李英能.节水农业新技术[M].南昌:江西科学技术出版社,1998
    [11]刁操铨.作物栽培学各论[M].北京:中国农业科学出版社,1994,77-83
    [12]康绍忠.崭新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,16:11-17
    [13]王勤礼,殷学贵,陈修斌等.张掖市加工型甜椒品种引种试验[J].北方园艺,2005,3:49-50
    [14]Fischbach P E,Mulliner H R.Every-other furrow irrigation of corn[J].Trans.ASAE,1974,(17):426-428
    [15]Stone J F,Garton J E,Webb B B,etal.Irrigation water conservation using wide-spaced furrow[J].Soil Science Society of America Journal,1979,(43):407-411
    [16]Stone J F,Reeves H E,Garton J E.Irrigation water conservation by using wide-spaced furrows[J].Agricultural Water Management 1982,5(4):309-317
    [17]Bates L M,Hall A E.Stomatal closure with soil depletion not associated with changes inbulk leaf water status[J].Oecologia,1981,(50):62-65
    [18]Cowan I R.Stomata behavior and environment[J].Advances of Botany Research.1988,(11):565-568
    [19]Blackman P G,Davies W J.Root to shoot communication in maize plants in drying soil.Journal of Experimental Botany,1985,(36):39-48
    [20]Zhang J,Davies W J.Abscisie acid produced in dehydrating roots may enable the plant to measure the water status of the soil[J].Plant Cell Environ,1989,(12):73-81
    [21]Dry P R,Loveys B R.Factors influencing grapevine vigour and the potential for control with partial root-zone drying[J].Aust.J.Grape Wine Res.1998,(4):140-148
    [22]Dry P R,Loveys B R.Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried[J].Vitis,1999,(38):151-156
    [23]Dry P R,Loveys B R,Botting D,etal.Effect of partial root-zone drying on grapevine vigour,yield,composition of fruit and use of water[C].Proceedings of the Ninth Australian Wine Industry Technical Conference,1996,126-131
    [24]Dry P R,Loveys B R,During H.Partial drying of the root-zone of grape.Ⅰ.Transient changes in shoot growth and gas exchange[J].Vitis,2000,(39):3-7
    [25]Dela Hera M L,Romero P,Gomez-Plaza E,etal.Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions[J].Agricultural Water Management,2007,8(3):261-274
    [26]Poni S,Bernizzoni F,Civardi S.Response of "Sangiovese" grapevines to partialroot-zone drying:Gas-exchange,growth and grape composition[J].ScientiaHorticulturae,2007,114(2):96-103
    [27]Ali Shahnazari,Liu Fulai,Mathias N.Andersen,etal.Effects of partial root-zone drying on yield,tuber size and water use efficiency in potato under field conditions[J].Field Crops Research,2007,100(1):117-124
    [28]Fulai Liu,Ali Shahnazari,Mathias N.Andersen,etal.Effects of deficit irrigation(DI)and partial root drying(PRD) on gas exchange,biomass partitioning,and water use efficiency in potato[J].Scientia Horticulturae,2006,109(2):113-117
    [29]Wakrim R,Wahbi S,Tahi H,etal.Comparative effects of partial root drying and regulated deficit irrigation on water relations and water use efficiency in common bean[J].Agriculture,Ecosystems and Environment,2005,(106):275-287
    [30]Wahbi S,Wakrim R,Aganchich B,etal.Effects of partial rootzone drying(PRD) on adult olive tree(Olea europaea) in field conditions under arid climate:Ⅰ.Physiological and agronomic responses[J].Agriculture,Ecosystems and Environment,106(2-3):289-301
    [31]Centritto M,Wahbi S,Serraj R,Chaves M M.Effects of partial rootzone drying(PRD)on adult olive tree(Oleaeuropaea)in field conditions under add climate:Ⅱ.Photosynthetic responses[J].Agriculture,Ecosystems and Environment,106(2-3):303-311
    [32]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论与实践[M].北京:中国农业出版社,2002,60-90
    [33]杜太生,康绍忠.果树根系分区交替灌溉研究进展[J].农业工程学报,2005,21(2):172-176
    [34]杜太生,康绍忠,闫博远等.干旱荒漠绿洲区葡萄根系分区交替灌溉试验研究[J].农业工程学报.2007,23(11):52-58
    [35]管雪强,赵世杰,李德全等.干旱胁迫下抑制光呼吸对赤霞珠葡萄的光抑制的影响[J].园艺学报,2004,31(4):433-43
    [36]郭延平,周慧芬,曾光辉.水分胁迫对柑橘光合速率和光系统Ⅱ活性的影响团[J].应用生态学报,2003,14(6):867-870
    [37]贾虎森,李德全,韩玉琴.高等植物光合作用的光抑制研究进展[J].植物学通报,2000,17(3):218-224
    [38]接玉玲,曹敏.干旱条件下ABA与气孔导度和叶片生长的关系[J].植物生理学通讯,1999,5(5): 398-403
    [39]康绍忠,张建华,梁宗锁等.控制性交替灌溉--一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1-6
    [41]康绍忠,张建华,石培泽等.控制性作物根系分区交替灌的理论与实验[J].水利学报,2001,11:80-86
    [42]李卫东.桃库源关系中源叶光合作用及其碳水化合物代谢的研究[M].北京:中国农业大学,2005,2:45-74
    [43]梁宗锁,康绍忠,高俊凤.植物对土壤信号的感知、传递及其水分利用的控制[J].干旱地区农业研究,1999,17(2):72-77.
    [44]梁宗锁,康绍忠,张建华等.控制性分根交替灌水对作物水分利用率的影响及节水效应[J].中国农业科学,1998,3 1(5):88-90
    [45]刘成连,战吉成,原永兵等.水杨酸对苹果叶片光合作用的影响[J].园艺学报,1999,26(4):261-262
    [46]刘凤权,王金生.水杨酸对水稻防卫反应酶系的系统诱导[J].植物生理学通讯通讯,2002,38(2):21-123
    [47]Stone J F,Nofziger D L.Water use and yields of cotton grown under wide-spaced furrow irrigation[J].Agricultural Water Management,1993,(24):27-28
    [48]Stone J F,Reeves H E,Garton J E.Irrigation water conservation by using wide-spacedFurrows[J].Agricultural Water Management,1982,(5):307-309
    [49]潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报,2000,16(1):39-43
    [50]Musick J T,Dusek D A.Altemate-furrow irrigation of fine textured soils[J].Trans of the ASAE,1974,289-294
    [51]Hodges M E,Stone J F,Garton J E,etal.Variance of water advance in wide-spaced furrow irrigation[J].Agricultural Water Management,1989,(16):5-13
    [52]Hodges M E,Stone J F,Reevs H E.Yield variability and water use in wide-spaced furrow irrigation[J].Agricultural Water Management,1989,(16):15-23
    [53]Graterol Y,van E,Eisenhauer D E,Elmore R W.Alternate-furrow irrigation for soybean production[J].Agricultural Water Management,1993,(24):133- 145
    [54]Tsegaye T,Stone J F,Reeves H E.Water use characteristics of wide-spaced furrow irrigation[J].Soil Science Society of America Journal,1993,(57):240-245
    [55]潘英华,康绍忠,杜太生等.交替隔沟灌溉土壤水分时空分布与灌水均匀性研究[J].中国农业科学,2002,35(5):531-535
    [56]Dry P R.Loveys B R.Stoll M,etal.Partial root-zone drying--an update,Aust.Grapegrower Winemaker,2000,(438):35-39
    [56]周军.不同灌溉方式对葡萄叶片行为和果实品质的影响[D].中国农业大学,攻读硕士学位研究生学 位论文.2000
    [57]毕彦勇,高东升,王晓英.根系分区灌溉对设施油桃生长发育、产量及品质的影响[J].中国生态农业学报,2005,13(4):88-90
    [58]唐晓蕴.部分根系干旱对柑橘光合作用的影响[J].园艺学进展,1994,(1):374-377
    [59]徐志防,罗广华,王爱国等.光合作用的光抑制与光合器官的活性氧化代谢[J].植物生理学,1998,35(4):325-332
    [60]许大全,沈允钢.光合作用的限制因素[M].北京:科学出版社,1998,262-276
    [61]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通报.1997,33(4):241-244
    [62]许明丽,孙晓艳,文江祁.实验室对水分胁迫下小麦幼苗叶片膜损伤的保护作用[J].植物生理学通讯,2000,36(1):35-36
    [63]许少全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28:237-243
    [64]许旭旦,朱涵素.植物根部的水分倒流现象[J].植物生理学通迅,1995,31(4):241-45
    [65]杨洪强,接玉玲.果树对地上部的调控及其与水分利用效率的关系[J].园艺学报,2001,28[增]:603.608
    [66]郁怡汶.草莓光合作用对水分胁迫响应的生理机制研究[M],浙江大学,2003
    [67]李朝海,周顺利.土壤容重对玉米苗期生长的影响[J].华北农学报,1994,9(2):49-54
    [68]李汝莘,高焕文,苏元升.土壤容重和含水量对耕作阻力的影响[J].农业工程学报,1998,3(1):81-85
    [69]张寄阳,孙景生,陈玉民等.垄膜沟种涌泉灌溉技术要素的试验研究[J].节水灌溉,2006(6):13-16
    [70]解文艳,樊贵盛.土壤含水量对土壤入渗能力的影响[J].太原理工大学学报,2004.5(3):272-275
    [71]乔照华.土壤水分入渗特性的时间变异规律研究[J].灌溉排水学报,2008.6(27):119-120
    [72]赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,9(1):42-45
    [73]王成志,杨培岭,陈龙.杨林林沟灌过程中土壤水分入渗参数与糙率的推求和验证[J].农业工程学报,2008,3(3):43--45
    [74]栗献锋.影响土壤水分入渗特性主要因素的试验研究[J].山西水利科技,2008,2(1):38-42
    [75]林性粹,王智,孟文等.农田灌水方法及灌水技术的质量评估[J].1995,10(5):17-22
    [76]Walker R W.Skogerboe G V.Surface irrigation,Theory and practice.Vew Jersey:Prentice-Hall Inc.1987
    [77]牛西午,丁玉川,张强等.柠条根系发育特征及有关生理特性研究[J].西北植物学报,2003,23(5):860-865
    [78]赵成刚.根冠比与烟草品质的关系.农业科技,2006,1:18
    [79]孙德岭,赵前程.番茄苗期地温对光合产物积累和分配的影响[J].天津农业科学,2000,3(1):14-17
    [80]史宝忠,郑方成,曹国良等.灌溉对农田地温和气温影响的实验研究[J].中国农业气象,1998,6(3):34-37
    [81]Boast C W,Robertson T M.Amicro-lysimeter method for determining evaporation from bare soil:description and laboratory evaluation[J].Soil Sci Soc Am J,1982,46:689-696
    [82]王健,蔡焕杰,康燕霞等.夏玉米棵间土面蒸发与蒸发蒸腾比例研究[J].农业工程学报,2007,23(4): 17-22
    [83]孙景生,康绍忠.沟灌夏玉米棵间土壤蒸发规律研究[J].沈阳农业大学学报,2004,35:5-6
    [84]杨晓光,Bouman BAM,张秋平等.华北平原早稻作物系数试验研究[J].农业工程学报,2006,22(2):37-41
    [85]樊引琴,蔡焕杰,王健.冬小麦田棵间蒸发的试验研究[J],灌溉排水.2000,19(4):1-4
    [86]高鹭,胡春胜,陈素英等.喷灌条件下冬小麦田棵间蒸发的试验研究[J].农业工程学报,2005,21(12):183-186
    [87]高阳,段爱旺.冬小麦间作种植方式下棵间蒸发规律试验研究[J].灌溉排水学报,2005,24(2):13-17
    [88]梁宗锁,康绍忠,李新有.有限供水对夏玉米产量及其水分利用效率的影响[J].西北植物学报,1995,15(1):26-31
    [89]孙景生,康绍忠,王景雷等.沟灌夏玉米棵间土壤蒸发规律的试验研究[J].农业工程学报,2005,21(11):20-24
    [90]康绍忠,潘英华,石培泽等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001.11(11):80-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700