用户名: 密码: 验证码:
基于气动人工肌肉隔振平台的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动人工肌肉是一种新型的拉伸型气动执行元件,已经引起世界各地专家的广泛关注。本文在基于气动人工肌肉比较成熟的输出力模型及实验研究上,对气动人工肌肉等压、等容、等力及刚度等基本特性进行了概括分析,对气动人工肌肉驱动的直线关节的静态驱动特性进行了理论分析和实验研究,并采用气动人工肌肉驱动的直线关节作为主动作动器,建立了基于气动人工肌肉的隔振平台系统。
     首先,基于气动人工肌肉输出力的理想模型,对气动人工肌肉的基本特性进行了分析及仿真,将气动人工肌肉视为变刚度弹簧,通过对比一般的静态刚度的模型,采用数学变形法推导出较精确的气动人工肌肉弹簧的静态刚度表达式,为气动人工肌肉驱动的直线关节的理论分析及应用奠定了基础。
     其次,建立了气动人工肌肉驱动的直线关节初始工作条件,即平衡位置的静态特性及压力等幅反向变化和任意变化的静态驱动特性的数学模型,并在理论分析的基础上,对气动人工肌肉驱动的直线关节的静态驱动特性进行了仿真及实验研究,验证了将气动人工肌肉视为弹簧数学简化模型的合理性,并得出了直线关节的静态刚度表达式和仿真曲线,为直线关节的进一步应用打下基础。
     最后,针对气动人工肌肉驱动直线关节的驱动特点,建立了以直线关节为作动器的主动隔振平台系统及其动力学模型,对其主动控制、被动控制的隔振效果进行了仿真研究,通过实验验证了气动人工肌肉驱动的直线关节可以应用于低频范围内的主动隔振控制系统中。
The pneumatic muscle actuator (PMA) is a novel pneumatic actuator, which has been drawn attention by the specialists in many countries. By means of simulation and experiments which have been done and accepted generally, basic static characteristics of the PMA,such as pressure, force, length and stiffness of linear joint driven by PMA are studied in the paper. Based on the characteristics analysis results of the linear joint driven by PMA , a active damping platform system is designed.
     Firstly, based on the realistic model which is common to universal, the static characteristics is analysed. And considering PMA as a variable stiffness spring, a new simplified static stiffness expression is founded compared to the general models in some other papers. Also, static characteristics of linear joint driven by PMA are studied by method of experiment and simulation and further the active damping control system based on PMA.
     Secondly, the model of the static characteristics of the initial working conditions and of the working conditions with the equally-changed pressure and variable pressure is presented. Based on such theory analysis results, a experiment is presented about the static drive characteristics of the linear joint driven by PMA,and the static stiffness model of the linear joint driven by PMA is presented and the research results verify the simplified mathematic model of PMA.
     Finally, a active vibration control system is founded based on the linear joints driven by the PMA and its dynamic model is presented. The comparative simulation graphes of the damping effect with different frequencies in active and positive vibration isolation are presented. Furthermore, aiming at the active damping system, an experiment system is founded and the experimental results testify that the vibration control system based on the linear joints driven by the PMA is available for the low frequency damping.
引文
[1] 师汉民, 谌刚, 吴雅.机械振动系统.武汉: 华中科技大学出版社, 2001
    [2] 丁文镜. 减振理论. 北京: 清华大学出版社, 1988
    [3] 牛军川. 基于多模型柔性隔振系统的振动机理和主动控制研究: [博士学位论文]. 山东: 山东大学, 2003
    [4] 李国平, 魏燕定, 陈子辰. 精密设备系统主动隔振的基础理论与技术. 兵工学报,25(4): 462~466
    [5] 严济宽. 机械振动隔离技术. 上海: 上海科技文献出版社, 1985
    [6] 李世才. 低频精密主动隔振技术研究: [硕士学位论文]. 南京: 河海大学, 2003
    [7] 张春红汤炳新. 主动隔振技术的回顾与展望. 河海大学常州分校学报, 2002, 16(2):1~5
    [8] Takafumi Fujita, Yasutaka Tagawa, Kouichi Kajiwara, et al. Active 6-DOF microvibration control system using piezoelectric actuator. The Third International Conference on Adaptive Structure Processing of SPIE, 1993
    [9] Takagami T,Jimbo Y. Study of active vibration isolation system. Precision Engineering, 1988,10(1):3~7
    [10] Schubert et al. United States Patent[P]. No. 5,660,255 Aug. 26. 1997
    [11] Hiroshi Mizumoto, Shiro Arii, Yoshihiro Kami, et al. Active inherent restrictor for air-bearing spindles. Precision Engineering,1996:141~147
    [12] 张明明. 超精密机床垂直方向有源隔振系统的实验研究[硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 1999
    [13] 刘军. 气动人工肌肉静动态特性研究: [硕士学位论文]. 武汉: 华中科技大学, 2003
    [14] 王雄耀. 介绍一种气动新产品-仿生气动肌肉腱. 液压气动与密封, 2002,3: 1~3
    [15] 叶蹇, 王祖温, 包钢. 气动人工肌肉. 液压气动与密封, 2000,2:12~15
    [16] Stephen D. Prior and Peter R. Warner. A New Development in Low Cost Pneumatic Actuators. Proceedings of Fifth International Conference on Advanced Robotics. Pisa, Italy. 1991,2:1590-1593
    [17] G. K. Klute, J. M Czerniecki, B. Hannaford. McKibben Artificial Muscles: Pneumatic Actuators with Biomechanical Intelligence. Proceedings of IEEE/ASME 1999 International Conference on Advanced Intelligent Mechatronics. Atlanta, USA. 1999:1~6
    [18] 松下繁. ゴム人工筋制作ノート. 计测と制御,1968,7(12): 946~952
    [19] Ching-Ping Chou, Black Hannaford. Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles. Proc. 1994 IEEE Robotic and Automation Conference. 1994. 281~286
    [20] Ching-Ping Chou, Black Hannaford. Measurement and Modeling of McKibben Pneumatic Artificial Muscles. IEEE TRANSACTIONS On Robotics And Automation. 1996,12(1): 90~102
    [21] N. Tsagarakis, Darwin G. Caldwell. Improved Modeling and Assessment of pneumatic Muscle Actuators. Proceedings of the 2000 IEEE international Conference on Robotics & Automation. San Francisco 2000: 3641~3646
    [22] 刘荣,宗光华. 三自由度人工肌肉驱动器的静力学研究. 机器人,1994,16(3): 160~164
    [23] 刘荣, 宗光华. 人工肌肉驱动特性研究. 高技术通讯, 1998,6:34~38
    [24] 隋立明, 包钢, 王祖温. 气动人工肌肉改进模型研究. 液压气动与密封, 2002,4: 1~4
    [25] 隋立明,包钢,王祖温. 气动人工肌肉驱动关节特性研究. 液压与气动, 2002,3: 3~5
    [26] 杨钢. 气动人工肌肉位置伺服系统研究及其应用: [博士生学位论文]. 武汉: 华中科技大学, 2004
    [27] D. G. Caldwell, Gustavo A. Medrano-Cerda, Mike Goodwin, Control of PneumaticMuscle Actuators. IEEE Control System, 1995,2:40~48
    [28] D. G. Caldwell, Gustavo A. , Medrano-Cerda and M. Goodwin, Characteristics and Adaptive Control of Pneumatic Muscle Actuators for a Robotic Elbow, ICRA 1994:3558~3563
    [29] 宇 野 元 雄 . ゴ ム 人 工 筋 と 口 ボ ッ ト ヘ の 应 用 . 油 压 と 空 气压,1986,17(3):175~179
    [30] 则次俊郎,和田 力. ゴム制空气压アヶチュエ一タの制御性能. 油压と空气压,1994,21(6): 628~634
    [31] 宗光华. 利用变结构理论实现人工肌肉夹持力控制. 机器人,1990,12(4):15~20
    [32] 田社平,林良明. 人工肌肉静态特性及其测量. 实用测试技术,1998,6:12~14
    [33] 田社平. 人工肌肉高速高精度的位置研究:[博士学位论文]. 上海: 上海交通大学图书馆, 1999
    [34] 田社平,丁国清,林良明等. 人工肌肉的自适应预测控制. 仪器仪表学报,2001, 22(3):86~87
    [35] 田社平,林良明,颜国正. 基于神经网络的人工肌非线性控制. 上海交通大学学报,2001,35(5):713~716
    [36] 隋立明, 王祖温, 包刚. 气动肌肉的结构参数的分析与设计.液压与气动, 2003(2): 12~14
    [37] 隋立明, 王祖温, 包刚. 气动肌肉的刚度特性分析. 中国机械工程, 15(3): 242~244
    [38] 徐庆善. 隔振技术的进展与动态. 机械强度, 1994, 16(1):37~41
    [39] 严济宽. 关于振动控制的一些基本概念. 噪声与振动控制, 1994, 2(1):8~14
    [40] 韩润昌. 隔振降噪产品应用手册. 哈尔滨: 哈尔滨工业大学出版社, 2003
    [41] 石年勋. 隔振理论及其在工程上的应用. 化工装备技术, 1995, 16(5):12~18
    [42] 王兆康. 设备减振的机理和特性. 常州工业技术学院学报, 1995, 9(2):58~62
    [43] 张晓青. 工程机械的主动减振系统. 建设机械技术与管理, 2002(10): 24~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700