用户名: 密码: 验证码:
纳米结构陶瓷涂层材料的磨削损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构陶瓷涂层材料是近年来研制出来的新型工程材料,在工业上有着广阔的应用前景。对这种材料的磨削加工是一个难题。目前在国内对纳米结构陶瓷涂层材料的精密磨削尚缺少深入系统的研究,因此在这方面所进行的研究工作就具有非常现实而重大的意义。
     本文研究用金刚石砂轮磨削纳米WC/12Co涂层材料的磨削加工损伤,结合压痕断裂力学知识分析材料磨削时中位裂纹和横向裂纹的产生和扩展机理,最终建立起一个适用于纳米结构陶瓷涂层材料磨削加工情况的产生磨削损伤的临界力模型,并通过实验验证了该模型。依据该产生磨削损伤的临界力模型可以定量地判断材料的去除机理。本文的另一个重要内容是通过研究磨削参数对亚表面损伤深度的影响来揭示材料的亚表面损伤与磨削加工中的相关因素,如砂轮的切削深度、工件进给速度、砂轮粒度号、砂轮粘结剂类型等,之间的关系。
     通过对比研究不同磨削条件下材料的亚表面损伤来逐步展开对本课题的研究,并取得一些有意义的结论:
     1.在磨削纳米结构陶瓷涂层材料时主要产生两种形式的裂纹,即中位/径向裂纹和横向裂纹;
     2.依据产生横向裂纹的临界力模型并结合实验结果,发现在所有磨削条件下,纳米WC/12Co涂层磨削表面最明显的特征是塑性流动,在大的单颗磨粒磨削力的条件下也同时伴有少量的脆性断裂。
     3.随着切削深度和工件进给速度的增大,亚表面损伤深度增大。而砂轮转速对亚表面损伤深度的影响不大。
     4.砂轮的磨粒尺寸越大,亚表面损伤深度越大。用金属粘结剂砂轮进行磨削产生的损伤深度比相同粒度号的树脂粘结剂砂轮和陶瓷粘结剂砂轮大。而树脂粘结剂砂轮和陶瓷粘结剂砂轮磨削产生的亚表面损伤深度差别不大。砂轮粘结剂类型对亚表面损伤深度的影响远没有砂轮切削深度和工件进给率的影响大。
     本文通过对纳米WC/12Co涂层材料亚表面损伤的研究,从中得出规律可以用来对纳米结构陶瓷材料的精密磨削进行指导,并对加工过程进行预报。通过研究最终建立了纳米结构陶瓷涂层材料的亚表面损伤深度和单颗磨粒的磨削深度之间的关系模型。
Nanostructured ceramic coatings, a kind of new engineering materials, are developed in recent years. This kind of materials will be extensively used in industrial applications. But machining difficulties have been associated with the uses. Under current state-of-the-art, no detailed and thorough study on the precision grinding nanostructured ceramic coating have been reported. So the research work in this respect has a very realistic and great meaning.
    The present paper deals with the grinding damage in n-WC/12Co coating ground with diamond wheels. The formation and propagation of median/radial and lateral cracks are analyzed using "indentation fracture mechanics" approach. Finally critical grinding condition models, which are fit for nanostructured ceramic coatings, are proposed and also verified by the experiments. Based on the critical load model the material removal mechanism can be quantitatively analyzed. The other important aspect of this paper is to announce the effects of grinding conditions on the depth of subsurface damage to reveal the inherent relation among the subsurface damage and relevant factors in grinding, such as wheel depth of cut, table federate, wheel grit size, wheel bond type and so on.
    Investigations had been conducted by comparing the subsurface damage of material under different grinding conditions. Some meaningful conclusions had been
    made:
    l.Two major crack patterns are identified, namely median/radial cracks and
    lateral cracks.
    2.Based on the critical load for lateral cracking and the experimental results, we found that grinding mark is the most significant characteristic on the ground n-WC/12Co under all grinding conditions. At the higher the normal force per grit, brittle fracture is also observed.
    3.The depth of subsurface damage grows with the increase of wheel depth of cut
    or table federate.
    4.Larger grit size results in deeper damage. The depths of damage are larger in the coatings ground with the mental bond wheel than in those ground with the vitrified and resin bond wheels. There is no great difference among those coatings ground with the vitrified and resin bond wheels. The effects of wheel bond type on the depth of damage are insignificant when compared with those from wheel depth of cut and table federate.
    
    
    The present paper investigated the subsurface damage of nanostructured WC/12Co coating. Some laws, which can guide the precision grinding nanostructured ceramic coatings and predict the grinding process, are obtained. A model between subsurface damage depth of nanostructured ceramic coatings and the cut depth per grit is established.
引文
[1] 陈英莫.浅议21世纪初机械制造业发展的特点和趋势.工程机械,2001,(7):21-23
    [2] 庞滔,郭大春,庞楠.超精密加工技术.第1版.北京:国防工业出版社,2000年8月,5-6
    [3] 中国磨料磨具.磨料加工的最新进展.www.abrasives.org.cn,2003-11-15
    [4] 王金来.磨削加工的过去和未来.www.buaa.edu.cn
    [5] 今天的超硬磨料影响下一代的生产.www.machine-trade.com
    [6] 磨削技术的新进展.www.machine-trade.com,2003-8-18
    [7] 高春华,黄新友.纳米陶瓷的性能及制备技术.云南大学学报(自然科学版),2002,24(1A):49-52
    [8] 江山红.现代制造技术及其发展趋势初探.http://zzcjzx.jyjy.net.cn
    [9] 汪一佛.纳米材料技术的概况.www.ntem.com.cn,2003-8-3
    [10] 光明日报.纳米技术(一).http://www.chemxp.com,2003-12-3
    [11] 卢柯,徐坚.纳米金属材料:进展和挑战.www.echemsoft.com,2003-9-18
    [12] 束洪福.第一届全国纳米测量技术会议举行.科技日报社,2003-3-21
    [13] Lawn,B.R.,A.G.Evans. A Model for Crack initiation in Elastic/Plastic Indentation Field. Journal of Materials Science, 1977,12:2195-2199
    [14] T. G. Bifano, T. A. Dow, R. O. Scattergood. Ductile-Regime Grinding: A New Technology for Machining Brittle Materials. Transactions of the ASME, 1991,113:184-189
    [15] 刘子旭.陶瓷磨削机理.磨床与磨削,1998,(01):36-42
    [16] Bi. Zhang, X.Liu, C.A. Brown et al. Microgrinding of Nanostructured Material Coatings. Annals of the CiRP, 2002,51 (1): 251-254
    [17] Xiangbing Liu, Bi Zhang. Grinding of nanostructural ceramic coatings: damage evaluation. International Journal of Machine Tools & Manufacture, 2003, (43): 161-167
    [18] 周志雄,邓朝晖,陈根余等.磨削技术的发展及关键技术.中国机械工程,2000,11(1-2):186-189
    [19] 中国机床工具工业协会.我国磨削技术的发展方向.www.chinalubricant.com,2003-1-23
    [20] 赵文轸.材料表面工程导论.第1版.西安:西安交通大学出版社,1998,1-8
    
    
    [21] 徐滨士.表面工程与维修.第1版.北京:机械工业出版社,1996,1-5
    [22] 欧忠文,徐滨士,马世宁等.纳米材料在表面工程中应用的研究进展.中国表面工程,2000,(2):5-9
    [23] 徐滨士,马世宁,刘世参等.表面工程的进展与再制造工程.同济大学学报,2001,29(9):1085-1091
    [24] 徐滨士,李长久,刘世参等.表面工程与热喷涂技术及其发展.中国表面工程,1998,(1):3-9
    [25] 热喷涂技术在电站设备维护中的应用.www.51kk7.cn,2003-11-09
    [26] 韩忠,赵晖.热喷涂发展趋势——新型高能高速喷涂方法.材料工程,1996(12):8-10
    [27] 邓世均.高科技时代的热喷涂技术.材料保护,1995,28(8):12-15
    [28] 王志平,霍树斌,刘瑾.超音速火焰喷涂(HVOF)技术的发展与工艺特点.焊接,2000,(6):6-10
    [29] 黄克刚.陶瓷热喷涂.山东陶瓷,1998,21(2):25-28
    [30] 薛家祥,黄石生.等离子喷涂技术的现状与展望.电焊机,1994,(3):8-11
    [31] 王志平,董祖珏,温瑾林.高速火焰与等离子喷涂WC/Co涂层的性能比较.中国表面工程,1999,(2):18-20
    [32] 马章林,刘泽昊,吕传富.不同喷涂方法制备WC-Co涂层性能的研究.新技术新工艺,1996,(6):41-42
    [33] H.Engqvist,S.Ederyd, N.Axen et al. Grooving wear of single-crystal tungsten carbide. Wear, 1999, (230): 165-174
    [34] Kalpakjian,S. Manufacturing Engineering and Technology. Addison-Wesley, 1989: 757-758.
    [35] J.E.Mayer jr., G. -P.Fang. Effect of Grit Depth of Cut on Strength of Ground Ceramics. Annals of the CIRP, 1994,43(1): 309-313
    [36] Malkin, S. Grinding Technology-Theory and Application of Machining with Abrasives. Ellis Horwood Limited, 1989
    [37] 温松明.互换性与测量技术基础.第2版.长沙:湖南大学出版社,1998,36-44
    [38] Malkin, S., Hwang, T.W. Grinding Mechanisms for Ceramics. Annals of the CIRP, 1996,45(2): 569-580
    [39] Deng Z H, Jin Q Y, Zhang Bi. Critical Grinding Condition Models for Predicting Grinding Cracks in Nanostructured Ceramic Coatings. in: Key Engineering Material. 2004,259—260:273—277
    [40] Lawn, B.R.,Wilshaw, T.R. Indentation Fracture: Principles and Applications. J.Mater. Sci., 10:1049-1081
    [41] Inasaki I. Grinding of Hard and Brittle Materials. Annals of the CIRP,
    
    1987,36:463-471.
    [42] Chiang.S.S., Marshall.D.B., Evans A.G. The Response of Solids to Elastic/Plastic Indentation. Ⅱ. Fracture Initiation. J.Appl.Phys., 1982, 53(1): 312-317
    [43] Evans.A.G., Marshall.D.B. Wear Mechanisms in Ceramics. Fundamentals of Friction and Wear of Materials, Ed.BY. Rigney.D.A., 1981. ASME: 349
    [44] 邓朝晖、张璧、孙宗禹等.陶瓷磨削的材料去除机理.金刚石与磨料磨具工程,2002.2(128):47-51
    [45] 龚江宏.陶瓷材料断裂力学.第1版.北京:清华大学出版社,2001,99-101
    [46] Xiangbing Liu. Ph.D. MICROGRINDING OF NANOSTRUCTURED MATERIALS: EXPERIMENTATION AND THEORETICAL MODELING. UMI, 2001,2001.6:91-92
    [47] BiZhang, X.L.Zheng,H.Tokura.et al. Grinding induced damage in ceramics. Journal of Materials Processing Technology, 2003, (132): 353-364
    [48] W.Pfeiffer, T.Hollstein. Damage determination and strength prediction of machined ceramics by X-ray diffraction techniques, in: S.Jahanmir (Ed.), Machining of Advanced Materials, National Institute of Standards and Technology SP 847, Washington, DC: Government Printing Office, 1993,235-245
    [49] H. Ahn, L. Wei, S. Jahanmir. ASME Journal of Engineering Materials and Technology, 1996,118(3): 402
    [50] E.Brinksmeier. State-of-the-art of non-destructive measurement of subsurface material properties and damages. Precision Engineering, 1989, (11): 211-224
    [51] G. Goch, B. Schmitz, B. Karpusechewski et al. Review of non-destructive measuring methods for the assessment of surface integrity: a survey of new measuring methods for coatings, layered structures and processed surfaces. Precision Engineering, 1999, (23): 9-33
    [52] M. Yoshikawa, B. Zhang, H. Tokura. Observations of ceramic Society of Japan. International ed, 1987, (95): 911-918
    [53] B. Zhang, T. D. Howes. Material removal mechanisms in grinding ceramics. Annals of the CIRP, 1994, (43): 305-308
    [54] Bi Zhang, Trevor D.Howes. Subsurface Evaluation of Ground Ceramics. Annals of the CIRP, 1995, 44(1): 263-267
    [55] T.M.A. Maksoud, A.A. Mokbel, J.E. Morgan. Journal of Materials Processing Technology, 1999, (88): 222-243
    [56] H.K.K. Xu, S. Jahanmir. Simple technique for observing subsurface damage in
    
    machining of ceramics. Journal of American Ceramic Society.1994, 77(5):1388-1390
    [57] T.W.Liao, G.Sathyanarayanan,L.J.Plebani et al. Characterization of grinding-induced cracks in ceramics. Int. J.Mech.Sci.,1995(37): 1035-1050
    [58] J.B.J.W. Hegeman, J.Th.M. De Hosson, G.de With. Grinding of WC-Co hardmetals. Wear, 2001, (248): 187-196.
    [59] Marshall, D. B., Geometric Effects in Elastic/Plastic Indentation. J. Amer. Ceram. Soc., 1984,67:57-60
    [60] 陈日曜.金属切削原理.第2版.北京:机械工业出版社,1992,287-288
    [61] 李伯民,赵波等.实用磨削技术.第1版.北京:机械工业出版社,1996,10-12,29-30
    [62] 任敬心,华定安.磨削原理.第1版.西安:西北工业大学出版社,1988.5-6。
    [63] W. Qu, K. Wang, M.H. Miller et al. Using vibration-assisted grinding to reduce subsurface damage. Precision Engineering, 2000, (24): 329-337
    [64] Subramanian K, Redington PD, Ramanath S. A system approach for grinding of ceramics. Bull Am Ceram Soc, 1994,73:61-66.
    [65] Subramanian K, Ramanath S, Tricard M. Mechanisms of material removal in the precision production grinding of ceramics. ASME JMfg Sci Eng, 1997,119:509-519
    [66] Ashley S. High-speed machining goes mainstream. Mech Eng, 1995, May: 56-61
    [67] O'Connor L. Machining with super-fast spindles. Mech Eng, 1995, May: 62-64.
    [68] Kovach JA, Laurich MA, Ziegler Kr et al. Development of advanced grinding technology for structural ceramics. Technical Papers of NAMRI/SME, 1996:51-56
    [69] Hashimoto H, Imai K. Epistemology and abduction in shear (ductile) mode grinding of brittle materials. Proceedings of the ASPE Spring Topical Meeting, 1998:36-39
    [70] Moriwaki T, Shamoto E, Inoue K. Ultraprecision ductile cutting of glass by applying ultrasonic vibration. Ann CIRP, 1992,41(1): 141-144
    [71] Kachanov, L.M. Introduction to Continuum Damage Mechanics. Kluwer Academic Publishers, 1958.
    [72] Liu, X.B., and B. Zhang. Machining Simulation for Ceramics Based on Continuum Damage Mechanics. ASME Transaction, J. Mfg. Sci. Eng., 2002, 124:553-561
    [73] Zhang, B., Peng, X. Grinding Damage Prediction for Ceramics via CDM
    
    Model.ASME Transaction, J. Mfg. Sci. Eng., 2000, 122:51-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700