用户名: 密码: 验证码:
弱光影响番茄光合特性的钙素调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄是我国设施栽培的重要果菜之一,然而在设施栽培过程中经常会遭遇弱光逆境,使其光合生产力的发挥受到了抑制,并最终导致产量降低,商品性变差,给生产造成严重损失。因此,研究番茄在弱光逆境下的生理生化变化及其机制,对设施番茄高产优质栽培及耐弱光品种选育鉴定具有关键作用。尽管之前关于番茄弱光的报道较多,但多是结合低温进行的,并未将其作为单一因素进行研究。本试验以栽培型番茄W(L. esculentum.Mill)为试材,通过对其进行弱光和弱光下的钙素调控处理,研究了短期弱光及其恢复对番茄幼苗生长发育、光合作用、光合电子传递、活性氧代谢等方面的影响。此外,还研究了外源钙素对弱光下番茄叶片解剖结构和细胞超微结构、叶绿素合成、光合特性、光合电子传递等方面的调控作用,以期进一步了解弱光对番茄光合生理代谢的具体作用机制和钙素调控机制,从而为设施番茄栽培和化学物质调控以及抗逆生理育种提供理论依据。主要研究结果如下:
     1.明确了短期弱光促进番茄幼苗伸长生长,抑制茎的增粗生长,减少了叶片干物质积累,叶绿素含量先升后降,净光合速率的降低主要由非气孔限制因素引起,且羧化效率及RuBP最大再生速率降低。6d以内弱光处理后恢复相应天数,番茄株高、叶绿素含量可基本恢复到对照水平,而茎粗、干物重、和各项光合指标则需要将近2倍处理天数才可恢复到对照水平;9d以上弱光处理后番茄幼苗株高、茎粗和叶片干重、Pn、Gs、Ci、Ls和羧化效率及RuBP最大再生速率则均未能在短期内恢复到对照水平。
     2.明确了短期弱光降低了番茄幼苗叶片的PSII的光化学活性和电子传递速率,增加了热耗散系数。6d以内弱光处理各项指标与对照之间差异不显著,恢复相应天数后即接近对照水平;9d以上弱光处理显著降低了番茄幼苗叶片的Fv/Fm、Fv/Fo、1/Fo-1/Fm、Y(Ⅱ)、ETR(Ⅱ)及qP和qN值,增加了Fo,自然光恢复阶段虽有所回升但很难恢复到对照植株水平,说明对PSII造成了不可逆转的伤害。
     3.明确了短期弱光增加了番茄幼苗叶片内的活性氧含量,降低了保护酶活性及可溶性蛋白含量。处理初期保护酶活性应激性增加的同时活性氧含量下降,6d以上弱光处理则显著增加了活性氧水平,降低了保护酶活性,叶片膜脂过氧化程度提高,但在后期自然光条件下可基本达到对照植株水平,而9d以上处理则很难在短期内恢复到对照水平。短期弱光处理对POD活性的影响较小。
     4.明确了外源钙素的加入提高了弱光下番茄植株的高度,增加了茎粗,均衡了植株地上和地下部分的生长;同时也增加了植株各部分干物质积累量,使得向根系和果实分配的干物质比例增加,亦均衡了植株营养生长和生殖生长;钙素的加入增加了叶片中的Chl含量,提高了植株光合能力,增加了同化物的生产力,增强了保护酶活性,从而提高了弱光下番茄的产量和品质。IAA可在一定程度上放大钙素的调控效果。
     5.明确了番茄幼苗在弱光处理后,叶片厚度、栅栏组织和海绵组织厚度均较自然光对照发生不同程度下降,气孔器显著增大,气孔开口程度和开口率也有所增加,气孔数极显著增大,栅栏组织大小极显著降低,而栅栏组织内叶绿体数目有所增加,叶绿体数目显著增加,单个叶绿体和叶绿体内的淀粉粒大小以及淀粉粒、嗜饿颗粒和基粒数目均显著下降。钙素显著提高了弱光条件下番茄幼苗的叶片厚度和栅栏组织厚度,海绵组织厚度也较弱光对照有所增加,但作用不显著;显著增加了气孔器大小和开口程度,降低了气孔张开率和气孔数;极显著增加了栅栏组织大小和栅栏组织内的叶绿体数目,甚至极显著的高于自然光对照水平;钙素的加入也显著增加了叶绿体数目和单个叶绿体大小及叶绿体内的淀粉粒数、嗜锇颗粒数以及基粒数,在基粒数方面较自然光对照提高5.44%,但二者间差异不显著。
     6.明确了弱光处理后番茄幼苗叶片中叶绿素合成前体PBG含量较自然光对照植株显著下降,而UrogenⅢ和CorprogenⅢ含量则较自然光对照植株增加,ProtoⅨ、Mg-ProtoⅨ和Pchl含量变化规律不太明显,说明弱光下叶绿素合成受阻位点在PBG、UrogenⅢ和CorprogenⅢ的转化过程中;弱光处理后番茄叶片中的Chlase活性显著增加,说明其对叶绿素的降解增强;且Chl含量呈先增后降的变化趋势,Chla/b比值下降。外源钙素的加入显著提高了弱光下番茄叶片Chl合成途径中的各前体物质含量,较弱光对照降低了Chlase酶活,减缓了Chl的酶降解过程,增加了弱光下番茄叶片中Chl含量,对Chla/b的影响不是很明显。
     7.明确了弱光处理后番茄幼苗叶片Pn、Gs和Tr值显著下降,Ci值增加,PSI的P700还原态水平和PSII光化学活性降低,两个光系统的量子产额和电子传递速率下降,分配给光反应的能量比例降低,热耗散加强,光系统间能量分配的不平衡性增大,光合作用受抑,且PQ库容积减小,引发了围绕PSI的环式电子流。钙素通过增加Gs和Tr值,降低Ci值提高了Pn值;钙素处理也提高了P700还原态水平,增强了光系统的光化学活性,使向光反应部分分配的光能比例增加,增强了热耗散系数,均衡了光系统间的能量分配比例,扩大了PQ库容量,加速了围绕PSI的环式电子流传递速度。
     8.明确了弱光处理使番茄叶片内Rubisco初始活力、总活力和活化度在处理3d时应激性增加,之后随处理时间的延长逐渐下降;弱光处理降低了番茄叶片内与光合碳同化有关的酶活性,抑制了cab、rca和rbc S基因的相对表达量。外源钙素的加入提高了弱光下番茄叶片中Rubisco的初始活力、总活力及活化程度,PEPCase、FBPase和GO活性也较弱光对照增强,显著提高了弱光下番茄幼苗叶片中cab、rca和rbc S三个基因的相对表达量,提高了叶片的同化物生产及运输能力。
     9.明确了弱光处理后番茄幼苗叶片内活性氧水平在处理初期下降,随着处理时间的延长逐渐增加,叶片MDA和LOX含量在弱光处理后显著降低;抗氧化酶活性的变化趋势与活性氧水平相反,处理3d时迅速增加,之后逐渐下降;GSH和AsA含量的变化趋势类似于抗氧化酶活性变化趋势,处理3d时增加,之后逐渐下降;Pro含量则始终显著高于自然光对照水平,而可溶性糖和可溶性蛋白含量在处理6d以后显著低于自然光对照。钙素处理在一定程度上降低了弱光胁迫下番茄幼苗叶片内的活性氧水平,减轻了膜脂过氧化程度,提高了各抗氧化酶活性,减轻了活性氧对植株造成的伤害,且钙素处理的番茄幼苗叶片内各渗透调节物质含量均高于弱光对照水平。
Tomato is one of the important vegetables in greenhouse cultivation, but it often encountered low-light stress during cultivation, photosynthetic productivity was inhibited, and eventually lead to lower production and quality, causing serious losses to the production. Therefore, the study of tomato under low light stress and its physiological and biochemical mechanisms of change, high yield and quality of facilities tomato cultivation and breeding resistance to low-light identification plays a key role. Although previous reports on the more low light tomato, but mostly carried out with cold, not as a single factor study. In this experiment, cultivation of tomato W (L.esculentum.Mill) as material, through its low-light treatment and control measures of calcium under low light to study the short-term light stress and its recovery on the tomato seedling growth, photosynthetic the role of electron transfer, reactive oxygen metabolism, in addition of exogenous calcium to its anatomical structure and cell ultrastructure, chlorophyll synthesis, photosynthesis, photosynthetic electron transport regulation of other aspects to further understanding of the weak Light on Photosynthetic physiology of the specific mechanism of action and mechanism of calcium regulation, so as to chemical substances for greenhouse cultivation and breeding of stress physiological regulation and provide a theoretical basis. The main results are as follows:
     1. Through short-term low-light and the recovery treatment, we found that plant height increased, stem diameter decreased, dry matter weight in leaves was decreased, the chlorophyll content of tomato leaves first increased and then decreased, Pn reduce mainly caused by non-stomatal limitation, and CE and Jmax values decreased.6 days or less low light treatment and natural light recovery the same days, plant height, chlorophyll content can be achieved to contrl level, but stem diameter, dry matter weight and photosynthesis parameters need about 2 times the processing time required to recover; after 9 days or more low light treatment, plant hight, stem diameter, leaf dry weight, Pn, Gs, Ci, Ls, CE and Jmax value were more difficult to restore.
     2. Clear short-term low intensity light treatment decreased the photo-chemical activity and electron transmit rate, increased heat dissipation coefficient. Within 6 days low light treatment, above parameters have no significant difference between treatment and control, the same time recovery after treatment can close to the control level; 9 days or more treatment can redueced Fv/Fm, Fv/Fo,1/Fo-1/Fm, Y (Ⅱ), ETR (Ⅱ), qP and qN, enhanced Fo, although there was found a pick-up in natural lilght recovery condition, but can't completely restored to control levels, which declare that low light intensity treatment cause irreversible damage to PSⅡ.
     3. Low light and its recovery through short-term treatment, enhanced active oxyzen contents, reduced protected enzymes activities and the content of soluble protein. The activities of protected enzymes increased in dealing with the initial stress, but the content of active oxyzen decresed, above 6 days treatment, the active oxyzen level was increased significantly, protected enzymes activities decresed, and the degree of membrane little influence on lipid peroxidation enhanced, but they can be restored after a certain number of days to reach the basic level of control,9 days or more was difficult to return to the control level. There was little influence of low light intensity treatment to the activity of POD.
     4. Through the first flowering when the first inflorescence of tomato plants with low light low light treatment and exogenous calcium and IAA spraying treatment, defined calcium enhanced plant height and stem diameter of tomato plant, balanced above and below ground parts of the plant growth; increased the dry matter weight in various parts of tomato plants, and increased dry matter allocation to the roots and the proportion of fruit, balance the vegetative and reproductive growth; The addition of calcium were increased tomato leaf Ch1 content and Pn, Gs and Tr, lower Ci, that they participate in tomato leaves under low light intensity regulation of stomatal movement; clear exogenous calcium can be increase under low light tomato leaf and fruit of glucose, fructose and sucrose content; clear calcium has a positive regulatory role in leaves of tomato plants under low light defensive activity; Calcium can be increased the protected enzymes activities, soluble protein content, photosynthesis, membrane lipid peroxidation to some extent in tomato leaves under low light rnvironment, and reduce the MDA content, but POD activity in the regulation of calcium in terms of promotion is very limited. In addition, calcium can increase the tomato fruit weight, yield numbers of fruits to enhance the fruit soluble solids, soluble sugars, organic acids and Vc content and sugar acid ratio, and improve the fruit quality under low light conditions. IAA in the above areas could enlarge the role of calcium regulation.
     5. Through the leaves as one of six low-light tomato seedlings under low light stress treatment and calcium handling, clear low-light treatment of tomato leaf thickness, palisade tissue and spongy tissue thickness compared with control plants, natural light, had decreased to varying degrees, calcium hormone significantly increased leaf thickness and palisade tissue thickness, spongy tissue thickness increased less light control, but the effect was not significant; low light treatment significantly increased the size of stomata, stomatal opening and the opening degree of the increase in rate, stomatal number of very significant increase of calcium treatment significantly increased the degree of stomatal size and openings, reducing the number of stomata and stomatal opening rate; low light treatment, the size of palisade tissue was significantly reduced, while the palisade tissue increase in the number of chloroplast, calcium treatment significantly increased the palisade tissue size and palisade tissue within the chloroplast number, or even significantly higher than natural light control level; low light treatment, the number of chloroplast increased significantly, a single chloroplast and chloroplast starch grain size and starch grains, hungry, addicted to the number of particles and matrix grains were significantly decreased, calcium significantly increased chloroplast number and chloroplast size and chloroplast single starch grains, osmiophilic particles and the matrix grains, in terms of basic grains was increased by a more natural light 5.44%, but the difference was not significant between them.
     6. Through the leaves as one of the six low-light treatment of tomato seedlings under low light stress and calcium handling, a clear tomato leaves after a low light the chlorophyll precursor ALA, PBG content in natural light than the control plants decreased significantly, while the UrogenⅢand CorprogenⅢcontent of control plants increased more natural light, ProtoⅨ, Mg-ProtoⅨand Pch1 content variation is not obvious, that the chlorophyll synthesis under low light stress blocked sites in the PBG, UrogenⅢand CorprogenⅢthe transformation process, the addition of exogenous calcium significantly increased the biosynthesis of the Chi precursors content; tomato leaves under low light stress in a more natural light control Chlase activity increased significantly, indicating that increased degradation of chlorophyll, and calcium handling weak light was reduced by enzyme activity, slowing the process of Chi degradation enzyme; light stress in leaves of tomato after the Chla, b and total Chi content was first increased and then decreased trend, Chla/b decreased calcium treatment increased the tomato under low light stress Chi content in leaves of Chla/ b of the impact is not obvious.
     7. Through the leaves as one of the six low-light treatment of tomato seedlings under low light stress and calcium handling, a clear tomato leaves after a low light value of Pn, Gs and Tr values were significantly decreased, Ci values increased by increasing calcium Gs values and Tr values, reduce the value of Ci is increased by the Pn; clear the low light treatment reduced the level of PSI in the P7oo reduction state, an increase of PSⅡof Fo and Fm, decreased Fv/ Fm, Fv/Fo and 1/Fo-1/Fm equivalents, an increase of calcium handling of the P700 reduction state level of PSⅠ, PSⅡreduced the Fo and Fm, but also increased the Fv/Fm, Fv/Fo and 1/Fo-1/Fm value; weak PSⅠlight stress reduces the Y (Ⅰ) and ETR (Ⅰ) value, an increase of Y (ND) and Y (NA) value of calcium treatment increased the Y (Ⅰ) and ETR (Ⅰ) value, reducing the Y (ND) and Y (NA) value; low light treatment to reduce the PSⅡof the Y (Ⅱ) and ETR (Ⅱ) value, an increase of Y (NPQ) and Y (NO) value of calcium treatment increased the Y (Ⅱ) and ETR (Ⅱ) value, reducing Y (NPQ) and Y (NO) value; low light treatment increased qN values, Ex Hd values, and values and (A+Z)/(V+A+Z) ratio, reduced qL and Pc values of calcium treatment increased the qL and Pc values lower qN values, Ex Hd value and values and (A+Z)/(V+A+Z) ratio; In addition, the low light treatment increased the L (PFD) andβ/α-1 value of calcium treatment reduced the values of more than two; low-light treatment reduces the size of the PQ pool, causing the ring around the PSI electron flow, the addition of calcium increased under low light the PQ pool size, increased the ring around the PSI electron flow transfer speed.
     8. Through the leaves as one of the six low-light treatment of tomato seedlings under low light stress and calcium handling, clear low light tomato leaves after the initial Rubisco activity, total activity and activation degree of stress when dealing with an increased 3d then gradually decreased with treatment time, the addition of exogenous calcium increased the initial Rubisco activity, total activity and activation; low light treatment to reduce the tomato leaves of PEPCase, FBPase, and GO activity, calcium handling plant leaves of PEPCase, FBPase, and GO activity of weak optical control enhancements; In addition, low light treatment, the tomato seedlings in the cab, rca and rbc S gene relative expression level of more natural light were decreased significantly, calcium treatment significantly increased the weak Under light stress in leaves of tomato seedlings over the relative expression of three genes.
     9. Through the leaves as one of the six low-light treatment of tomato seedlings under low light stress and calcium handling, clear low-light treatment of tomato leaves O2·- production rate, H2O2 content and·OH is lower than the initial content of natural light in the treatment the level of control after treatment time with the gradual increase in leaf MDA content and LOX significantly reduced low-light treatment; calcium treatment to some extent reduce the leaves of tomato seedlings under low light within the level of reactive oxygen species, reducing lipid peroxidation; clear low light tomato leaves after antioxidant enzymes SOD, POD, CAT and APX activity in the opposite trend and the level of reactive oxygen species, when dealing with the rapid increase in 3d, then decreased gradually; calcium treatment increased The activities of antioxidant enzymes, thereby reducing the reactive oxygen species damage to the plants; clear low light tomato leaves treated with GSH and AsA content in the trend of changes in antioxidant enzyme activities similar to trends,3d, increase, then decreased gradually, Pro content in leaves were always significantly higher than control level of natural light, while the soluble sugar and soluble protein content after treatment was significantly lower than 6d natural light control; calcium handling within the tomato seedlings were higher than the osmotic adjustment of low-light level of the control content.
引文
1. 艾希珍,郭延奎,马兴庄,等.2004.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构.中国农业科学,37(2):268-273.
    2. 边静.1990.番茄改良式双干整枝的生产效果和生理机制的研究.沈阳农业大学硕士学位论文.
    3. 别之龙,刘佩瑛,万兆良,等.1998.弱光对辣椒落花和光合作用的影响.核农学报,12(5):314-316.
    4. 蔡妙珍,罗安程,林咸永,等.2003.Ca2+对过量Fe2+胁迫下水稻保护酶活性及膜脂过氧化的影响.作物学报,29(3):447-451.
    5. 曹永庆,曹艳平,李壮,等.2008.采前喷钙对溶质桃采后贮藏品质及后熟软化的影响.中国农业大学学报,13(6):31-36.
    6. 常彩涛,刘文明,葛长鹏,等.1996.弱光下青椒外部形态及生理指标变化的研究.天津农业科学,(12):8-10.
    7. 陈根云,缪有刚,李立人.1993.光和蛋白质抑制剂对水稻Rubisco大、小亚基和Rubisco亚基结合蛋白基因表达的影响.植物生理学报,(19):243-249.
    8. 陈贵林,高洪波,乜兰春,等.2002.钙对茄子嫁接苗生长和抗冷性的影响.植物营养与肥料学报,8(4):478-482.
    9. 陈建勋,王晓峰.2006.植物生理学实验指导.华南理工大学出版社,75-77.
    10.陈俊伟,张上隆,张良诚.2001.柑橘果实遮光处理对发育中的果实光合产物分配、糖代谢与积累的影响.植物生理学报,27(6):499-504.
    11.陈昆松,张上隆.1998.脂氧合酶与果实的成熟衰老.园艺学报,25(4):334-338.
    12.陈立松,刘星辉.2003.水分胁迫对荔枝叶片呼吸代谢有关酶活性的影响.林业科学,39(2):39-43.
    13.程冬梅,范三红,刘香莉,等.2006.小麦返白系胆色素原脱氨酶纯化及编码cDNA序列分析.中国生物化学与分子生物学报,22(12):973-978.
    14.崔继林.2000.光合作用与生产力.江苏科学技术出版社,189.
    15.崔香环.2001.H2O2和Ca2+参与茉莉酸甲酯对气孔运动的调节.河南大学硕士学位论文.
    16.董静.2001.遮荫及叶施蔗糖对桃树生长发育的影响.中国农业大学硕士学位论文.
    17.董静,贾克功.2005.4.1.弱光胁迫对桃产量及品质形成的影响.全国第二次设施果树学术研讨会.青岛.中国园艺学会.
    18.董钻,沈秀瑛.2000.作物栽培学总论.中国农业出版社.
    19.范爽.2006.设施不同光环境对桃树14C同化物分配特性及果实品质的影响.山东农业大学硕士学位论文.
    20.冯孝严,李淑珍,石英.1999.设施栽培桃树落花落果原因及对策.山西果树,4:10-12.
    21.付景,李潮海,赵久然,等.2009.弱光胁迫对不同基因型玉米光合色素的影响.河南农业科学,(6):31-34.
    22.高洪波.2005.根际低氧胁迫下网纹甜瓜幼苗生理代谢的特征及ca2+、GABA生理调节功能.南京农业大学博士学位论文.
    23.高洪波,陈贵林.2002.钙调素拮抗剂对茄子嫁接苗抗冷性的影响.园艺学报,29(3):243-246.
    24.高洪波,郭世荣,刘艳红,等.2005.低氧胁迫下ca2+、La3+和EGTA对网纹甜瓜幼苗活性氧代谢的影响.南京农业大学学报,28(2):66-68.
    25.高绍森,朱延姝,冯辉.2005.连续遮光对番茄苗期生长发育和叶绿素荧光指标影响的研究.辽宁农业科学,(3):31-31.
    26.龚明,杜朝昆,许文忠.1996.钙和钙调素对玉米幼苗抗旱性的调控.西北植物学报,16(3):214-220.
    27.龚明,李英,曹宗巽.1990.植物体内的钙信使.植物学通报,7(3):19-29.
    28.谷俊涛,郭秀林,李广敏,等.2001.水分胁迫下钙、钙调素对小麦幼苗生长及过氧化物酶同工酶的影响.华北农学报,16(3):62-67.
    29.韩丽平.2006.弱光处理对黄瓜生长发育的影响研究.西南大学硕士学位论文.
    30.郝再彬,苍晶.2004.植物生理实验.哈尔滨工业大学出版社.
    31.贺迪,刘云国,黄玉娥,等.2007.钙对不同浓度镉胁迫下芦苇幼苗叶绿素及抗氧化酶系统的影响.农业环境科学学报,26(1):197-201.
    32.何明,山春,张伟春.2005.茄子耐弱光研究的进展.辽宁农业科学,(4):24-27.
    33.何明,张伟春,山春,等.2008.弱光对茄子光合系统(PSII)的影响.辽宁农业科学,(4):6-9.
    34.侯兴亮,李景富,许向阳.2002.弱光处理对番茄不同生育期形态和生理指标的影响.园艺学报,29(2):123-127.
    35.胡晓辉.2006.钙对低氧胁迫下黄瓜幼苗碳、氮代谢影响的研究.南京农业大学博士学位论文.
    36.胡晓辉,郭世荣,李璟等.2007.低氧胁迫下钙调素拮抗剂对黄瓜幼苗根系多胺含量和呼吸代谢的影响.应用与环境生物学报,13(4):475-480.
    37.胡泽友,邓小波,彭喜旭,等.2007.外源钙对镍胁迫下水稻幼苗抗氧化酶活性及膜脂过氧化的影响.中国水稻科学,21(4):367-371.
    38.黄俊,郭世荣,蒋芳玲,等.2008.遮荫处理及恢复光照对白菜生长及活性氧代谢的影响.园艺学报,35(5):753-756.
    39.黄黎峰.2005.油菜素内酯在调节黄瓜光合作用和抗氧化系统中的作用.浙江大学博士学位论文.
    40.黄伟,张俊花,任华中.2005.日光温室不同季节的弱光环境对番茄光合作用的影响.河北北方学院学报(自然科学学报),21(1):53-57.
    41.黄卫东,吴兰坤,战吉成.2004.中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节.中国农业科学,2004,37(12):1981-1985.
    42.纪鹏,车代弟.2006.不同浓度钙离子对百合幼苗抗冷性的影响.东北农业大学学报,37(4):473-477.
    43.加藤辙等著.刘宜生等译.1975.蔬菜的生育诊断.农业渔村文化协会,35-85.
    44.贾炜珑,王淑芬,杨丽莉,等.1996.药剂处理玉米种子的萌发效应及对苗期抗旱力的影响.中国农学通报,12(6):11-13.
    45.焦彦生.2007.钙对根际低氧胁迫下黄瓜幼苗活性氧和多胺代谢的影响.南京农业大学博士学位论文.
    46.姜闯道,高辉远,邹琦,等.2003.二硫苏糖醇处理导致大豆叶片两光系统间激发能分配失衡.植物生理与分子生物学学报,29(6):561-568.
    47.姜亦巍.1992.冷温对玉米幼苗呼吸代谢的影响及ca2+和油菜素内酯的效应.沈阳农业大学硕士学位论文.
    48.姜振升,孙晓琦,艾希珍,等.2010.低温弱光对黄瓜幼苗Rubisco与Rubisco活化酶的影响.应用生态学报,21(8):2045-2050.
    49.蒋廷惠,占新华,徐阳春,等.2005.钙对植物抗逆能力的影响及其生态学意义.应用生态学报,16(5):971-976.
    50.颉敏华,颉建明,郁继华,等.2008.弱光下辣椒光和色素的变化及其与品种耐性的关系.兰州大学学报(自然科学版),44(2):53-62.
    51.金松恒.2006.反义rca水稻光合特性及其Rubisco和Rubisco活化酶的亚细胞定位.浙江大学博士学位论文.
    52.金松恒,蒋德安,王王品美,等.2004.水稻孕穗期不同叶位叶片的气体交换与叶绿素荧光特性.中国水稻科学,18(5):443-448.
    53.孔云,王王绍辉,马承伟,等.2007.轻度遮光对温室油桃结果枝光合碳同化物积累和分配的影响.农业工程学报,23(3):169-173.
    54.孔云,王绍辉,王志忠,等.2009.弱光逆境对桃树生长发育和光合特性的影响.中国农学通报,25(2):139-142.
    55.匡廷云.1979.叶绿体膜的结构与功能Ⅰ:叶绿体膜的结构、组成与PSII功能的关系.植物生理学报,5(2):99-107.
    56.雷江丽,杜永臣,朱德蔚,等.2000.低温胁迫下不同耐冷性番茄品种幼叶细胞Ca2+分布变化的差异.园艺学报,27(4):269-275.
    57.雷志华,陈军营,陈新建,等.2007.钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的生理功能.福建林业科技,34(3):244-254.
    58.李潮海,栾丽敏,王群,等.2005.苗期遮光及光照转换对不同玉米杂交种光合效率的影响.作物学报,31(3):381-385.
    59.李潮海,赵亚丽,杨国航,等.2007.遮光对不同基因型玉米光合特性的影响.应用生态学报,18(6):1259-1264.
    60.李长缨,朱其杰.1997.光强对黄瓜光合特性及亚适温下生长的影响.园艺学报,24(1):97-99.
    61.李合生,孙群,赵世杰等.2000.植物生理生化实验原理和技术.高等教育出版社,105-109.
    62.李利红,梁书荣,曲小菲,等.2010a.外源钙对高温强光胁迫下小麦叶中蛋白激酶活性和D1蛋白磷酸化的影响.植物生理学通讯,46(5):427-430.
    63.李利红,马培芳,杨亚军,等.2010b.外源Ca2+对高温强光胁迫下小麦叶绿体D1蛋白磷酸化及光系统Ⅱ功能的影响.应用生态学报,21(3):683-688.
    64.李利红,杨亚军,赵会杰,等.2009.外源Ca2+对高温强光胁迫下灌浆期小麦叶片光合机构运转的影响.植物生理学通讯,45(9):851-854.
    65.李林川,翟礼嘉.2006.生长素对拟南芥叶片发育调控的研究进展.植物学通报,23(5):459-465.
    66.李美茹,刘鸿先,王王以柔,等.1996.水稻幼苗冷锻炼过程中钙的效应.植物学报,38(2):735-740.
    67.李强,曹建华,金龙江,等.2010.干旱胁迫过程中外源钙对忍冬光合生理的影响.生态环境学报,19(10):2291-2296.
    68.李青云,葛会波,胡淑明,等.2006.外源钙对盐胁迫下草莓叶绿素荧光参数的影响.沈阳农业大学学报,37(3):482-484.
    69.李伟,黄金丽,眭晓蕾,等.2008a.黄瓜幼苗光合及荧光特性对弱光的响应.园艺学报,35(1):119-122.
    70.李伟,眭晓蕾,王绍辉,等.2008b.黄瓜幼苗不同叶位叶片光合特性对弱光的响应.中国农业科学41,(11):3698-3707.
    71.李卫华,卢庆陶,郝乃斌,等.2001.大豆叶片C4循环途径酶.植物学报,43(8):805-808.
    72.李晓明,陈劲枫,逯明辉.2006.低温下钙对黄瓜幼苗抗氧化酶活性及POD同工酶谱的影响.西北植物学报,26(2):241-246.
    73.李新国,张建霞,孙中海.2007.Ca2+信号系统对低温下柑橘膜脂过氧化和抗氧化酶的影响.广西植物,27(4):643-648.
    74.李莹,阚国仕,孙文丽,等.2011.大豆乙醇酸氧化酶基因的克隆、表达和酶学活性分析.湖北农业科学,50(1):172-176.
    75.李颖畅2005.KHCO3和NaHSO3对茄子幼苗光合作用的影响.沈阳农业大学硕士学位论文..
    76.李志,冯玉龙.2004.砂仁不同叶位叶片的光合作用和氧化胁迫.植物生理与分子生物学学报,30(5):546-552.
    77.廖星昊,赵洁.2006.植物胞外钙调素与信号转导.细胞生物学杂志,(28):704-710.
    78.梁洁,严重玲,李裕红,等.2004.Ca(NO3)2对NaCl胁迫下木麻黄扦插苗生理特征的调控.生态学报,24(5):1073-1077.
    79.梁文娟.2007.低温光胁迫对黄瓜幼苗光合特性的影响.山东农业大学硕士学位论文.
    80.梁文娟,孙晓琦,艾希珍.2007.弱光亚适温对不同黄瓜品种幼苗生长及光合作用的影响.山东农业大学学报(自然科学版),38(4):552-556.
    81.梁颖,王三根.2001.Ca2+对低温下水稻幼苗膜的保护作用.作物学报,27(1):59-63.
    82.梁颖,王三根,余建桥.1997.Ca2+对冷害水稻幼苗某些生理特性的影响.西南师范大学学报,22(4):411-415.
    83.梁镇林,梁慕勤,潘世元,等.1992.大豆耐阴性研究.贵州农院学报,11(2):16-22.
    84.林明,贺俐,徐波,等.2007.辣椒疫霉作用下叶绿素a/b结合蛋白的表达.亚热带农业研究,4(4):297-301.
    85.刘峰,张军,张文吉.2001.氧化钙对水稻幼苗生理作用研究.植物学通报,18(4):490-495.
    86.刘富林,韩润林,朱嘉倩,等.1991.Ca2+对高温胁迫条件下小麦光合作用的影响.华北农学报,6(增刊):15-20.
    87.刘金兰.2009.外源钙和甜菜碱提高小麦抗旱性研究.山东农业大学硕士学位论文.
    88.刘丽莉,冯涛,向言词,等.2009.外源钙对镉胁迫下芥菜型油菜幼苗生长和生理特性的影响.农业环境科学学报,28(5):978-983.
    89.刘伟.2009.水杨酸和钙对黄瓜低温弱光耐性的影响.山东农业大学硕士学位论文.
    90.刘文海.2006设施桃树耐弱光机理的研究.山东农业大学硕士学位论文.
    91.刘延吉.2001.植物生理学实验指导.2版.辽宁科学技术出版社.
    92.刘艳,王丽雪,王有年.2002.水分胁迫对苹果叶片叶绿体1,6-二磷酸果糖磷酸酯酶活性的影响.内蒙古农业大学学报,23(4):42-45.
    93.刘玉梅.2006.亚适温较弱光照条件下调控黄瓜光合作用的原理与技术研究.山东农业大学博士学位论文.
    94.柳永强.2006.弱光对桃光合作用的影响及膜伤害机理研究.甘肃农业大学硕士学位论文.
    95.卢从明,张其德,匡廷云.1993.水分胁迫对小麦叶绿素a荧光诱导动力学的影响.生物物理学报,9(3):453-457.
    96.鲁福成,王明启,张仲国等.2001.弱光对番茄苗期生长发育影响的研究.天津农学院学报,8(3):24-27.
    97.罗俊,张木清,吕建林,等.2002.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响.福建农业大学学报,29(1):18-22.
    98.吕桂云,高洪波,王梅,等.2007.钙对NaCl胁迫下西葫芦种子发芽特性的影响.种子,26(2):83-86.
    99.马德华,庞金安,霍振荣,等.1997.弱光对黄瓜幼苗光合及膜质过氧化作用的影响.河南农业大学,32(1):68-72.
    100.马淑英,赵明.2006.钙对拟南芥耐盐性的调节.作物学报,32(11):1706-1711.
    101.马维源,刘光基,张延安,等.2009.弱光对不同甜椒品种生长发育的影响.中国蔬菜,(20):55-58.
    102.毛桂莲,郑国琦,章英才,等.2007.不同钙盐对NaCl胁迫下枸杞愈伤组织耐盐性的影响.干旱地区农业研究,25(1):131-134.
    103.毛秀杰,魏毓堂,金燕,等.2005.不同光照条件下番茄花粉活力的品系间差异.沈阳农业大学学报,36(2):224-226.
    104.孟祥海,张跃进,皮莉,等.2007.遮荫对半夏叶片光合色素与保护酶活性的影响.西北植物学报,27(6):1167-1171.
    105.缪旻珉,朱月林,张玉华.2005.外源Ca2+和ABA对高温下黄瓜花药中Ca2+、ABA及蛋白质合成的影响.园艺学报,32(1):111-114.
    106.倪天华,魏幼璋.2002.钙依赖型蛋白激酶(CDPKs)在植物中的生理功能.西北农林科技大学学报(自然科学版),30(6):241-246.
    107.潘瑞炽.2008.植物生理学.高等教育出版社.288.
    108.彭淼.2007.钙对草莓抗旱性机理的研究.湖南农业大学硕士学位论文.
    109.彭淼,钟晓红,张玲,等.2009.钙对干旱胁迫下草莓SOD、CAT、PPO活性的影响.长江大学学报(自然科学版),6(1):11-14.
    110.齐红岩.2003.番茄的光合运转糖-蔗糖的运转、代谢及若干影响因素的研究.沈阳农业大学博士学位论文.
    111.任丽花,翁伯琦,方金梅.2005.施钙增强作物抗旱力的研究进展.亚热带农业研究,1(3):19-25.
    112.宋广运,陈惠民.1986.钙对棉花培根抗冷性的影响.中国农业科学,2:23-25.
    113.眭晓蕾.2006.辣椒(Capsicum annuum L.)弱光耐受性相关机理研究.中国农业大学博士学位论文.
    114.眭晓蕾,毛胜利,王王立浩,等.2007a.弱光条件下辣椒幼苗叶片的气体交换和叶绿素荧光特性.园艺学报,34(3):615-622.
    115.眭晓蕾,毛胜利,王立浩,等.2009.辣椒幼苗叶片解剖特征及光合特性对弱光的响应.园艺学报,36(2):195-208.
    116.眭晓蕾,蒋建箴,王王志源,等.1999.弱光对甜椒不同品种光合特性的影响.园艺学报,26(5):1-5.
    117.睦晓蕾,张宝玺,何洪巨.2006.弱光对不同基因型辣椒坐果和果实品质的影响.沈阳农业大学学报,6,37(3):356-359.
    118.眭晓蕾,张宝玺,张振贤,等.2005.不同品种辣椒幼苗光合特性及弱光耐受性的差异.园艺学报,32(2):222-227.
    119.眭晓蕾,张振贤,张宝玺,等.2007b.不同品种辣椒幼苗光合和呼吸对弱光的响应.中国生态农业学报,15(2):88-91.
    120.孙谷畴,林植芳,林桂珠.2001.不同光强下生长的几种亚热带森林树木的Rubisco羧化速率和碳酸酐酶.武汉植物学研究,19(4):304-310.
    121.孙谷畴,赵平,曾小平,等.2001.UV-B辐射对香蕉光合作用和不同氮源利用的影响.植物生态学报,25(3):317-324.
    122.孙锦,贾永霞,郭世荣.2009.海水胁迫对菠菜(Spinacia olerancea L.)叶绿体活性氧和叶绿素代谢的影响.生态学报,29(8):4361-4371.
    123.孙宪芝,郭先锋,郑成淑,等.2008.高温胁迫下外源钙对菊花叶片光合机构与活性氧清除酶系统的影响.应用生态学报,19(9):1983-1988.
    124.邵玉娇.2005.不同光强下油菜品质形成的生理基础研究.华中农业大学硕士学位论文.
    125.申屠文月,袁灵芝,张纯大.2007.钙对高羊茅草坪耐热性的影响.草原与草坪,(1):49-51.
    126.沈文云,马德华,候峰,等.1995.弱光处理对黄瓜叶绿体超微结构的影响.园艺学报,22(4):397-398.
    127.石贵玉,李佳枚,韦颖,等.2010.钙对镉胁迫下生菜幼苗生长和生理的影响.浙江农业科学,4:717-720.
    128.史庆华,朱祝军,Al-aghabary K.,等.2004.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,10(2):188-191.
    129.史庆华,朱祝军,应泉盛,等.2005.不同光强下高锰对黄瓜光合作用特性的影响.应用生态学报,16(6):1047-1050.
    130.谭新星,许大全.1996.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光.植物生理学报,22(1):51-57.
    131.唐韡.2007.不同胁迫时间及胁迫后恢复对番茄生育及相关代谢的影响.沈阳农业大学硕士学位论文.
    132.汪炳良,徐敏,史庆华,等.2004.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响.中国农业科学,37(8):1245-1250.
    133.汪邓民,周冀衡,朱显灵,等.2000.磷钙锌对烟草生长、抗逆性保护酶及渗透物的影响.土壤,1:34-37, 46.
    134.汪洪,周卫,林葆.2001.钙对镉胁迫下玉米生长及生理特性的影响.植物营养与肥料学报,7(1):78-87.
    135.王爱国,罗广华.1990.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,6:55-57.
    136.王宝增,孙国微.2009.外源钙对小麦幼苗耐盐性的影响.湖北农业科学,48(5):1070-1072.
    137.王凤华.1998.低温胁迫下钙对茄子幼苗的效应及机理研究.西南农业大学硕士学位论文.
    138.王凤华,高伟娜,林德清.2006.低温胁迫下钙处理对茄子幼苗蛋白质含量及特异蛋白表达的影响.河南农业科学,(6):86-88.
    139.王光,钦佩,宰学明.2006.叶面喷Ca2+增加海滨锦葵幼苗对高温的适应能力.生态与农村环境学报,22(3):41-44.
    140.王国莉,郭振飞.2007.水稻不同耐冷品种碳代谢有关酶活性对冷害的响应.作物学报,33(7):1197-1200.
    141.王慧哲,庞金安,李淑菊等.2005.弱光对春季温室黄瓜生长发育的影响.华北农学报,20(1):55-58.
    142.王建绪.2008.菊芋(Helianthus tuberosus L.)幼苗海水灌溉下干旱胁迫特征及外源钙的缓解效应研究.南京农业大学硕士学位论文.
    143.王菊凤,李鹄鸣,廖飞勇,等.2006.光照对盾叶薯蓣荧光光谱和叶绿体结构的影响.吉首大学学报(自然科学版),27(1)80-85.
    144.王兰兰.2004.弱光处理对辣椒植株形态及生理指标的影响.甘肃农业科技,(5):30-32.
    145.王丽娟.1997.减光条件下番茄的生态生理变化及耐弱光指标的研究.沈阳农业大学硕士学位论文.
    146.王丽娟,张平,顾青海,等.2002.减光条件下番茄生态生理变化研究.天津农业科学,8(1):18-22.
    147.王猛,曹福祥,龙绛霞.2010.马尾松捕光叶绿素a/b结合蛋白基因cab-Pml的克隆与原核表达.林业科学,46(9):172-177.
    148.王明,蒋卫杰,余宏军.2007.弱光逆境对植株生理特性的影响及其调控措施.内蒙古农业大学学报,28(3):198-203.
    149.王萍,郭晓冬,赵鹏.2007.低温弱光对辣椒叶片光合色素含量的影响.北方园艺,(7):15-17.
    150.王强,温晓刚,卢从明,等.2004.超高产杂交稻‘华安3号冠层不同衰老程度叶片的光合功能.植物生态学报,28(1):39-46.
    151.王兴银.1999.弱光影响温室黄瓜生长发育的生理机制研究.中国农业大学硕士学位论文.
    152.王兴银,张福墁.2000.弱光对日光温室黄瓜光合产物分配的影响.中国农业大学学报,5(5):36-41.
    153.王秀芹.2003.弱光环境下油桃光合同化物转运分配机制的研究.中国农业大学博士学位论文.
    154.王秀芹,黄卫东.2003.弱光对三年生油桃源叶韧皮组织超微结构的影响.植物学报,45(6):688-697.
    155.王旭,郭世荣,李军,等.2007a.Ca2+对根际低氧胁迫下黄瓜幼苗生长和叶片荧光特性的影响.西北植物学报,27(5):0859-0863.
    156.王旭,郭世荣,徐刚,等.2007b.Ca2+对低氧胁迫下黄瓜幼苗光合效率和细胞超微结构的影响.江苏农业学报,,23(1):39-45.
    157.王云山,康黎芳,曹冬梅,等.1999.不同光照强度对仙客来生长及叶解剖的影响.山西农业科学,27(1):53-56.
    158.王志强,王丰峰,林同保.2009.钙离子对盐胁迫小麦幼苗脯氨酸含量及其相关酶活性的影响.河南农业大学学报,43(5):475-479.
    159.翁忙玲,程慧林,姜卫兵.2007.弱光对园艺植物光合特性及生长发育影响研究进展.内蒙古农业大学学报,28(3):279-282.
    160.吴兰坤.2001.弱光对樱桃结果的影响及樱桃耐弱光机理的研究.中国农业大学硕士学位论文.
    161.吴兰坤,黄卫东,战吉成.2002.弱光对大樱桃坐果及果实品质的影响.中国农业大学学报,7(3):69-74.
    162.吴雪霞,查丁石.2010.遮荫对茄子幼苗生长和光合特性的影响.华北农学报,25(3):102-107.
    163.吴月燕,杨祚胜,丁伟红.2005.高湿弱光对葡萄叶片光合生理生化指标的影响.浙江农业学报,17(1):7-10.
    164.席海军,朱延姝,冯辉.2007.番茄弱光耐受性研究进展.北方园艺,(2):39-41.
    165.夏明忠.2003.蚕豆生理生态学.四川大学出版社:42-44.
    166.肖佳欣,彭抒昂,何华平,等.2005.硝酸钙和IAA对温州蜜柑果实钙含量及其品质的影响.果树学报,22(3):211-215.
    167.肖玉梅,陈玉玲,黄荣峰,等.2004.拟南芥保卫细胞微丝骨架的解聚可能参与了细胞外钙调素诱导的气孔关闭.中国科学C辑,34(2):129-135.
    168.向太和,王利琳,庞基良.2005.水稻(Oryza sativa L.)捕光叶绿素a/b蛋白基因全场cDNA的克隆和特性分析.作物学报,31(9):1227-1232.
    169.徐莲珍,蔡靖,姜在民,等.2008.水分胁迫对3种苗木叶片渗透调节物质与保护酶活性的影响.西北林学院学报,23(2):12-16.
    170.徐秋曼,陈宏,程景胜.1999.外源Ca2+对水稻幼苗生长的影响.天津师大学报(自然科学版),19(4):49-53,58.
    171.徐向荣,王文华,李华斌.1999.比色法测定Fenton反应产生的羟自由基及其应用.生物学与生物物理进展,1(1):1-5.
    172.许春辉.1991.光逆境对叶绿体叶绿素蛋白质复合物的影响.植物学通报,11(4):8-11.
    173.许大全.2002.光合作用效率.上海:上海科学技术出版杜.32.34.
    174.薛延丰,刘兆普.2006.钙离子对盐胁迫下菊芋幼苗的生长、生理反应和光合能力的影响理论.农业工程学报,22(9):44-47.
    175.薛应龙.1985.植物生理学实验手册.上海:上海科学技术出版社.
    176.闫童,王秀峰,杨凤娟.2006.钙对根区低温胁迫下黄瓜幼苗抗冷相关生理指标的影响.西北农业学报,15(5):172-176,181.
    177.姚允聪,王绍辉,孔云.2007.弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化.中国农业科学,40(4):855-863.
    178.杨苞枚,李进权,姚丽贤,等.2010.钾钙镁营养对香蕉生长和叶片生理特性的影响.中国土壤与肥料,1:29-32,36.
    179.杨春祥,李宪利,高东升.2004.钙对低温胁迫下油桃花果膜脂过氧化和保护酶活性的影响.落叶果树,6:1-3.
    180.杨广东,朱祝军,计玉妹.2002.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响.植物营养与肥料学报,8(1):115-118.
    181.杨盛昌,中须贺常雄,林鹏.2003.光强对秋茄幼苗的生长和光合特性的影响.厦门大学学报(自然科学版),42(2):1-6.
    182.杨文杰,陆静梅,由继红.2002.钙对低温胁迫下小麦幼苗光合作用其相关生理指标的影响.作物学报,28(5):693-696.
    183.杨兴洪,陈翠容.2000.遮荫对棉花茎叶解剖结构的影响.山东农业大学学报(自然科学版),31(4):373-377.
    184.杨兴洪,邹琦,赵世杰.2005.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征.植物生态学报,29(1):8-15.
    185.杨亚军,李利红,赵会杰,等.2008.Ca2+对高温强光胁迫下小麦叶片光合机构的保护作用.麦类作物学报,28(6):1042-1047.
    186.杨延杰,李天来,林多.2004.弱光逆境对主要果菜生长发育影响的研究进展.辽宁农业科学,(6):26-29.
    187.杨延杰.2004.弱光胁迫对番茄生长发育及生理代谢影响的研究.沈阳:沈阳农业大学博士学位论文.
    188.叶济宇,米华玲,王颖君,等.1997.菠菜类囊体中的作用光关闭后荧光短时上升.科学通报,42(17):1867-1871.
    189.郁继华,舒英杰,吕军芬,等.2004.低温弱光对茄子幼苗光合特性的影响.西北植物学报,24(5):831-836.
    190.袁清昌,许长成,邹琦.1996.钙信使系统在百草枯诱导小麦幼苗膜脂过氧化中的作用植物生理学通讯,32(1):13-16.
    191.宰学明,钦佩,吴国荣.2005.外源钙对高温胁迫下花生幼苗叶绿体Ca2+-ATPase、Mg2+-ATPase活性及Ca2+分布的影响.中国油料作物学报,27(4):41-44.
    192.曾骤.果蔬生理学.北京:中国农业大学出版社.1992.167.
    193.宗会,刘娥娥,郭振飞,等2000.Ca2+·CaM信使系统与水稻幼苗抗逆性研究初报.华南农业大学学报,21(1):63-67.
    194.邹琦.2000.植物生理学实验指导.北京:中国农业大学出版社,203-229.
    195.斋腾隆,片罔节男(日)(王海廷等译).1981.番茄生理基础.上海科学技术出版社.
    196.战吉成.2002.弱光对京玉葡萄幼苗光合特性的影响及其生理机制的研究.中国农业大学博士学位论文.
    197.战吉成,黄卫东,王利军.2003.植物弱光逆境生理研究综述.植物学通报,20(1):43-50.
    198.战吉宬,黄卫东,王秀芹,等.2005.弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化.植物生态学报,29(1):26-31.
    199.战吉成,黄卫东,王志龙等.2002a.葡萄幼苗对弱光环境的形态和生长反应.中国农学通报,18(2):1-2,17.
    200.战吉成,王利军,黄卫东.2002b.弱光环境对葡萄叶片生长及其在强光下光合特性的影响.中国农业大学学报,7(3):75-78.
    201.赵爱红.2006.钙对丹参抗镉毒害的调控机制.山东农业大学硕士学位论文.
    202.赵可夫,王韵唐.1990.作物抗性生理.北京:农业出版社.145-225.
    203.赵士杰,李树林.1994.VA菌根促进青椒生长的生理研究.华北农学报,9(1):81-86.
    204.赵世杰,孟庆伟,许长成,等.1995.植物组织中叶黄素循环组分的高效液相色谱分析法植物生理学通讯,31(6):438-442.
    205.张东方,张建国,黄卓烈.2005.华航一号和华航八号与原品种剑叶光合产物输出的比较.华南农业大学学报,26(3):10-13.
    206.张国,李滨,邹琦.2005.小麦Rubisco活化酶基因的克隆和表达特性.植物学通报,22(3):313-319.
    207.张桂菊,吴军,王玉忠,等.2007.NaCl胁迫对光蜡树幼苗保护酶系统的影响.河南农业科学,(9):75-78.
    208.章文华.1990.盐胁迫下钙对大麦小麦种子萌发及幼苗离子吸收分配的效应.南京农业大学硕士学位论文.
    209.张化生,郭晓冬,王萍.2007a.外源Ca2+、W7和EGTA处理对低温胁迫下辣椒幼苗渗透物质的调节.内蒙古农业大学学报,28(3):213-217.
    210.张化生,郭晓冬,王王萍.等.2007b.Ca2+与钙调素拮抗剂对辣椒幼苗抗冷性的影响.内蒙古农业大学学报,28(3):209-212.
    211.张健,刘美艳,肖炜.2002.Ca2+提高黄瓜幼苗耐热性的研究.中国蔬菜,(5):12-14.
    212.张建霞,李新国,孙中海.2005.外源钙对柑橘抗热性的相关生理生化指标的影响.华中农业大学学报,24(4):397-400.
    213.张俊花,黄伟,张立峰.2006.土壤干旱条件下CaCl2浸种对萝卜幼苗生理指标的影响.中国蔬菜, (6):13-15.
    214.张立功.2004.弱光及水杨酸钠对草莓叶片膜脂过氧化的影响.中国农业大学硕士学位论文.
    215.张列峰.2007.小麦叶片中Rubisco大亚基的降解及相关蛋白水解酶的研究.南京农业大学博士学位论文.
    216.张乃华.2004.外源对盐胁迫玉米叶片光抑制的缓解效应.山东农业大学硕士学位论文.
    217.张其德.1988.光强度对小麦幼苗光合特性的影响.植物学报,30(5):508-514.
    218.张世鲜.2008.不同遮阴条件下大豆生育后期保护酶活性研究.安徽农业科学,36(18):7556-7558,7571.
    219.张鑫荣.2008.巨峰葡萄对镉胁迫的生理反应及镉胁迫伤害的缓解.山东农业大学硕士学位论文.
    220.张新生,周卫,陈湖,等.2006.钙对苹果果实质膜脂肪酸组成及过氧化作用的影响.河北农业科学,10(1):36-38.
    221.张宗申.2001.辣椒抗热机理的生理学和细胞化学研究.武汉大学博士学位论文.
    222.张志良,吴光耀.1986.植物生物化学技术和方法.北京:农业出版社.1-37.
    223.张振贤,郭延奎,邹琦.1999.遮荫对生姜叶片显微结构及叶绿体超微结构的影响.园艺学报,26(2):96-100.
    224.甄伟,张福墁.2000.弱光对黄瓜功能叶片光合特性及超微结构的影响.园艺学报,27(4):290-292.
    225.郑炳松.2006.现代植物生理生化研究技术.气象出版社.267-268.
    226.郑炳松,程晓建,蒋德安,等.2002.钾元素对植物光合速率、Rubisco和RCA的影响.浙江林学院学报,19(1):104-108.
    227.郑秋玲,谭伟,马宁,等.2010.钙对高温下巨峰葡萄叶片光合作用和叶绿素荧光的影响.中国农业科学,43(9):1963-1968.
    228.种培芳.2005.弱光胁迫对甜瓜(Cucumis melo L.)光合特性及生长发育的影响.甘肃农业大学硕士学位论文.
    229.周可富.2005.话说光合色素.生物学教学,30(1):60-61.
    230.周希琴,李裕红.2003.Ca+对铬胁迫下大麻黄种子萌发的生态效应.生态学杂志,22(4):37-41.
    231.周艳虹,黄黎锋,喻景权.2004.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响.植株生理与分子生物学学报,30(2):153-160.
    232.周忆堂.2008.不同光强对长春花(Catharanthus roseus)光合作用及次生代谢的影响研究.西南大学硕士学位论文.
    233.朱晓军,杨劲松,梁永超,等.2004.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响.中国农业科学,37(10):1497-1503.
    234.朱延姝.2005.番茄耐弱光性基因型分化特性和生理机制的研究.沈阳农业大学博士学位论文.
    235.朱延姝,冯辉.2006.不同弱光环境下番茄幼苗干重和叶面积的变化.辽宁农业科学,(5):4-6.
    236.朱延姝,冯辉,高绍森.2006.弱光对番茄生长发育及产量的影响.中国蔬菜,(2):11-13.
    237.朱延姝,高绍森,冯辉.2005.弱光对不同基因型番茄品系苗期功能叶片光合速率和叶绿素含量的影响.辽宁农业科学,(1):17-18.
    238.朱延姝,高绍森,阮燕晔,等.2005.果菜类蔬菜耐弱光性研究进展.辽宁农业科学,(2):30-33.
    239.朱祝军.1997.不同光强和不同形态氮素对烟草叶片中抗坏血酸过氧化物酶活性和百草枯抗性的影响.植物生理学通讯,33(5):330-332.
    240. Abdel B.R.1998.Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium.Acta Physiology Plant,20(2):149-153.
    241. Allen J.F.,Bennett J.,Steinback K.E.,et al.1981.Chlorophast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems.Nature,291: 25-29.
    242. Anderson J.M.1982.Light energy dependent processes other than CO2 assimilation.The Biochemistry of Plants.Vol 8.Phososynthesis.Hatch M.D. and Boardman N.K.(eds).New York Academic Press. 475-500.
    243. Anderson J.M.1999.Insights into the grana stacking of thylakiod membranes in vascular plants:a personal perspective.Aust J Plant Physiol,26:625-639.
    244. Anderson J.M.,Melis A.1983.Localization of different systems in separate regions of chloroplast memberanes.Proc Natl Acad Sci USA,80:745-749.
    245. Asada K.1999.The water-w ater cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons.Annual Review of Plant Physiology and Plant Molecular Biology,50:601-639.
    246. Asada K., Badger M.R.1984.Photoreduction of 18O2 with concomitant evolution 16O2 in intact spinach chloroplasts:evidence for scavenging of hydrogen peroxide by peroxidase.Plant Cell Physiol,25: 1169-1179.
    247. Asada K.,Schreiber U.,Heber U.1993.Electron flow to the intersystem chain from stromal components and cyclic electron flow in maize chloroplasts,as detected in intact leaves by monitoring redox change of P700 and chlorophyll fluorescence.Plant Cell Physiol,34:39.
    248. Ball R.,Wild A.1993.History of photoinhibition research.J Photochem Photobiol B:Biol,20:79.
    249. Beers Jr R.F.,Sizer I.W.A.1952.spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase.Journal of Biological Chemistry,195(l):133-140.
    250. Berry J.A.,Downton W.J.S.1982.Environmental regulation of photosynthesis.In:Govindjce. Photosynthesis Vol 11.New York:Academia Press,263-343.
    251. Blanke M.M.,Ebett G.1992.Phosphoenolpyruvate carboxylase and carbon economy of apple seedlings. Journal of Experimental Botany,43:965-968.
    252. Bliger W.,Bjorkman O.1994.Relatioship among violaxanthin deepoxidation,thylakiod membrane conformation,and non-photochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.).Planta,193:238-246.
    253. Bogorad L.1962.Porphyrin syntheis.In:Colowick S P, Kaplan N O (ed),.Methods in Enzymology 5. New York:Academic Press,885-891.
    254. Brugenmann W.1993.Dauborn B.Long term chilling of young tomato plants under low light.Ⅲ Leaf development as teflected by photosynthesis parameters.Plant Cell Phusiol.34(8):1251-1257.
    255. Bush D.S.1995.Calcium regulation in plant cells and its role in signaling.Annu Rev Plant Physiol Plant Mol Biol,46:95-122.
    256. Cakmak 1.1994.Activity of ascorbate-dependent H2O2 scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves but not in phosphorus deficient leaves.Journal of Experiment Botany,45:1259-1266.
    257. Carlberg L.,Rintamaki E.,Aro E.M.,et al.1999.protein phosphorylation and the thiol redox state. Biochemistry,38:3197-3204.
    258. Carrafoli E.,Crompton M.1978.The regulation of the intracellular calcium.Int Ker Cyto,56:145-181.
    259. Champigny M.L.,Foyer C.1992.Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis.Basis for a new concept.Plant Physiology,100:7-12.
    260. Chaoui A.,Mazhoudi S.,Ghorbal M.H.1997.Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean.Plant Sci,127:139-147.
    261. Chardonnet C.O.,Charron C.S.,Sams C.E.,et al.2003.Chemical changes in the cortical tissue and cell walls of calcium infiltrated'Golden Delicious'apples during storage.Postharvest Biol Technol,28: 97-111.
    262. Chen G.L.,Jia K.Z.2004.Effect of calcium and calmodulin antagonist on antioxidant systems of eggplant seedlings under high temperature stress.Agricultural sciences in China,3(2):101-107.
    263. Chen Y.L.,Zhang X.Q.,Chen J.,et al.2003.Existence of extracellular calmodulin in the lower epidermis of the leaves of Vicia faba and its role in regulating stomatal movements.Acta Botanica Sinica,45(1):40-46.
    264. Cheng S.,Willmann M.R.,Chen H.,et al.2002.Calcium Signaling through Protein Kinases.The Arabidopsis Calcium-Dependent Protein Kinase Gene Family.Plant Physiol,129(2):469-485.
    265. Chow W.S.1994.Photoprotection and photoinhibitory damage.Adv Mol Cell Biol,10:151-196.
    266. Cockshull K.E.,Graves C.J.1992.The influence of shading on yield of glasshouse tomatoes.Journal of Horticoitural Science,67:11-24.
    267. Crafts-Brandner S.J.,Salvucci M.E.2002.Sensitivity of photosynthesis in a C4 plant,maize,to heat stress.Plant physiology,129:1773-1780.
    268. David C.,Fork D.C.1986.The control by state transitions of the distributions of excitation energy in photosynthesis.Annu Rev Plant Physiol,37:335-361.
    269. De Azevedo Neto A.D., Prisco J.T.,Eneas-Filho J.,et al.2006.Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes.Environmental and Experimental Botany,56(1):87-94.
    270. De B., Bhattachattee S.,Mukherjee A.K.1996.Short term heat shock and cold shock induced proline accumulation relation to calcium involvement in Lycopersicon esculetum(Mill) cultured cells and seedling.India Journal Plant Physiology,14(1):32-35.
    271. Demmig-Adams B.,Adams W.W.1996.Xanthophyll cycle and light stress in nature:uniform response to excess direet sunlight among higher plant species.Planta,198:460-470.
    272. Dymova O.V.,Golovko T.K.1998.Light adaptation of photosynthetic apparatus in Ajuga reptansL. ashade-tolerant plantasan example.Russian Journal of plant physiol,45(4):440-446.
    273. EI-Gizawy A.M.,Coman H.M.1992.Effect of different shading levels on tomato plants.1.Growth, flowering and chemical composition.Acta,Horticulture,323:341-347.
    274. Elstner E.F.1982.Oxygen activation and oxygen toxicity.Annu Rev Plant Physiol,33:73-96.
    275. Erez A.,Flore J.A.1986.The quantitative effect of solar radiation on 'Redhaven' peach fruit skin color. Hort Science,21(6):1424-1426.
    276. Eva V.,Dirk I.,Frank V.B.2002.Signal transduction during oxidative stress.Journal of Experimental Botany,53:1227-1236.
    277. Flore J.A.1980.The effect of light on Cherry trees.Proc Mich state Hort Soc, (110):119-122.
    278. Ford D.M.,Richard S.1988.Photosynthesis and other traits in relation to chloroplast number during soybean leaf senescence.Plant Physiology,86:108-111.
    279. Foryer C.H.,Descourvires P.,Kunert K.J.1994.Protection against oxygen radicals:an important defense mechanism studied in transgenic plants.Plant Cell Environ,17:507-523.
    280. Foyer C.H., Halliwell B.1976.The presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acid metabolism.Planta,133:21-25.
    281. Genty B.E.,Briantais J.M.,Baker N.R.1989.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochem Biophys Acta,990:87-92.
    282. Gilmore A.M.1997.Mechamistic aspects of xanthophylls cycle-dependent photoprotection in higher plant chloroplasts and leaves.Physiol Plant,99:197-209.
    283. Gong M.,Chen S.N.,Song Y.Q.,et al.1997.Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings.Aust.J.Plant Physiol,24:371-379.
    284. Gong M.,Li Z.G.1995.Calmodulin-binding proteins from zea mays germs.Phytochemistry,40(5): 1335-1339.
    285. Gong M.,Li Y.J.,Chen S.Z.1998.Abascisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems.Plant Physiol,153:488-496.
    286. Grappadelli L.C.,Lakso A.N.,Plore J.A.,et al.1994.season patterns of carbohydrate portioning in exposed and shaded apple branches.Amer.Soc.Hort.Sci.119(3):596-603.
    287. Havaux M.,Strasser R.J.,Greppin H.1991.A theoretical and experimental analysis of the qp and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events.Photosynth Res,27:41-45.
    288. Heber U.,Ne IM ANIS S.,Diet Z.K.J.,et al.1986.Assimilatory power as a driving force in photosynthesis.Biochim.Biophys.Acta,852:144-155.
    289. Heath R.L.,Packer L.1968.Photoperoxidation in isolated chloroplasts.I.Kinetics and stoichiometry of fatty acid peroxidation.Archives of Biochemistry and Biophysics,125(1):189-198.
    290. Hodgins R.,Van Huystee R.B.1986.Rapid simultaneous estimation of protoporphyrin and Mg-protophyrins in higher plants.Journal of Plant Physiology,125:311-323.
    291. Hogenboom N.G.1978.Research in relation to adaptation of tomato to poor energy conditions.Proc Meeting Eucarpia Tomato Working Group, Leningrad,USSR.135-139.
    292. Horton P.,Black M.T.1983.A comparison between cation and protein phosphorylation effects on the fluorescence induction curve in chloroplasts treated with 3-(3,4-dichlorophenyl)-1-1-dimethylurea. Biochim Biophys Acta,722:214-218.
    293. Horton P.,Ruban A.V.,Walters R.G.1996.Regulationof light harvesting in green plants.Annu Rev Physiol Plant Mol Biol,47:655-684.
    294. Huang W.D.,Wu L.K.,Zhan J.C.2002.Effect of weak light on the peroxidation of memberane lipid of cherry leaves.Acta Batanica Sinica,44(8):920-924.
    295. Ivanov B.,Kobayashi Y.,Bukhow N.G.1998.Photosystem I-dependent cyclic electron flow in intact spinach chloroplasts:occurrence,dependence on redox conditions and electron acceptors and inhibition by antimycin A.Photosynth Res,57:61-70.
    296. Jacques D.Jeanette B.1987.Evidence for a light-harvesting chlorophyll a-protein complex in a chlorophyllb-less barely mutant.Photosyn Res, (11):141-151.
    297. Jain M.,Kaur N.,Tyagi A.K.,Khurana J.P.2006.The auxin-responsive GH3 gene family in rice(Oryza sativa).Functional and Integrative Genomics,6,36-46.
    298. Jiang D.A.,Lu Q.,Weng X.Y.2001.Role of key enzymes for photosynthesis in the diurnal changes of photosynthetic rate in rice.Acta agronomica sinica,27(3):301-307.
    299. Jiang M.Y., Yang W.Y., Xu J., et al.1994.Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress.Acta Botanica Sinica,36:289-295.
    300. Kar R.K.,Choudhuri M.A.1987.Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrilla Verticillata.Physiologia Plantarum,70(4):729-734.
    301. Kara A.N.,Kotov A.A.,Bukhov N.G.1997.Specific distribution of GA,CTK,IAA and ABA in radish plants closely correlates with photomorphogenetic responses to blue or red light.Journal of Plant Physiology,151(1):51-59.
    302. Kellogg E.W.,Fridovich 1.1975.Superoxide,hydrogen peroxide,and single oxygen in lipid peroxidation byaxanthine oxidase system.Biolchem,250:8812-8817.
    303. Kinet J.M.1997.Effect of light condition on the development of the inflorescence in tomato.Scientia Hortic.(6):15-26.
    304. Kinet J.M.1977.Effect of defoliation and growth substances on the development of inflorescence of tomato under low energy conditions.Scientia Hortic.(6):27-35.
    305. Kinoshita T.,Nishimura M.,Shimazaki K.2002.Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean.Plant Cell, (7):1333-1342.
    306. Knight H.,Brand S.,Knightm R.1998.A history of stress alters drought calcium signaling pathways in Arabidopsis.Plant Journal,16(6):681-687.
    307. Knight H.,Trewavas A.J.,Knight M.R.1997.Calcium signalling in Arabidopsis thaliana responding to drought and salinity.The Plant,12:1067-1078.
    308. Kojima K.,Oshita M.,Nanjo Y.,et al.2007.Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystemⅡ.Molecular Microbiology,65:936-947.
    309. Krause G.H.,Koster S.,Wong S.C.1985.Photoinhibition of photosynthesis under anaerobic conditions studied with leaves chloroplasts of Spinacia oleracea L.Planta,165:430-438.
    310. Krause G.H. and Weis E.1991.Chlorophyll fluorescence and photosynthesis:the basis.Annual Review of Plant Physiology and Plant Molecular Biology.42:313-349.
    311.Kurek I.,Chang T.K.,Bertain S.M.,et al.2007.Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates undermoderate heat stress.The Plant Cell,19: 3230-3241.
    312. Lakshmi Praba M.,Vanangamudi M.,Thandapani V.2004.Effect of low light on yield and physiological attributes of rice.International rice research notes,29(2):153-162.
    313. Lan V.,Woodrow I.E.,Mott K.A.1992.Light-dependent changes in ribulose bisphosphate carboxlase activase activity in leaves.Plant Physiol.,99:304-306.
    314. Lauchli A.and Bieleski R.L.1983.Calcium nutrient of higher plants.Inorganic Plant Nutrient. Encyclopedia of plant physiology.New series,15:22-29.
    315. Laurent cournac.,Florence Mus.,Laetitia Bernard.,et al.2002.Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients.International Journal of Hydrogen Energy,27(11-12):1229-1237.
    316. Leong T.Y.1984.Adaptation of the thylakoid membranes of pea chloroplasts to light intensities.I. Study on the distribution of chlorophyll-protein complexes.Photosynres, (5):105-115.
    317. Li L.,Yu S.W.1988.Studies on the mechanism of NO2 injury to the Spinach. Journal of Plant Physiology and Molecular Biology,14(3):263-268.
    318. Li X.G.,Meng Q.W.,Jiang G.Q.,et al.2003.The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle.Photosynthetica, 41(2):259-265.
    319. Lichten thaler H.K.,Burkart S.1999.Photosynthesis and highlight stress.Plant Physiol,25(3):3-16.
    320. Livak K.J.,Schmittgen T.D.2001.Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta Delta C(T) Method.Methods,25:402-408.
    321.Loreti F.,Muleo K.,Morini S.,et al.1993.Stomatal characteristics in peach tree canopies.Acta Horticulturae,349:129-132.
    322. Ma F.W.,Cheng L.L.2003.The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-gluthathione pathway than the shaded peel.Plant Sci,165:819-827.
    323.Makino A.,Mac T.,Chim K.1985.Enzymic properties of ribulose 1,5-bisphosphate carboxylase-oxygenase purified from rice leaves.J.Plant Physiology,79:57.
    324. Makino A.,Mac T.,Ohira K.1983.Purification and storage of Ribulose 1,5-bisphosphate carboxylase from rice leaves.Plant Cell Physiology,24:1169-1173.
    325. Malkin S.1986.Estimation of the light distribution between photosystemⅠ and Ⅱ in intact wheat leaves by fluorescence and photo acoustia measurements. Photosynthesis research, (17):257-267.
    326. Malkin S.,Telfer A.1986.Quantitative analysis of state 1-state 2 transition in intact leaves using modulated fluorimeter-evidence for changes in the absorption cross-section of the two photosystems during state transitions.Biochim Biophys Acta,848:48-57.
    327. Manganaris G.A.,Vasilakakis M.,Diamantidis G.,et al.2005.Effect of calcium additives on physicochemical aspects of cell wall pectin and sensory attributes of canned peach (Prunus persica(L) Batsch cv Andross).J Sci Food Agric,85:1773-1778.
    328. Martinez C.A.,Loureiroa M.E.,Oliva M.A.,et al.2001.Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress.Plant Science,160:505-515.
    329. Martinez B.E.,Mollina G.L.,Sanebez I.E.1997.Regulation of rubisco activity during grain-fill in maize: possible of role rubisco activase.J Agri Sci.,128:155-161.
    330. Matgaret H.1962.The breakdown of chlorophyll by chlorophyllase.Journal of Biochemistry,78:359.
    331. Maxwell K.,Johnson G.N.2000.Chlorophyll florescence-A practical guide.Journal of Experimental Botany,51(345):659-668.
    332. Maxwell D.P.,Luadenbach D.E.,Huner N.P.A.1995.Redox regulation of light harvesting complexⅡ and cab mRNA abundance in Dunaliella salina.Plant Physiol,109:787-795.
    333.Mcavoy R.J.,Janes H.W.,Godfriaux B.T.1989.The effect of total available photosynthetic photon fluxon single truss tomato growth and production.Hort Sci,64:331-338.
    334. Mclanughlin S.B.,Wimmer R.1999.Calcium physiology and terrestrial ecosystem processes.New Phytol,142:373-417.
    335.Mehler A.H.1951.Studies on reactions of illuminated chloroplasts.Ⅰ.Mechanism of the reduction of oxygen and Hill reagents.Planta,116:187-196.
    336. Michael E.Salvucci.2004.Potential for interactions between the carboxy- and amino-termini of Rubisco activase submits.FEBS letters,560(1-3):205-209.
    337. Monroy A.F.,Sarhan F.,Dhindsa R.S.1993.Cold-induced changes in freezing tolerance, protein phosphorylation,and gene expression evidence for a a role of calcium.Plant Physiol,102:1227-1234.
    338. Murata N.1969.Control of excitation transfer in photosynthesis Ⅰ.Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum.Biochim Biophys Acta,172:242-251.
    339. Murata N.1970.Control of excitation transfer in photosynthesis.Ⅳ.Kinetics of chlorophyll a fluorescence in Porphyrayezoensis.Biochim Biophys Acta,205:379-389.
    340. Murchie E.H.,Hubbart S.,Peng S.,et al.2005.Acclimation of photosynthesis to high irradiance in rice:Gene expression and interactions with leaf development.J Exp Bot,56:449-460.
    341. Nii N.,Kuroiwa T.1988.Anatomical changes including chloroplast structure in peach leaves under different light conditions.Journal of Horticultrual Science,63(1):37-45.
    342. Nishiyama Y.,Allakhverdiev S.I.,Murata N.2006.A new paradigm for the action of reactive oxyzen species in the photoinhibition of photosystem II.Biochimeca et Biophysisca,1757:742-749.
    343. Niyogi K.K.,Grossman A.R.,Bjorkman O.1998.Arabidopsis mutants define a central role of the xanthophyll cycle in the regulation of photosynthetic energy conversion.Plant Cell,10:1121-1134
    344. Ody Y.1997.Effects of light intensity,CO2 concentration and leaf temperature on gas exchange of strawberry plants:feasibility studies on CO2 enrichment in Japanese conditions.Acta Horticultrae, (439):563-573.
    345. Oh S.A., Park J.H., Lee G.I,et al.1997.Identification of three genetic loci controlling leaf senescence in A rabidopsis thaliana. J. Plant,12 (3):527-533.
    346. Palta J.P.1996.Role of calcium in plant responses to stress:Linking basic research to the solution of practical problems.Hort.Science,31(1):51-57.
    347. Pandey S.,Tiwari S.B.,Upadhyaya K.C.,et al.2000.Calcium signaling:Linking environmental signals to cellular functions.Critical Reviews in Plant Sciences,19(4):291-318.
    348. Pastenes C.,Horton P.1996.Effects of high temperature on photosynthesis in Beans.Plant Physiology, 112:1245-1251.
    349. Patten,K.D.,Proebsting,E.L.1986.Effect of different artificial shading times and natural light intensities on the fruit quality of Bing' sweet cherry.J.Amer.Soc.Hort.Sci.,111(3):360-363.
    350. Pavel E.W.,DeJong T.M.1993.Seasonal CO2 exchange patterns of developing peach(Prunus persica) fruits in response to temperature,light and CO2 concentration.Physiologia Plantarum,88(2):322-330.
    351. Pcovalah R.W., Reddy A.S.N.1993.Calcium and signal transduction in plants.Critical Review of Plant Science,12:185-221.
    352. Peltier G. and Cournac L.2002.Chlororespiration.Annual Review of Plant Biology,53:523-550.
    353. Perree D.C.,Mcarrney S.J.,Scurlock D.M.1998.Influence of light on fruit set of prench hybrid grapes.HortScience,33:510-516.
    354. Raghvendra A.S.1998.Photosynthesis:a comprehensive treatise.Cambridge:Cambridge Univ Press, 72-86.
    355. Rengel Z.1992.The role of calcium in salt toxicity.Plant,Cell and Environ,15:625-632.
    356. Richard A.T.1975.Biochemical Spectroscopy.Vol 1.London:Adam Hilger Ltd,327-330.
    357. Rickauer M.,Tanner W.1986.Effects of Ca2+ on amino acid transport and accumulation in roots of Phaseolus vulgaris.Plant Physiol,83:41-47.
    358. Rilski I.1986.Effect of shading on plant development,yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation.Scientia Horticulturae,29:31-35.
    359. Robinson.1988.Does O2 photoreduction occur within chloroplasts in vivo?Physiology plant,72: 666-680.
    360. Romeis T.,Ludwig A.A,et al.2001.Calcium-dependent protein kinase play on essential role in a plant defence response.Embo Journal,20:5556-5567.
    361. Salvucci M.E.,Ogen W.L.1996.The mechanism of Rubisco activase:insight from studies of the properties and structure of the enzyme.Photosynthesis research,47:1-11.
    362. Sayre R.T.,Kennedy R.A.1979.Photosynthetic enzyme activities and localization in Mollugoverticillata populations differing in the leaves of C3 and C4 cycle operation.J.Plant Physiology, 64:293-299.
    363. Schreiber U.,Hormann H.,Asada K.,et al.1995.O2·- dependent electron flow in intact spinach chloroplasts:properties and possible regulation of the Mehler-ascorbate peroxidase cycle.In:Mathis P (ed).Photosynthesis:From Light to Biosphere (Vol Ⅱ).Dordrecht:Kluwer Academic Publishers, 813-818.
    364. Seemann J.R.1989.Light adaptation/acclimation of photosynthesis and the regulation of Ribulose-1,5-bisphosphate carboxylase activity in sun and shade plants.Plant Physiol,91:379-386.
    365. Sekiya J.,Kamiuchi H.,Hatannaka A.et al.1982.Hydroperoxide lyase and volatile C6-aldehyde formation from C18-fatty acids during development of phaseolus vulgaris L.Plant cell physiol,23(4): 31-638.
    366. Serrano M.,Martinez-Romero D.,Castillo S.,et al.2004.Effect of preharvest sprays containing calcium,magnesium and titanium on the quality of peaches and nectarines at harvest and during postharvest storage.J Sci Food Agric,84:1270-1276.
    367. Shaheen A.M.,Hem R.M.1996.Seedling production of some vegetables under plastic houses a different levels of light intensities.Egyptian Journal of Horticulture,22(2):175-192.
    368. Sharkey T.D.,Badger M.R.,von Caemmerer S.,et al.2001.Increased heat sensitivity of photosynthesis in tobacco plant with reduce Rubisco activase.Photosynth Res,67:147-156.
    369. Sharykey T.D.2005.Effects of moderate heat stress on photosynthesis:importance of thylakoid reactions, rubisco deactivation,reactive oxygen species,and thermotolerance provided by isoprene. Plant Cell Environ,28:269-277.
    370. Shikanai T.,Endo T.,Hashimoto T.,et al.1998.Directed disruption of the tobacco ndh B gene impairs cyclic electron flow around photosystem Ⅰ.Proc Natl Acad Sci USA,95:9705-9709.
    371. Shilpi Mahajan,Girdhar K.Pandey, Narendra Tuteja.2008.Calcium-and salt-stress signaling in plants:Shedding light on SOS pathway.Archives of Biochemistry and Biophysics,471:146-158.
    372. Shimazaki K.I.,Sakaki T.,Kondo N.,et al.1980.Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2 fumigated leaves of spinach.Plant and Cell Physiology,21:1193-1204.
    373. Shinozaki K.,Yamaguchi-Shinozki K.1997.Gene expression and signal transduction in water-stress response.Plant Physiol,115:327-334.
    374. Smeets L.1992.Growth.flowering and chemical composition.Acta Horticulturae,323:341-347.
    375. Smith H.,Samson G.,Fork D.C.1993.Photosynthetic acclimation to shade,probing the role of phytoehrome using photo-morphogenic mutants of tomato.Plant Cell and Environment,16(8): 929-937.
    376. Syvertsen J.P.,Smith M.L.1984.Light acclimation in citrus leaves.Ⅰ.Changes in physical characteristics, chlorophyll,and nitrogen content.Amer Soc Hor Sci,109(6):812-817.
    377. Takahashl S.,Murata N.2008.How do environmental stresses accelerme photoinhibition?Trends in Plant Science.23:343-348.
    378. Tognetti R.1997.Ecophysiological responses of Fagussy lvaticaL. Seedings to changing light conditionsⅠ.Interactions between photo-synthetical climationand photoinhibition during stimulated canopy gap for mation.Physiologia Plantarum,101(1):115-123.
    379. Turgeon R.1989.The sink-source transition in leaves.Annum Reviews in Plant Physiology and Plant Molecular Biology,40:119-138.
    380. Turner A.D.and Wien H.C.1994.Photosynthesis,dark respiration and bud sugar concentrations in pepper cultivars differing in susceptibility to stress-induced bud abscission.Annals of Botany,73(6): 623-628.
    381. Vacha F., Durchan M.1995.The O2 dependent inhibition of photosynthesis in tobacco plants.In:Mathis P (ed).Photosynthesis:From Light to Biosphere (Vol IV).Dordrecht:Kluwer Academic Publishers, 223-226.
    382. Van Der Mescht A., De Ronde J.A.,Rossouw F.T.1998.Cu-Zn superoxide dismutase, glutatione reductase, and ascorbate, peroxidase levels, during drought stress in potato.South African Journal of Science,94(10):496-500.
    383. Van Kooten O.,Snell J.F.H.1990.The rate of chlorophyll fluorescence nomenclature in plant stress physiology.Photosynth Res,25:147-150.
    384. Veeranjaneyulu K.,Leblanc R.M.1994.Action spectra of photosystems Ⅰ and Ⅱ in state 1 and 2 in intact sugar maple leaves.Plant Physiol,104:1209-1214.
    385. Wang B.L., Guo A.G., W ang P.H.1996.Changes of Chlorophyll metabolism during the Albinic stage of a wheat mutant.Acta Botanica Sinica,38(7):557-562.
    386. Wang X.Q.,Huang W.D.2003.The effects of weak light on the ultrastructural variations of phloem tissued in source leaves of three-year-old nectarine trees(Prunus persica L.Var.nectarina Alt.).Acta Botanica Sinica.,45(6):688-697.
    387. Warren W.1992.Light interception and photosynthesis efficiency in some glasshouse crops.Journal of Experimental Botany,43:363-373.
    388. White P.J.,Broadley M.R.2003.Calcium in plants.Ann Bot,92:487-51.
    389. William B.et al.1989.Reduced irradiance affects dry weight partitioning in easter lily.J. Amer.Soc.Hort. Sci.,114(2):306-309.
    390. Wilson J.W.1992.Light interception and photosynthesis efficiency in some glasshouse crops.J.Exp. ot,3(248):363-373.
    391. Wise R.R,Naylor A.W.1987.Chilling enhanced photo-oxidation.Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants.Plant Physiology,83:278-282.
    392. Wu J.,Neimanis S.,Heber U.1991.Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition.Bot Acta,104:285-291.
    393. Xu Y.,Huystee R.B.1993.Association of calcium and calmodulin to peroxidase secretion and activation.Jounal of Plant Physiology,141(2):141-146.
    394. Yang S.S., Gao J.F.2001.In fluence of active oxygen and free radicals on plant senescence.Acta Botanica Boreali-Occidentalia Sinica,21(2):215-220.
    395. Ye Y.,Tam N.F.Y.,Wong Y.S.,et al.2003.Growth and physiological response of two mangrove species(Bruguiera gymnorrhiza and Kandeliacandel)to waterlogging.Environmental and Experimental Botany,49:209-221.
    396. Yoshiaki Iwadate,Yasuo Nakaoka.2008.Calcium regulates independently ciliary beat and cell contraction in Paramecium cells.Cell Calcium,44:169-179.
    397. Yu M.,Hu C.X.,Wang Y.H.2006.Effect of Molybdenum on the precursors of Chlorophyll biosynthesis in winter wheat cultivars under low temperatureJ.Scientia Agricultura Sinica,39(4):702-708.
    398. Yuan L.,Xu D.Q.2001.Stimulation effects of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean.Photosnyhtesis Reseacrh,68:39-47.
    399. Yuzo S.,Yasuo T.,Keishi S.1991.Enzymatic degradation of chlorophyll in chenopodium album.Plant and Cell Physiology,32:87-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700