用户名: 密码: 验证码:
母线设备多物理场耦合研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
母线设备在保证供电质量上起到举足轻重的作用。随着电力事业的发展,大容量电站的不断出现,传输电流不断加大,对供电质量的要求也越来越高,电网运行一定要保证供电的可靠性及安全性。母线发生故障,将造成发电厂和变电所停电,从而对电力系统的安全运行带来严重危害。
     经过多年的实践应用,母线产品的电气性能和可靠性都获得了良好的市场反响,创造了较好的经济效益。但是,在此类母线设备正常运行过程中发现其工作噪声偏大,尤其当用电量增大时工作噪声也随之增大。从相关资料来看,单个母线设备周围的A计权声压级平均在70 dB以上。对于电站等许多场所,母线设备通常是多台平行排放,因而将会带来更大的噪声问题。强大的噪声使得许多用户在验收母线产品时拒绝接受,从而给企业造成了巨大的经济损失,并且削弱了产品的国际竞争力,阻碍了母线产品的国有化进程。
     母线设备的噪声问题是多个物理场共同作用的过程。大电流母线周围强大的交变电磁场使母线与母线之间以及母线与箱体之间产生周期变化的电磁力,电磁力激励母线结构振动,并由箱体封板向外辐射噪声。在多个物理场的共同作用下母线设备的结构往往处于非线性和多物理场耦合的状态,此时描述系统行为的控制方程通常为耦合的非线性偏微分方程,解析解求解几乎不可能,必须采用数值分析技术。本文采用顺序耦合的方法对电磁场、结构振动及辐射声场进行了多物理场的分析计算并在此基础上提出了减振降噪的结构改进方案。在电磁场方面,采用棱边有限元求解大电流母线设备的电磁场问题。在振动噪声方面,采用有限元和边界元法结合的方法求解辐射声场。解决了电磁场、结构振动及辐射声场计算过程中FEM/BEM数据传递等一系列关键问题。
     建立了大电流母线电磁、振动及声场多物理场计算的全三维数值模型。大电流母线桥是复杂的弹性结构。根据各物理场求解情况不同,分别建立了用于电磁场计算的棱边有限元模型,振动响应分析的节点母线设备在保证供电质量上起到举足轻重的作用。随着电力事业的发展,大容量电站的不断出现,传输电流不断加大,对供电质量的要求也越来越高,电网运行一定要保证供电的可靠性及安全性。母线发生故障,将造成发电厂和变电所停电,从而对电力系统的安全运行带来严重危害。
     经过多年的实践应用,母线产品的电气性能和可靠性都获得了良好的市场反响,创造了较好的经济效益。但是,在此类母线设备正常运行过程中发现其工作噪声偏大,尤其当用电量增大时工作噪声也随之增大。从相关资料来看,单个母线设备周围的A计权声压级平均在70 dB以上。对于电站等许多场所,母线设备通常是多台平行排放,因而将会带来更大的噪声问题。强大的噪声使得许多用户在验收母线产品时拒绝接受,从而给企业造成了巨大的经济损失,并且削弱了产品的国际竞争力,阻碍了母线产品的国有化进程。
     母线设备的噪声问题是多个物理场共同作用的过程。大电流母线周围强大的交变电磁场使母线与母线之间以及母线与箱体之间产生周期变化的电磁力,电磁力激励母线结构振动,并由箱体封板向外辐射噪声。在多个物理场的共同作用下母线设备的结构往往处于非线性和多物理场耦合的状态,此时描述系统行为的控制方程通常为耦合的非线性偏微分方程,解析解求解几乎不可能,必须采用数值分析技术。本文采用顺序耦合的方法对电磁场、结构振动及辐射声场进行了多物理场的分析计算并在此基础上提出了减振降噪的结构改进方案。在电磁场方面,采用棱边有限元求解大电流母线设备的电磁场问题。在振动噪声方面,采用有限元和边界元法结合的方法求解辐射声场。解决了电磁场、结构振动及辐射声场计算过程中FEM/BEM数据传递等一系列关键问题。
     建立了大电流母线电磁、振动及声场多物理场计算的全三维数值模型。大电流母线桥是复杂的弹性结构。根据各物理场求解情况不同,分别建立了用于电磁场计算的棱边有限元模型,振动响应分析的节点
The low voltage and heavy current busbar bridge is a new type of transmission facility, which is widely applied to transmitting current and power in power plants, large and medium-sized enterprises as well as transformer substations. The electric performance and reliability of busbar bridge systems have gained a good market and brought considerable economic benefits. However, the working noise of such facilities is remarkable, especially when the power consumption increases.
     On-the-spot investigations show that the working noise is mainly composed of electromagnetic noise and ventilating noise, which have three possible generating sources: the vibration of busbars and steel boxes caused by the alternating electromagnetic force; the aeolian vibration caused by air convection when the temperature inside the bridge rises; the vibration of the magnetic components of the busbar bridge system caused by the magnetostrictive effect.
     In order to understand the underlying mechanism, energy sources and propagation paths of the working noise, an analysis of the electromagnetic field for busbar bridge systems is required, so that the magnetic field distribution and the electromagnetic force on busbars and steel boxes can be obtained. The analysis is the basis of studying the working noise and it also plays an important role in optimizing the structure of busbar bridge systems. To study the causes and propagation paths of the noise of busbar bridge system requires knowledge as diverse as Electromagnetics, Mechanics, and Acoustics. In this paper, steps for analyzing the noise field outside the bridge are establised. In the first place, edge finite element method is used to calculate the distribution of electromagnetic force in the system. Then, node electromagnetic forces are applied as "body force" loads in the subsequent vibration analysis. Afterwards, node displacements are used as boundary condition to solve acoustic problem.
     Three-dimensional simulation models are established according to the solid one. In vibration analysis, busbars as well as epoxy resin insulators are meshed with solid hexahedral elements and the rest are meshed with shell elements due to the small thickness of steel plates. At the same time, the finite element models used in electromagnetic and vibration analysis are not exactly the same. In electromagnetic field analysis, it is necessary to build finite element model for the air inside or outside the bridge, whereas this is not needed in structural vibration analysis. The boundary element model is created by taking out the surface of the structural vibration finite element model.
     Electromagnetic force is in direct proportion to the operating currents. This is because the skin effect and proximity effect will strengthen with the increase of operating current. The node forces on left and upper box plates are much bigger than that of the right and lower ones. With the increase of current, the noise of the system rises accordingly. Numerous DOFs of the system lead to the intensive distribution of natural frequency, so the mode shapes changed obviously when the natural frequency has small variation. The relative deformation of the steel box is much bigger than that of other parts because the box is made of large and thin plates, whose stiffness is small. Therefore, resonance occurs more easily on the box. More noise is generated by box plates than by busbars because the stiffness of these large-thin plates is much smaller than that of busbars. The sound pressure level is of symmetric distribution along z direction, and the sound field is stronger in the middle of the bridge. The sound pressure level of right side plates is much higher than that of the left side-plates because the distribution of electromagnetic force on side plates of both sides is asymmetric. In vertical direction the sound field beneath the busbar bridge is much stronger than that of the above.
     Box plates are the strongest radiated noise source. The vibrations of these plates come from the vibration of box plates themselves caused by electromagnetic force and from the vibration that is transferred from busbars to box plates through epoxy resin insulators. Hence, the noise can be reduced in two aspects. On one hand, improve the distribution of eddy current field in the system. On the other hand, change the structural form and geometric parameters of the main acoustic radiation components.
     A series of experiments have been carried out in the laboratory in order to verify the reliability of the simulation models and the validity of the noise reduction methods. Five experimental schemes are worked out at last, and they are: (1) experiment for the original model; (2) experiment for the model of moving all busbars upward by 30 mm; (3) experiment for the model of increasing vents on box plates; (4) experiment for the model of pressing grooves on box plates; (5) experiment for the model of riveting L-shaped corner plates on the box.
     These proposed methods could reduce the noise to some degree. Comprehensively evaluating these methods, we can conclude that the method of moving all three-phase busbars upwards by 30 mm is not a very good one because of the consequent system mode change. Among these methods, the method of increasing vents on box plates has a satisfying noise reduction effect, for the A-weighted sound level can be reduced almost 7 dB compared with the original design, and people in the laboratory can feel the reduction of the noise obviously. This method will not add process, and the general structure of the busbar bridge system has few changes. At the same time, this method can also improve the ventilation of the system, and therefore it is one of the advisable methods to reduce the noise.
     The paper proposed an effective method to analyze the radiated noise of busbar bridge system. That is using the edge finite element method to calculate three-dimensional eddy current field and the combined finite element and boundary element method to solve the radiated sound field. Through the comparison between calculated results and measured ones, the reliability of the calculation is validated. Based on the analysis of vibration and sound field, the noise reduction methods are put forward, and numerical simulations and experiments study are performed on every improving method. The study shows that the improving methods can reduce the noise at different levels, among which the method of increasing vents on box plates is a better way to reduce it. The proposed methods can be applied in other type busbar equipments.
引文
[1] 吴励坚.大电流母线的理论基础与设计.北京:水利电力出版社,1985
    [2] 杨世凯.大电流封闭母线的定义和种类.发电设备,1988,(4): 34-35
    [3] Z.X.Feng.The treatment of singularities in calculation of magnetic field by using integral method.IEEE Transactions on magnetics,1985,21(6): 2207-2210
    [4] Bruno Azzerboni,Ermanno Cardelli,Andrea Tellini.Computation of the magnetic field in massive conductor systems.IEEE Transactions on magnetics,1989,25(4): 4462-4473
    [5] 陈世玉.矩形母线磁场的计算公式.华中工学院学报,1985,13(4): 53-57
    [6] 胡志强,张晓军,阮江军.室内配电房母线工频磁场分布计算,2004,37(1): 98-102
    [7] F.P.Dawson,M.Cao,P.K.Jain.A simplified approach to calculation current distribution in paralleled power busses.IEEE Transactions on magnetics,1990,26(2): 971-974
    [8] 关根志.发(变)电站母线电流磁场计算与磁屏蔽研究.高电压技术,1994,20(2): 6 68-72
    [9] Yaping Du,T.C.Cheng,A.S.Farag.Principles of power-frequency magnetic field shielding with flat sheets in a source of long conductors.IEEE Transactions on electromagnetic compatibility,1996,38(3): 450-459
    [10] 吴励坚.三相分相封闭母线的电磁计算.西安交通大学学报,1981,15(3): 19-24
    [11] 吴励坚,幸玲玲.含有钢构件的交变电磁场的一种新算法.西安交通大学学报,1990,24(1): 95-102
    [12] 吴励坚.大截面圆管导体间电磁感应的近似计算法多级映射法及其应用.西安交通大学学报,1981,15(2): 83-94
    [13] Honjo R.,Del Vecchio R..A program to compute magnetic fields, forces, and inductances due to solid rectangular conductors arbitrarily positioned in space.IEEE Transactions on Magnetics,1986,22(6): 1532 - 1535
    [14] Imamura M.,Nakahara M.,Yamaguchi T.,Tamura S..Analysis of magnetic fields due to three-phase bus bar currents for the design of an optical current transformer.IEEE Transactions on Magnetics,1998,34(4),part 2: 2274 – 2279
    [15] Brauer J..Finite element calculation of eddy currents and skin effects.IEEE Transactions on Magnetics,1982,18(2): 504-509
    [16] Labridis D.,Dokopoulos P..Finite element computation of field, losses and forces in a three-phase gas cable with nonsymmetrical conductor arrangement. IEEE Transactions on Power Delivery,1988,3(4): 1326-1333
    [17] Ghandakly A.A.,Curran R.L.I.A model to predict current distributions in heavy current parallel conductor configurations.Industry Applications Society Annual Meeting,1991,Conference Record of the 1991 IEEE,vol.2,pp.1098-1103
    [18] Chiapi M,Chiarabaglio D,Tartaglia M.FEM Analysis and Modeling of Busbar Systems under AC Conditions.International Conference on Computation in Electromagnetics,1991,pp. 252-255
    [19] Labridis D.P.,Dokopoulos P.S..Electromagnetic forces in three-phase rigid busbars with rectangular cross-sections.IEEE Transactions on Power Delivery,1996,11(2): 793-800
    [20] Shah M.R.,Bedrosian G.,Joseph J.Steady-state loss and short-circuit force analysis of a three-phase bus using a coupled finite element+circuit approach.Electric Machines and Drives Conference Record,1997,IEEE International,18-21 May 1997 Page(s):WC2/3.1 - WC2/3.3
    [21] Ehrich M.,Fichte L.O.,Luer M..Electrical properties and magnetic fields of a coaxial bus bar.Asia-Pacific Conference on Environmental Electromagnetics,2000,pp. 11-16
    [22] Triantafyllidis D.G.,Dokopoulos P.S.,Labridis D.P..Parametric short-circuit force analysis of three-phase busbars-a fully automated finite element approach.IEEE Transactions on Power Delivery,2003,18(2): 531-537
    [23] 武安波,王建华,耿英三.密集型母线槽磁场-温度场综合有限元分析.高压电器,2003,39(4): 7-11
    [24] 胡志强,张孝军,阮江军.室内配电房母线工频磁场分布计算.武汉大学学报,2004,37(1): 98-103
    [25] Chari M.V.K,Konrad A.,D’Angelo J.Three-dimensional vector potential analysis for machine field problems.IEEE Transactions on Magnetics,1982,18(2): 436-446
    [26] Emson C.R.I.Transient 3D eddy currents using modified magnetic vector potential and magnetic scalar potentials.IEEE Transactions on Magnetics,1988,24(1): 86-99
    [27] Kameari A..Three dimensional eddy current calculation using finite element method with A-V in conductor and in vacuum.IEEE Transactions on Magnetics,1988,24(1):118-121 ?
    [28] Biro O..On the use of the magnetic vector potential in three dimensions. IEEE Transactions on Magnetics,1982,18(2): 436-446
    [29] Nakata T.N.,Takahashi K.,Fujiwara Y.,Okada.Improvements of the T-Ωmethod for 3D eddy current analysis.IEEE Transactions on Magnetics,1988,24(1): 94-97
    [30] Biro O.,Preis K..Performance of different vector potential formulations in solving multiply connected of 3D eddy current problems.IEEE Transactions on Magnetics,1990,26(2): 438-441
    [31] Bossavit A.,Verite J.C..A mixed FEM-BIEM method to solve 3D eddy current problems.IEEE Transactions on Magnetics,1982,18(2): 431-435
    [32] Ren Z.,Li C.,Razek A..Hybrid FEM-BIM formulation using electric and magnetic variables.IEEE Transactions on Magnetics,1992,28(2): 1647-1650
    [33] Nakata T.,Takahashi N.,Fujiwara K.Comparison of different finite elements for 3-D eddy current analysis.IEEE Transactions on Magnetics,1990,26(2): 434-437
    [34] Van Welij J.S..Calculation of eddy currents in term of H on hexahedra.IEEE Transactions on Magnetics,1985,21(6): 2239-2241
    [35] Takahashi N.,Nakata T.,Fujiwara K.Investigation of effectiveness of edge elements.IEEE Transactions on Magnetics,1992,28(2): 1619-1622
    [36] Takeuchi T.,Yoshizawa T.,Kuse Y.,Hama H..3-D nonlinear transient electromagnetic analysis of short circuit electromagnetic forces in a three-phase enclosure-type gas insulated bus.IEEE Transactions on Magnetics,2000,36(4): 1754-1757
    [37] Ho S.L.,Li Y.,Lo E.W.C.,Xu J.Y.,Lin X..Analyses of three-dimensional eddy current field and thermal problems in an isolated phase bus.IEEE Transactions on Magnetics,2003,39(3): 1515-1518
    [38] 褚明娟,林莘,李岩,徐建源,吴锐.密集型母线槽电动力及热性能分析.电气应用,2005,24(2): 69-74
    [39] Bohdan Koch.Electromagnetic forces in a plane six-bus system.IEEE Transactions on power delivery,3(3),1988: 947-953
    [40] Mona M.Abd-El-Aziz,Amr A.Adly,Essam-El-Din.Assessment of electromagnetic forces resulting from arbitrary geometrical busbar configurations.International Conference on Electrical, Electronic and Computer Engineering,2004: 774-777
    [41] 徐正云.在短路状态下母线和电缆稳定性的研究.机电设备,1987,(4): 36-41
    [42] 北京电力设计分院.直角三角形布置的母线动稳定计算.中国电力,1956,(11): 20-22
    [43] N.S.Attri,John N. Edgar.Response of bus bars on elastic supports subjected to a suddenly applied force.IEEE Transactions on power apparatus and systems,1967,86(5): 636-650
    [44] D.P.Labridis,P.S.Dokopoulos.Electromagnetic forces in three-phase rigid busbars with rectangular cross-sections.IEEE Transactions on power delivery,1996,11(2): 793-800
    [45] Toshie Takeuchi,Toshiyuki Yoshizawa,Yuko Kuse,et al.3-D nonlinear transient electromagnetic analysis of short circuit electromagnetic forces in a three-phase enclosure-type gas insulated bus.IEEE Transactions on magnetics,2000,36(4): 1754-1758
    [46] Dimitris G.Triantafyllidis , Petros S.Dokopoulus , Dimitris P.Labridis . Parametric short-circuit force analysis of three-phase busbars-a fully automated finite element approach.IEEE Transactions on power delivery,2003,18(2): 531-537
    [47] 李洪杰,王颖,冯允平,吴励坚.短外壳封闭母线电动力的计算.高压电器,1997,(5): 31-34
    [48] 发电教研室大电流母线科研小组.全连外壳式分相封闭母线在短路时壳内磁场和母线导体所受电动力的分析和计算.西安交通大学学报,1974,(2): 35-58
    [49] D.Labridis,P.Dokopoulos.Finite element computation of field losses and forces in a three-phase gas cable with nonsymmetrical conductor arrangement.IEEE Transactions on power delivery,1988,3(4): 1326-1333
    [50] D.Labridis,V.Hatziathanassiou.Finite element computation of field, forces and inductances in underground SF6 insulated cables using a coupled magneto-thermal formulation.IEEE Transactions on magnetics,1994,30(4): 1407-1415
    [51] B.Azzerboni,G.Tina.Three dimensional forces and energy computation software package `FEMAN' and its applications . IEEE Transactions on magnetics , 29(1) , January 1993,728-733
    [52] 徐健学,吴励坚,邢顺录,邓朝晖.三角支持式母线短路动应力的研究.西安交通大学学报,1988,(1):
    [53] 沈兵,袁建敏,胡冰.矩形母线短路动稳定校验的研究.低压电器,2004,(12): 10-13
    [54] 胡冰,张晓锋.用有限元法计算三相矩形母线的短路电动力.电气应用,2005,24(2): 83-86
    [55] J.E.Borhaug,S.Cambias,Jack Davey.The Response of Substation Bus Systems to Short Circuit Conditions Part I A Comparison of Design Methods.IEEE Transaction on power apparatus and systems,1971,90(4): 1698-1706
    [56] J.E.Borhaug,S.Cambias,Jack Davey,et al.The Response of Substation Bus Systems to Short Circuit Conditions Part II Measurements on the Transverse Vibration of Selected Station Post and Pin-Cap Insulators.IEEE Transaction on power apparatus and systems,1971,90(4): 1706-1711
    [57] J.E.Borhaug,S.Cambias,Jack Davey,et al.The Response of Substation Bus Systems to Short Circuit Conditions Part III A Dynamic Design Analysis,IEEE Transaction on power apparatus and systems 1971,90(4): 1711-1718
    [58] Marc D.Budinich , Russell E . Trahan . Dynamic analysis of substation busbar structures.Electric power systems research,1997 42: 47-53
    [59] David A.Bergeron,Russell E.Trahan,Mark D.Budinich.Verification of a dynamic finite element analysis of substation busbar structures . IEEE Transactions on power delivery,14(3),July 1999: 884-890
    [60] 徐光启.母线短路应力与共振的合理计算方法.水利水电技术,1965: 31-35
    [61] 徐健学.全连式离相封闭母线短路动力特性的分析.西安交通大学学报,1979,(4): 43-58
    [62] 徐健学,吴励坚.支持式母线(弹性支持)短路动应力的研究.中国电力,1982(2): 36-44
    [63] 吴励坚,徐健学,杨瑞棠.悬挂式槽形母线短路动应力的研究,水利发电,1984(5): 45-50
    [64] 袁立平,罗剑斌,陈吉明.200MW 发电机分相封闭母线箱壳体振动分析与减振处理.2002 年全国振动工程及应用学术会议论文集,北京,2002: 16-19
    [65] D.A.Hilder,I.A.Black.Noise suppression methods for partial discharge measurements on single and three-phase cables.Fifth international conference on Dielectric Materials,Measurements and applications,1988: 179-183
    [66] Peter T.Ashton,Glenn W.Swift.Measurements of transient electrical noise on low voltage distribution systems.IEEE Conference record of industry applications society annual meeting,1990: 1740-1742
    [67] Masaru Yarita,Hidehiro Hosaka,Shoogo Ueno.Reduction of acoustic noise and leakage fields in magnetic stimulation by using a coaxial cable.Proceedings of the 16th Annual International Conference of the IEEE,1994: 319-321
    [68] Smith , A.A. . Power Line Noise Survey . IEEE Transactions on electromagnetic compatibility,1972,14(1): 31 – 32
    [69] Xiaodong Shi.Mechanism analysis and performance improvement of electrostatic noise in co-axial cable.IEEE Conference record of industry application society annual meeting,1992: 1618-1622
    [70] M.Chen,K.Urano,Y.Sekiguchi,H.Komeda.Methods of discriminating partial discharge and noise for power cable lines.Conference on electrical insulation and dielectric phenomena,2001: 285-289
    [71] Zheng Tao,Yang Xiaoxian,Zhang Baohui.Research of noise characteristics for 10-kV medium-voltage power lines.IEEE Transactions on power delivery,2007,22(1): 142-150
    [72] 马有粮.关于消除母线桥噪音的探讨.建筑电气,2003,(4): 35-36
    [73] 孙进才,王冲.机械噪声控制原理.西安:西北工业大学出版社,1993
    [74] S.D. Snyder , N. Tanaka . Calculating total acoustic power output using radiation efficiencies.J. Acoust. Soc. Am.,1995,97(3): 1702-1709
    [75] Takahashi N.,Nakata T.,Fujiwara K.Investigation of effectiveness of edge elements.IEEE Transactions on Magnetics,1992,28(2): 1619-1622
    [76] Takeuchi T.,Yoshizawa T.,Kuse Y.,Hama H..3-D nonlinear transient electromagnetic analysis of short circuit electromagnetic forces in a three-phase enclosure-type gas insulated bus.IEEE Transactions on Magnetics,2000,36(4): 1754-1757
    [77] 赵翔,谢壮宁,黄幼玲.自由场结构体声辐射研究.声学学报,1994,19(l): 22-31.
    [78] 赵键,汪鸿振,朱物华.边界元法计算己知振速封闭面的声辐射.声学学报,1989,14(4): 250-257
    [79] S.T.Raveendra.An efficient indirect boundary element technique formulti-frequencyacoustic analysis.Int. J. Numer. Meth. Engng,1999,44: 59-76
    [80] S. M. Kirk-up,D. J. Henwood.Methods for speeding up the boundary element solution of acoustic radiation problems.Transactions of the ASME: Journal of Vibration and Acoustic,1992,114: 374-380.
    [81] 黎胜,赵德有.流体加载下加筋板结构的声辐射特性.应用声学,2000,19(6): 28-32.
    [82] L.Gavri,G Pavi.A finite element method for computation of structuralintensity by the normal mode approach.Journal of Sound andVibration,1993,164(1): 29-43
    [83] J.T. Hunt,M. R. Knittel,D. Barach.Finite element approach to acousticscattering from elastic structures.Journal of the Acoustical Society ofAmerica,1975,57(1): 287-299
    [84] L. F. Kallivokas,J. Bielak.Time-domain analysis of transient structuralacoustics problems based on the finite element method and a novelabsorbing boundary element.Journal of the Acoustical Society of America,1993,94(6): 3480-3492.
    [85] C. A. Brebbia.The boundary element method for engineers.London: Pentech Press,1978. 1-150
    [86] D. D. Dai . An improve boundary element formulation for wavepropagation problems.Engineering Analysis with Boundary Element,1992,10(2): 277-281
    [87] Z. Zhang,N.Vlahopoulos,T. Allen,k. Y Zhang.A source reconstruction process based on an indirect variational boundary element formulation.Engineering Analysis with Boundary Element,2001,25(2): 93-114
    [88] 胡海昌.论 Helmholtz 方程的一类边界积分方程的合理性明.振动工程学报,1992,5(3): 183-191
    [89] 董迎春,谢志成,姚振汉.边界积分方程中超奇异积分的解法.力学进展,1995,25(3): 424-429
    [90] 陈玉民,稽醒.固体力学边界元分析程序包 BESMSP.上海力学,1996,17(2): 151-1579
    [91] 徐永生.棱边有限元法中树规范问题研究.华北电力大学硕士论文,2003
    [92] 黄璟慧.变电站屏蔽小室优化设计.武汉大学硕士论文,2002
    [93] 邓晓龙.内燃机主要部件结构噪声预测及优化控制研究.华中科技大学博士论文,2004
    [94] 王世山,汲胜昌,刘家其等.电缆绕组变压器轴向振动模态特性的分析研究.电工技术学报,2004,19(10): 6-11
    [95] 赵晓苏,陈海龙,孟中岩.行波超声电动机定子性能的有限元仿真.电工技术学报,2003,18(4): 11-17
    [96] 张兴娟,曹乃承,杨春信等.垂直布置的母线温度场计算及分析.中国电机工程学报,2000,20(8): 11-14
    [97] 吴建华,基于物理模型开关磁阻电机定子模态和固有频率的研究.中国电机工程学报,2004,24(8): 109-114
    [98] Wang C,Lai JCS,Astfalck A.Sound power radiated from an inverter driven induction motor II: Numerical analysis.IEE Proceedings of Electric Power Applications,2004,151(3): 341-348
    [99] 徐涛.数值计算方法.长春:吉林科学技术出版社,1998
    [100] 商德江,何祚镛.加肋双层圆柱壳振动声辐射数值计算分析.声学学报,2001,26(3): 19-201
    [101] J.Y.Chung.Application of acoustic intensity measurement to engine evaluation.Proceeding of the annual meeting and technical conference,1979: 353-364
    [102] 傅正财,杜亚平.母线槽工频阻抗的数值计算和测量.电网技术,2001,25(8): 36-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700