用户名: 密码: 验证码:
甘肃熊蜂区系组成与多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熊蜂属(Bombus)昆虫是一类重要的传粉昆虫,在维护自然生态系统平衡和农业生产中发挥着十分重要的作用。甘肃省位于青藏高原、蒙古高原、黄土高原和秦岭山地交汇的地带,境内地形、植被和栖息环境的多样性,使甘肃成为全球熊蜂多样性研究的热点区域之一。由于缺乏对甘肃熊蜂区系的系统研究,甘肃熊蜂多样性特点不详。为了探究甘肃熊蜂多样性现状,作者于2007~2011年连续5年,对甘肃不同生态区的熊蜂资源进行了系统调查。根据所采集的标本,分析了甘肃熊蜂区系组成和物种多样性现状;又以甘肃优势种类火红熊蜂为材料,进行了熊蜂微卫星标记的筛选;最后,基于微卫星标记分析了火红熊蜂主要分布区16个地理种群的遗传多样性特点。取得如下研究结果:
     (1)甘肃熊蜂区系组成
     2007~2011年,在甘肃180个分布点共采集熊蜂属昆虫标本7606头,隶属于10亚属53种,其中假熊蜂亚属Mendacibombus(Md.)2种,地熊蜂亚属Subterraneobombus(St.)3种,巨熊蜂亚属Megabombus(Mg.)8种,胸熊蜂亚属Thoracobombus(Th.)8种,拟熊蜂亚属Psithyrus(Ps.)9种,火熊蜂亚属Pyrobombus(Pr.)7种,真熊蜂亚属Bombus s. str.(Bo.)4种,阿熊蜂亚属Alpigenobombus(Ag.)4种,黑熊蜂亚属Melanobombus(Ml.)6种,西熊蜂亚属Sibiricobombus(Sb.)2种。在甘肃53种熊蜂中,其中13种熊蜂为甘肃新纪录种,分别为二色熊蜂B.(Mg.) bicoloratus、富丽熊蜂B.(Th.) opulentus、德熊蜂B.(Th.) deuteronymus、图拟熊蜂B.(Ps.) turneri、探索拟熊蜂B.(Ps.)expolitus、中华拟熊蜂B.(Ps.) chinensis、科尔拟熊蜂B.(Ps.) coreanus、挪威拟熊蜂B.(Ps.) norvegicus、小峰熊蜂B.(Bo.) hypocrita s.l.、短头熊蜂B.(Ag.) breviceps、灰熊蜂B.(Ag.) grahami、白背熊蜂B.(Ml.)festivus和亚西伯熊蜂B.(Sb.) asiaticus。本文首次系统报道了这53种熊蜂的区系分布和采访植物特性。甘肃熊蜂区系成份主要以东洋区种(45.3%)、东洋区和古北区共有种(52.8%)为主,介于川渝地区向华北地区过渡的中间阶段,与川渝地区熊蜂的种类相似度比较接近,与华北地区的种类相似度相距较远。
     (2)甘肃熊蜂物种多样性分析
     在甘肃10个生态区,除北部腾格里沙漠、西北部河西走廊戈壁地带和干燥北山3个生态区未发现有熊蜂分布外,其他7个生态区均有熊蜂分布。甘肃7个生态区的熊蜂物种多样性指数(H′)范围为0.3805~1.2238,由高到低的顺序依次为:西南部青藏高原牧场、西部乌鞘岭山地林区、南部白水江河谷山地林区、西北部祁连山牧场、东南部西秦岭山地林区、东部黄土高原灌丛和西北部阿尔金山-库姆塔格沙漠边缘灌丛。甘肃熊蜂物种均匀度指数(J_(sw))西部乌鞘岭山地最高(0.8113),东南部西秦岭山地最低(0.6751)。西南部青藏高原和西部乌鞘岭山地的物种相似度最高(60.98%),南部亚热带湿润河谷山地林区和西北部干燥阿尔金山-库姆塔格沙漠边缘灌丛未见共同种。甘肃53种熊蜂中,火红熊蜂B.(Ml.) pyrosoma的物种相对多度最高(23.2%),占甘肃熊蜂总体数量的五分之一以上,另外,红光熊蜂B.(Bo.) ignitus(9.8%)、小峰熊蜂B.(Bo.) hypocrita s.l.(6.0%)、红束熊蜂B.(Ml.) rufofasciatus(5.0%)和重黄熊蜂B.(Pr.) picipes(4.8%)在甘肃分布也较丰富;相反,另外一些种类,如拟熊蜂亚属(Ps.)的所有种类,还有一些典型的南方种类如黄熊蜂B.(Pr.) flavescens、灰熊蜂B.(Ag.) grahami、二色熊蜂B.(Mg.) bicoloratus)和一些青藏高原种类如猛熊蜂B.(St.) difficillimus、圣熊蜂B.(Mg.) religiosus、越熊蜂B.(Mg.) supremus在甘肃境内非常稀有,其标本数量均在10头以下,其物种多度均在0.1%以内。甘肃熊蜂的垂直分布范围为海拔719~4011m,其中海拔1500~2000m范围内数量最多,海拔2500~3000m范围内种类最丰富;猛熊蜂B.(St.) difficillimus(3656m)、探索拟熊蜂B.(Ps.) expolitus(3524m)、石拟熊蜂B.(Ps.) rupestris(3454m)、拉达克熊蜂B.(Ml.) ladakhensis(3376m)和伪猛熊蜂B.(St.) personatus(3362m)位居平均海拔高度的前5位,短头熊蜂B.(Ag.) breviceps(944m)、二色熊蜂B.(Mg.) bicoloratus(1110m)、黄熊蜂B.(Pr.) flavescens(1122m)、朝鲜熊蜂B.(Mg.) koreanus(1164m)和富丽熊蜂B.(Th.)opulentus(1181m)位居平均海拔高度的末5位。
     (3)火红熊蜂微卫星标记的筛选
     火红熊蜂是甘肃最优势的熊蜂种类,也是中国特有的熊蜂资源,在中国北方地区分布十分丰富,是众多野生植物和农作物的重要传粉昆虫。为了探究火红熊蜂的分子遗传结构,首次进行了该种熊蜂微卫星标记的筛选。本研究采用生物素-磁珠吸附分离法从火红熊蜂基因组中筛选微卫星标记,并选取火红熊蜂同一亚属黑熊蜂亚属Melanobombus其他7种熊蜂进行了这些标记的种特异性验证。不同核苷酸探针与磁珠杂交产生的微卫星标记的阳性克隆率存在很大差异,TC探针的微卫星阳性克隆率最高为82%;TG探针次之,为28%;AT和GC探针分离未获得微卫星标记克隆。根据获得的阳性克隆的序列设计引物进行筛选验证,共获得31对熊蜂微卫星序列特异性引物。31对微卫星引物分为4种类型,其中完美型18个,占58.1%;混合完美型1个,占3.2%;非完美型10个,占32.3%;混合非完美型2个,占6.4%。不同核苷酸探针的微卫星核心序列重复数不同,TC探针和TG探针的微卫星核心序列最高重复数分别为28和15个,最低重复数分别为7和11个。31对微卫星引物在黑熊蜂亚属其他7种熊蜂上的检测结果表明,有26对引物可以扩增所测试的7种熊蜂,其余5对引物只能扩增部分熊蜂种类,其中BPM5是火红熊蜂种特异性引物。本研究从火红熊蜂基因组中筛选的微卫星标记,不仅可用于火红熊蜂遗传结构与分子进化等方面的研究,而且还可用于黑熊蜂亚属其他种类的遗传特性分析。
     (4)火红熊蜂遗传多样性分析
     为了探明火红熊蜂的遗传多样性特点,本研究基于12个微卫星标记首次分析了火红熊蜂主要分布区16个地理种群的遗传多样性水平。12个微卫星标记共获得等位基因数为178个,其中BPM9和BPM35等位基因数最高均为18个,BPM17等位基因数最低为5个。火红熊蜂16个地理种群的平均有效等位基因数(Ne)、平均遗传杂合度(He)和平均多态信息含量(PIC)分别为4.377、0.7040和0.6680。甘肃麦积种群的Ne、He、PIC3个指标最高,分别为5.3967、0.7809和0.7455;重庆城口种群的最低,分别为3.1260、0.6138和0.5693。说明火红熊蜂表现出较高的杂合度和丰富的遗传多样性。甘肃麦积种群的遗传多样性最高,甘肃麦积山理应成为该种熊蜂资源保护的重要区域。火红熊蜂16个地理种群的总近交系数(Fit)为0.121(P<0.001),种群内近交系数(Fis)为0.060(P<0.001),种群间遗传分化系数(Fst)为0.064(P<0.001),显示火红熊蜂种群发生了中等程度的遗传分化,其变异来源于种群间和种群内个体间。结合种群聚类树、主成分分析和祖先假设模型聚类分析,火红熊蜂16个地理种群分为2个分支:大巴山的重庆城口种群单独为一分支,其他15个地理种群聚为另一分支,这一大分支又可分为吕梁山-太行山-燕山-蒙古高原分支和黄土高原-秦岭-陇南河谷山地-青藏高原东缘分支2个小分支。相比于邻接法(NJ)聚类分析,基于Nei遗传距离Da的非加权配对算术平均法(UPGMA)更能显示火红熊蜂的地理分布特征及其演化关系。瓶颈效应检测发现火红熊蜂16个地理种群均未出现基因频率偏离L-shape分布,但16个种群中都有不同程度的杂合子缺失或过剩现象,说明火红熊蜂在历史演化过程中发生过遗传瓶颈,但这种瓶颈效应可能不太严重,或者仅对局部种群产生影响。
     本研究探明了甘肃熊蜂区系组成、物种多样性现状及其优势种类的遗传多样性特点。研究结果为进一步探究中国熊蜂多样性现状及其遗传背景奠定了基础,也为中国熊蜂资源保护与农业授粉利用提供了理论依据。
Bumblebees are important pollinators for agricultural and natural ecosystems. Gansu Province,China, is located in a transition zone between the Qinghai-Tibetan plateau, the Inner Mongolian plateau,the Loess plateau and the Qinling Mountains, with a region of very varied geomorphology andvegetation, so there is a broad diversity of habitats for bumblebees in Gansu. This variety makes Gansuone of the hotspots of greatest bumblebee diversity in the world. The problem is that the bumblebeefauna in the region has been insufficiently studied. In order to document the current status ofbumblebee diversity in Gansu, a systematic field survey of bumblebees was made in the10principalhabitats within Gansu between2007~2011.
     The Bombus fauna and species diversity of Gansu are described; microsatellite DNA markers areisolated from the most dominant bumblebee species Bombus pyrosoma in Gansu; and genetic diversityof B. pyrosoma is assessed by analysing microsatellite markers within16populations from all knownmain locations in this study. The principal results include:
     (1) The composition of bumblebee fauna in Gansu
     A sample of7606bumblebee specimens was collected from180sites within Gansu between2007~2011and assigned to53species belonging to10of the15subgenera of the genus Bombus.Among these53species,2belong to the subgenus Mendacibombus(Md.),3to Subterraneobombus(St.),8to Megabombus(Mg.),8to Thoracobombus(Th.),9to Psithyrus(Ps.),7to Pyrobombus(Pr.),4toBombus s. str.(Bo.),4to Alpigenobombus(Ag.),6to Melanobombus(Ml.),2to Sibiricobombus(Sb.).13species (more than one fifth of the fauna) are recorded for the first time from Gansu: B.(Mg.)bicoloratus, B.(Th.) opulentus, B.(Th.) deuteronymus, B.(Ps.) turneri, B.(Ps.) expolitus, B.(Ps.)chinensis, B.(Ps.) coreanus, B.(Ps.) norvegicus, B.(Bo.) hypocrita s.l., B.(Ag.) breviceps, B.(Ag.)grahami, B.(Ml.) festivus and B.(Sb.) asiaticus. I provide distribution maps and describe speciesabundance and list the food plants used in Gansu. The main regional components of Gansu bumblebeesare Oriental (45.3%) and Oriental+Palaearctic (52.8%).The fauna of Gansu is transitional between thesouthern Sichuan-Chongqing Region fauna and the northern Shanxi-Hebei-Beijing-Tianjin Regionfauna, although it is more similar in composition to the southern Sichuan-Chongqing fauna.
     (2) Species diversity of bumblebees within Gansu
     Bumblebees have been found to be distributed widely in7of the10habitats within Gansu butabsent from the Tengger desert, Hexi corridor gobi and dry Beishan mountains. The bumblebee speciesdiversity index (H′) ranges from0.3805to1.2238in the7habitats, and can be ranked fromQinghai-Tibetan plateau meadows in the southwest> Wuqiaoling mountain forests in the west> Wetriver valley mountain forests in the south> Qilianshan mountain meadows in the northwest> WestQinling mountain forests in the southeast> Loess plateau scrub in the east> Altyn mountain-Kumtagdesert edge scrub in the northwest. The evenness index (Jsw) was highest (0.8113) in Wuqiaoling mountain forests and lowest (0.6751) in West Qinling mountain forests. The relative abundances of thebumblebee species differ among the53species. B.(Ml.) pyrosoma (23.2%) is especially abundant inGansu and accounted more than one fifth of the total. Species including B.(Bo.) ignitus (9.8%), B.(Bo.)hypocrita (6.0%), B.(Ml.) rufofasciatus (5.0%), and B.(Pr.) picipes (4.8%) are also abundant in Gansu.At the opposite extreme, some species, such as all of the species of the subgenus Psithyrus, and some ofthe characteristically southern species, such as B.(Pr.) flavescens and B.(Ag.) grahami and B.(Mg.)bicoloratus, and some of the characteristically Qinghai-Tibetan species such as B.(St.) difficillimus andB.(Mg.) religiosus and B.(Mg.) supremus, are generally rare in Gansu with less than10individuals inmy samples, so that their relative abundances are all less than0.1%. Specimens are recorded here fromsites at elevations between719~4011m, from the low Baishuijiang river valley to the high Zhaganameadows of the Qinghai-Tibetan plateau. The largest number of bumblebee individuals is recorded atelevations between1500~2000m, while the largest number of species is recorded at elevations between2500~3000m. B.(St.) difficillimus (3656m), B.(Ps.) expolitus (3524m), B.(Ps.) rupestris (3454m),B.(Ml.) ladakhensis (3376m) and B.(St.) personatus (3362m) are the5species with the highestrecorded mean elevations, while B.(Ag.) breviceps (944m), B.(Mg.) bicoloratus (1110m), B.(Pr.)flavescens (1122m), B.(Mg.) koreanus (1164m) and B.(Th.) opulentus (1181m) are the5with thelowest mean elevations.
     (3) Isolation of microsatellite markers from B. pyrosoma
     Bombus pyrosoma, is the most dominant bumblebee species in Gansu and an endemic to China,plays a vital role as one of the most abundant pollinators for many wild flowers and crops in NorthChina. Isolation and characterization of microsatellite markers within this population is made for thefirst time in order to support investigations into its genetic structure. Magnetic bead-based enrichmentand PCR were used to isolate microsatellite markers from B. pyrosoma. The species specificity of theisolated primers was confirmed through tests with7other Chinese bumblebee species of the samesubgenus, Melanobombus. The results show that four dinucleotide probes have different hybridizationrates to the microsatellite DNA sequence. The highest hybridization rate (82%) was obtained with theprobe TC, the moderate hybridization rate (28%) with TG, and the lowest hybridization rates (0%) withAT and GC. For31polymorphic microsatellite loci isolated from B. pyrosoma, four types ofmicrosatellite can be found by sequence analysis, i.e.18perfect types (58.1%),1compound perfect type(3.2%),10imperfect types (32.3%) and2compound imperfect types (6.4%). The repeat unit of themicrosatellite core sequence is different in each probe. The highest repeat unit for TC and TG probes is28and15respectively, and the lowest repeat unit for TC and TG probes is7and11respectively. Theprimer specificity test on31primer pairs showed that products can be amplified from all7bumblebeespecies with26primer pairs, the other5primer pairs were found to be specific for some of the7species,of which1primer (BPM5) was found to be specific for B. pyrosoma. These novel microsatellitemarkers will be useful not only for future studies on the genetic structure and molecular evolution ofthis endemic species, but also for population genetic studies of other Melanobombus species.
     (4) Genetic diversity of B. pyrosoma based on microsatellite markers
     In order to investigate the genetic diversity of B. pyrosoma, an assessment is made using the12microsatellite DNA markers in the16B. pyrosoma populations from all known main locations. Withthis, results of the experiment confirmed that178alleles were obtained from the microsatellite DNAmarkers analysis. Consequently, the highest allele number (18alleles) was from locus BPM9andBPM35and the lowest allele number (only5alleles) was from locus BPM17. The mean number ofeffective allele (Ne), the mean genetic heterozygosity (H) and the mean polymorphism informationcontent (PIC) of the16populations is4.377,0.7040and0.6680respectively. Within these populations,the GSMJ population has the highest of the3indices, with5.3967,0.7809and0.7450respectively,while the CQCK population has the lowest, with3.1260,0.6138and0.5690respectively. This showsthat the heterozygosity and genetic diversity of B. pyrosoma are high. The GSMJ population (GansuMaijishan National Forest Park) has the richest genetic diversity and it should be an important priorityarea for conservation of this species. The heterozygosity at the total population level (Fit), theheterozygosity at the individual population level (Fis), and the coefficient of genetic differentiation (Fst)of the16populations is0.121,0.060and0.064respectively. It shows that the genetic differentiation ofthe whole population is not high and the mutation of B.pyrosoma comes mainly from the corepopulation. A combination analysis of Phylogeny, PCA and STRUCTURE show a pattern of geneticvariation that is structured geographically into two groups. The CQCK population located in theDabashan mountains forms one distinctive group, while the remaining15populations form anothergroup. The latter group also can be divided into two groups, one in the Luliangshanmountains-Taihangshan mountains-Tanshan mountains-Neimenggu plateau, the other group in theLoess plateau-Qinling mountains-Baishuijiang river valley-Eastern edge of Qinghai-Tibetan plateau.Compared with NJ dendrogram, UPGMA based on Da data worked well for analysis of B. pyrosomapopulations when considering its geographical distribution and evolution. No divergence from theL-shape distribution was detected by Bottleneck analysis among the16populations. However,heterozygosity excess and/or heterozygosity deficiency were detected in all16populations. This showsthat B. pyrosoma populations have undergone a genetic bottleneck in their history, although, thebottleneck effect is smaller or perhaps acted on just part of the population.
     This study will be useful not only for future studies of the status of Chinese bumblebee diversityand the genetic structure of their populations, but will also be a resource for bumblebee conservationand in applications for agricultural pollination.
引文
安建东,彭文君,梁诗魁.1999.熊蜂的生物学特性及其授粉应用前景.蜜蜂杂志,(9):3–5.
    安建东,彭文君,吴杰,国占宝,童越敏,李继莲.2006.明亮熊蜂的生物学特性及其授粉利用.昆虫知识,43(1):9497.
    安建东,吴杰,彭文君,童越敏,国占宝,李继莲.2007.明亮熊蜂和意大利蜜蜂在温室桃园的访花行为和传粉生态学比较.应用生态学报,18(5):10711076.
    安建东,姚建,黄家兴,邵有全,吴杰,李继莲,施海燕.2008.山西省熊蜂属区系调查(膜翅目,蜜蜂科).动物分类学报,33(1):8088.
    安建东,黄家兴, Williams PH,吴杰,周冰峰.2010.河北地区物种熊蜂多样性与蜂群繁育特性.应用生态学报,21(6):15421550.
    彩万志,庞雄飞,花保祯,梁广文,宋敦伦.2011.普通昆虫学(第2版).北京:中国农业大学出版社.1490.
    常青,周开亚.1998.分子进化研究中系统发生树的重建.生物多样性,6(1):5562.
    程飞,叶卫,叶富良.2007.鲮鱼的微卫星位点筛选和群体遗传多样性初步分析.动物学研究,28(2):119125
    程茂高,乔卿梅,原国辉.2005.昆虫体色分化研究进展.昆虫知识,42(5):502505.
    陈明,罗进仓,刘波.2008.甘肃凤蝶种类及其区系研究.草业学报,17(5):124129.
    陈文锋,安建东,董捷,丁克法,高山.2011.不同蜂在温室草莓园的访花行为和传粉生态学比较.生态学杂志,30(2):290–296.
    陈振宁,曾阳,鲍敏,马继雄,柯君.2006.青海互助北山国家森林公园不同生境的蝶类多样性研究.生物多样性,14(6):517524.
    道里刚,2004.川渝地区熊蜂地理分布与重要环境因素之间的关系.四川大学硕士学位论文,169.
    董捷,安建东,黄家兴,周志勇,赵亚周,邢艳红.2011.不同蜂传粉对设施桃果实生长发育和品质的影响.中国生态农业学报,19(4):836842.
    季维智,宿兵.1999.遗传多样性研究的原理与方法.浙江:浙江科学技术出版社.
    海萨,杜劲松,孟玮,杨天燕.2010.微卫星标记分析白斑狗鱼遗传多样性.动物学杂志,45(6):106112.
    郝虎,孙建忠,刘建泉,李晓明,汪有奎.2011.祁连山北坡熊蜂种类及区系研究.草业科学,28(4):667670.
    何亚平,刘建全.2004.青藏高原高山植物麻花艽的传粉生态学研究.生态学报,24(2):215–220.
    黄家兴,安建东,吴杰,国占宝.2007.熊蜂为温室茄属作物授粉的优越性.中国农学通报,23(3):59.
    姬长虹,孙效文.2007.用磁珠富集法快速制备银鲫微卫星标记.大连水产学院学报,22(6):460464.
    姜双林.2007.陇东子午岭天然次生林区熊蜂的种类及其生态分布.陕西林业科技,(3):9698.
    李烜,季孔庶,龚佳.2007.磁珠富集法筛选马尾松微卫星标记.分子植物育种,5(1):141144.
    李继莲,彭文君,吴杰,安建东,国占宝,童越敏,黄家兴.2006.明亮熊蜂和意大利蜜蜂为温室草莓的授粉行为比较观察.昆虫学报,49(2):342348.
    李明芳,郑学勤.2004. SSR引物方法之研究动态.遗传,26(5):769776.
    李巧.2006.西双版纳自然保护区9种植被亚型象甲科多样性比较.生物多样性,14(1):7378.
    李正跃,阿尔蒂尔瑞,朱有勇.2009.生物多样性与害虫综合治理.北京:科学出版社.
    刘楚吾,黎锦明,刘丽,郭昱嵩.2010.中国龙虾微卫星标记的筛选及遗传多样性分析.遗传,32(7):737743.
    刘有军,王继和,马全林,张德奎.2007.甘肃省荒漠种子植物区系.生态学杂志,26(10):15211527.
    马卫华,祁海萍,张云毅,刘耀明,邵有全.2011.山西省火红熊蜂生物学特性观察.山西农业科学,39(5):477479.
    潘菲洛夫ДВ (李丽英译).1957.中国熊蜂(Bombus)的分布.地理学报,23(3):221239.
    彭文君,黄家兴,吴杰,安建东.2009.华北地区六种熊蜂的地理分布及生态习性.昆虫知识,46(1):115120.
    邵志勇.2002.红光熊蜂地理种群遗传多样性的研究与部分熊蜂系统发育的初步探索.中国科学院上海植物生理生态研究所博士论文
    邵伟伟,华攀玉,周善义,陈金平.2007.棕果蝠微卫星位点的筛选及其对近缘种的通用性.兽类学报,27(4):385388.
    沈富军, Watts P,张志和,张安居, Sanderson S, Kemp SJ,岳碧松.2005. Dynal磁珠富集大熊猫微卫星标记.遗传学报,32(5):457–462.
    王红,李德铢.1998.滇西北马先蒿属传粉生物学的初步研究.植物学报,40(3):204–210.
    王蕾,张立冬,万玉美,谭照君,孙效文.2010.牙鲆微卫星标记的筛选及群体遗传结构分析.遗传,32(10):10571064.
    王淑芳.1982.膜翅目:蜜蜂科--熊蜂属.中国科学院青藏高原综合科学考察队(主编).西藏昆虫(第二册).北京:科学出版社.427447.
    王淑芳,姚建.1985.蜜蜂科--熊蜂属.中国科学院登山科学考察队(主编).天山托木尔峰地区的生物.乌鲁木齐:新疆人民出版社出版.160165.
    王淑芳,姚建.2004.熊蜂族.何俊华(主编).浙江蜂类志.北京:科学出版社.10581070.
    吴杰,安建东,姚建,黄家兴,冯学全.2009.河北省熊蜂属区系调查(膜翅目,蜜蜂科).动物分类学报,34(1):8797.
    吴燕如,何琬,王淑芳.1988.云南蜜蜂志.昆明:云南科技出版社.1138.
    吴仲真,李红梅,宾淑英,申建梅,贺华良,罗梅,马骏,林进添.2011.应用微卫星标记分析不同桔小实蝇种群的遗传多样性.昆虫学报,54(2):149156.
    谢振华.2008.四川熊蜂多样性与人类活动关系研究.四川大学博士学位论文,1106.
    闫路娜,张德兴.2004.种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响.动物学报,50(2):279290.
    姚崇勇.2004.甘肃省爬行动物区系与地理区划.四川动物,23(3):217221.
    姚建,罗春勇.1997.膜翅目:蜜蜂科:熊蜂族.杨星科(主编).长江三峡库区昆虫.重庆:重庆出版社.16861696.
    姚建,王淑芳.2005.膜翅目,蜜蜂科——熊蜂族.杨星科(主编).秦岭西段及甘南地区昆虫.北京:科学出版社.890896.
    杨大荣.1999.云南澜沧江流域传粉昆虫——熊蜂多样性现状与保护对策.生物多样性,7(3):170174.
    杨龙龙,吴燕如.1998.西双版纳热带森林地区不同生境蜜蜂的物种多样性研.生物多样性,6(3):197204.
    於文俊,茅洪新,王冬生,赵京音,袁永达.2003.浙江天目山熊蜂的初步调查.上海农业学报,19(4):7072.
    赵亚周,安建东,周志勇,董捷,邢艳红,秦建军.2011.意大利蜜蜂和小峰熊蜂在温室桃园的传粉行为及其影响因素.昆虫学报,54(1):89–96.
    张宏杰.2003.中国昆虫遗传多样性研究现状.汉中师范学院学报(自然科学版),21(3):8289.
    Abrahamovich AH, Telleria MC, Diaz NB.2001. Bombus species and their associated flora in Argentina. Bee world,82(2):76-87.
    An J, Williams PH, Zhou B, Miao Z, Qi W.2011. The bumblebees of Gansu, Northwest China (Hymenoptera, Apidae).Zootaxa,2865,136.
    Armour JA, Neumann R, Gobert S, Jeffreys AJ.1994. Isolation of human simple repeat loci by hybridization selection.Human molecular genetics,3(4):599665.
    Bai XD, Saeb ATM, Michel A, Grewal PS.2009. Isolation and characterization of microsatellite loci in theentomopathogenic nematode Heterorhabditis bacteriophora. Molecular Ecology Resources,9(1):207209.
    Bierne N, Launey S, Naciri-Graven Y, Bonhomme F.1998. Early effect of inbreeding as revealed by microsatelliteanalyses on Ostrea edulis larvae. Genetics,148(4):18931906.
    Birks HJB.1987. Multivariate analysis in geology and geochemistry: An introduction. Chemometrics and IntelligentLaboratory Systems,2,1528
    Bischoff H.1936. Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas,unter Leitung von Dr. Sven Hedin und Prof. Sü Ping-chang. Insekten gesammelt vom schwedischen Arzt derExpedition Dr. David Hummel1927-1930.56. Hymenoptera.10. Bombinae. Arkiv f r zoologi,27A(38),1–27.
    Brown J, Hardwick LJ, Wright AF.1995. A simple method for rapid isolation of microsatellites from yeast artificialchromosomes. Molecular and cellular probes,9(1):53–57.
    Brown M, Schmid-Hempel R, Schmid-Hempel P.2003. Queen-controlled sex ratios and worker reproduction in thebumble bee Bombus hypnorum, as revealed by microsatellites. Molecular Ecology,12(6):15991605.
    Cameron SA, Hines HM, Williams PH.2007. A comprehensive phylogeny of the bumblebees (Bombus). BiologicalJournal of the Linnean Society,91,161–188.
    Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL.2011. Patterns of widespread decline inNorth American bumblebees. PNAS,108(2):662667.
    Cameron SA, Williams PH.2003. Phylogeny of among bumblebees in the New World subgenus Fervidobombus(Hymenoptera: Apidae): congruence of molecular and morphological data. Molecular Phylogenetics andEvolution,28,552563.
    Carleton KL, Streelman JT, Lee BY, Garnhart N, Kidd M, Kocher TD.2002. Rapid isolation of CA microsatellites fromthe tilapia genome. Animal Genetics,33(2):140144.
    Carolan JC, Murray TE, Fitzpatrick ú, Crossley J, Schmidt H, Cederberg B, McNally L, Paxton RJ, Williams PH, BrownMJF.2012. Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded crypticbumblebee complex. PLoS ONE,7(1):110.
    Chen XL, Wang SF.1997. A study on phylogenetic relationships among the subgenera of bumblebees (Hymenoptera:Apidae). Entomological Sinica,4(4):324336.
    Colla SR, Packer L.2008. Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), withspecial focus on Bombus affinis Cresson. Biodiversity and Conservation,17,1379–1391.
    Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ.2001. Microsatellite markers from sugarcane (Saccharumspp.) ESTs cross transferable to erianthus and sorghum. Plant Sciences,160(6):1115–1123.
    Cornuet JM, Luikart G.1997. Description and power analysis of two tests for detecting recent population bottlenecksfrom allele frequency data. Genetics,144,20012014.
    Dalla Torre KW.1880. Unsere hummel-(Bombus) Arten. Naturhistoriker,2,4041.
    Darvill B, Knight ME, Goulson D.2004. Use of genetic markers to quantify bumblebee foraging range and nest density.OIKOS,107(3):471478.
    Darvill B, Ellis JS, Lye GC, Goulson D.2006. Population structure and inbreeding in a rare and declining bumblebee,Bombus muscorum (Hymenoptera: Apidae). Molecular Ecology,15(3):601611.
    Darvill B, O'Connor S, Lye GC, Waters J, Lepais O, Goulson D.2010. Cryptic differences in dispersal lead to differentialsensitivity to habitat fragmentation in two bumblebee species. Molecular Ecology,19(1):5363.
    Ellis JS, Knight ME, Darvill B, Goulson D.2006. Extremely low effective population sizes, genetic structuring andreduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae).Molecular Ecology,15(14):43754386.
    Estoup A, Tailliez C, Cornuet JM, Michel S.1995. Size homoplasy and mutational processes of interruptedmicrosatellites in2bee species, Apis mellifera and Bombus terrestris (Apidae). Molecular Biology andEvolution,12(6):10741084.
    Estoup A, Solignac M, Cornuet JM, Goudet J, Scholl A.1996. Genetic differentiation of continental and islandpopulations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Molecular Ecology,5(1):1931.
    Estoup A, Solignac M, Harry M, Cornuet JM.1993. Characterization of (GT)n and (CT)n microsatellites in2insectspecies Apis mellifera and Bombus terrestris. Nucleic Acids Research,21(6):14271431.
    Evanno G, Regnaut S, Goudet J.2005. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Molecular Ecology,14(8):26112620.
    Excoffier L, Lischer HEL.2010. Arlequin suite ver3.5: A new series of programs to perform population geneticsanalyses under Linux and Windows. Molecular Ecology Resources,10,564567.
    Funk CR, Schmid-Hempel R, Schmid-Hempel P.2006. Microsatellite loci for Bombus spp. Molecular Ecology Notes,6(1):8386.
    Gadau J, Gerloff CU, Krüger N, Chan H, Schmid-Hempel P, Wille A, Page RE.2001. A linkage analysis of sexdetermination in Bombus terrestris (L.)(Hymenoptera: Apidae). Heredity,87(2):234242.
    Geng J, Li K, Zhang Y.2010. A modified enrichment method to construct microsatellite library from plateau pika genome(Ochotona curzoniae). Genomics Proteomics&Bioinformatics,8(1):7276.
    Goudet J.2002. FSTAT version2.9.3.2. Switzerland: Department of Ecology&Evolution, University of Lausanne.
    Goulson D, Lye GC, Darvill B.2008. Decline and conservation of bumble bees. Annual Review of Entomology,53,191–208.
    Goulson D.2010. Bumblebees, behaviour, ecology, and conservation. Oxford: Oxford University Press.1–317.
    Grixti JC, Wong LT, Cameron SA, Favret C.2009. Decline of bumble bees (Bombus) in the North American Midwest.Biological Conservation,142,75–84.
    Hamada H, Petrino MG, Kakunaga T.1982. A novel repeated element with Z-DNA-forming potential is widely found inevolutionarily diverse eukaryotic genomes. PNAS,79(21):6465–6469.
    Heinrich B.1979. Bumblebee economics. Cambridge (Massachusetts): Harvard University Press.1–245.
    Herrmann F, Westphal C, Moritz R, Ingolf SD.2007. Genetic diversity and mass resources promote colony size andforager densities of a social bee (Bombus pascuorum) in agricultural landscapes. Molecular Ecology,16(6):11671178.
    Hines HM, Cameron SA. Williams PH.2006. Molecular phylogeny of the bumble bee subgenus Pyrobombus(Hymenoptera: Apidae: Bombus) with insights into gene utility for lower level analysis. InvertebrateSystemmatics,20,289303.
    Huang XH, Zhou XP, Chen M, Fang WZ, Chen XL.2010. Isolation and characterization of microsatellite loci invulnerable Chinese egret (Egretta eulophotes: Aves). Conservation Genetics,11(3):1211–1214.
    Hubisz MJ, Falush D, Stephens M, Pritchard JK.2009. Inferring weak population structure with the assistance of samplegroup information. Molecular Ecology Resources,9(5):13221332.
    Ito M.1985. Supraspecific Classification of Bumblebees based on the Characters of Male Genitalia. Contributions fromthe Institute of Low Temperature Science,20,1143.
    Kandpal RP, Kandpal G, Weissman SM.1994. Construction of libraries enriched for sequence repeats and jumping clones,and hybridization selection for region-specific markers. Proceedings of the National Academy of Sciences of theUnited States of America,91(1):8892.
    Kevan, PG.2011. Bombus franklini. In: IUCN2011. IUCN Red List of Threatened Species. Version2011.2.. Downloaded on20Feb2012.
    Koulianos S, Schmid-Hempel P.2000. Phylogenetic relationships among bumblebees (Bombus, Latreille) inferred frommitochondrial cytochrome b and cytochrome oxidase I sequences. Molecular Phylogenetics and Evolution,14,335341.
    Laoprom N, Sithithaworn P, Ando K, Sithithaworn J, Wongkham S, Laha T, Klinbunga S, Webster JP, Andrews RH.2010.Microsatellite loci in the carcinogenic liver fluke, Opisthorchis viverrini and their application as populationgenetic markers. Infection Genetics and Evolution,10(1):146153.
    Lepais O, Darvill B, O'Connor S, Osborne JL, Sanderson RA, Cussans J, Goffe L, Goulson D.2010. Estimation ofbumblebee queen dispersal distances using sibship reconstruction method. Molecular Ecology,19(4):819831.
    Li B, Xia QY, Lu C, Zhou ZY.2004. Analysis of microsatellites derived from bee ESTs. Acta Genetica Sinica,31(10):10891094.
    Love JM, Knight AM, McAleer MA, Todd JA.1990. Towards construction of a high resolution map of the mousegenome using PCR-analysed microsatellites. Nucleic Acids Research,18(14):41234130.
    Lunt D, Hutchinson W, Carvalho G.1999. An efficient method for PCR-based isolation of microsatellite arrays (PIMA).Molecular Ecology,(8):893894.
    Michener CD.2000. The bees of the world. Baltimore: John Hopkins University Press.1913.
    Miyao A, Zhong HS, Monna L, Yano M, Yamamoto K, Havukkalaj I, Minobe Y, Sasaki T.1996. Characterization andgenetic mapping of simple sequence repeats in the rice genome. DNA Research,3(4):233238.
    Nohara K, Kokita T, Tominaga O, Seikai T.2009. Isolation and characterization of11polymorphic microsatellite loci inthe whitegirdled goby (Pterogobius zonoleucus) and cross-species amplification in the serpentine goby(P-elapoides). Molecular Ecology Resources,9(2):610612.
    Nei M.1972. Genetic distances between populations. The American Naturalist,106,283-292.
    Nei M.1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics,89(3):583590.
    Nei M, Tajima F, Tateno Y.1983. Accuracy of estimated phylogenetic trees from molecular data. Journal of MolecularEvolution,19,153170.
    Norris AT, Bradley DG, Cunningham EP.1999. Microsatellite genetic variation between and within farmed and wildAtlantic salmon (Salmo salar) populations. Aquaculture,180(4):247264.
    Park SDE.2001. Trypanotolerance in West African cattle and the population genetic effects of selection. University ofDublin. PhD thesis.
    Paxton RJ, Thorén PA, Estoup A, Teng J.2001. Queen-worker conflict over male production and the sex ratio in afacultatively polyandrous bumblebee, Bombus hypnorum: the consequences of nest usurpation. MolecularEcology,10(10):24892498.
    Payne CM, Laverty TM, Lachance MA.2003. The frequency of multiple paternity in bumble bee (Bombus) coloniesbased on microsatellite DNA at the B10locus. Insectes sociaux,50(4):375378.
    Pederson BV.1996. A phylogenetic analysis of cuckoo bumblebees (Psithyrus, Lepeletier) and bumblebees (Bombus,Latreille) inferred from sequences of the mitochondrial gene cytochrome oxidase I. Molecular Phylogeneticsand Evolution,5(2):289297.
    Plowright RC, Stephen WP.1973. A numerical taxonomic analysis of the evolutionary relationships of Bombus andPsithyrus (Apidae: Hymenoptera). Canadian Entomologist,105,733743.
    Prasad MD, Muthulakshmi M, Madhu M, Sunil A, Mita K, Nagaraju J.2005. Survey and analysis of microsatellites inthe silkworm, bombyx mori: frequency, distribution, mutations, marker potential and their conservation inheterologous species. Genetics,169(1):197214.
    Pritchard JK, Stephens M, DonnellyP.2000. Inference of population structure using multilocus genotype data. Genetics,155,945–959.
    Ramsay L, Macaulay M, Degli IS, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A,Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R.2000. A simple sequence repeat-basedlinkage map of barley. Genetics,156(4):1997–2005.
    Rasmont P.1983. Catalogue commenté des bourdons de la région ouest-paléarctique (Hymenoptera, Apoidea, Apidae).Notes Fauniques de Gembloux,7,1–73.
    Rassmann K, Schlotterer C, Tautz D.1991. Isolation of simple-sequence loci for use in polymerase chain reaction-basedDNA finger printing. Electrophoresis,12(2-3):113118.
    Richards OW.1968. The subgeneric divisions of the genus Bombus Latreille (Hymenoptera: Apidae). Bulletin of theBritish Museum (Natural History)(Entomology),22,209–276.
    Saitou N, Nei M.1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. MolecularBiology and Evolution,4,406425.
    Sambrook J, Russell DW.2001. Molecular cloning: a laboratory manual (3nd). New York: Cold Spring HarborLaboratory Press.
    Schlotterer C, Tautz D.1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Research,20(2):211215.
    Schmid-Hempel P, Schmid-Hempel R, Brunner PC, Seeman OD, Allen GR.2007. Invasion success of the bumblebee,Bombus terrestris, despite a drastic genetic bottleneck. Heredity,99,414422.
    Schorderet DF, Gartler SM.1992. Analysis of CpG suppression in methylated and nonmethylated species, Proceedings ofthe National Academy of Sciences of the United States of America,89(3):957961.
    Schulz MM, Reichert W.2002. Archived or directly swabbed latent fingerprints as a DNA source for STR typing.Forensic Science International,127(1-2):128130.
    Serikawa T, Kuramoto T, Hilbert P, Mori M, Yamada J, Dubay CJ, Lindpainter K, Ganten D,Guenet JL, Lathrop GM,Beckmann JS.1992. Rat gene mapping using PCR-analyzed microsatellites. Genetics,131(3):701721.
    Shao ZY, Mao HX, Fu WJ, Ono M, Wang DS, Bonizzoni M, Zhang YP.2004. Genetic structure of Asian populations ofBombus ignitus (Hymenoptera: Apidae). Journal of Heredity,95(1):4652.
    Skorikov AS.1922.[Bumblebees of the Petrograd Province]. In: Faunae Petropolitanae catalogus. Petrograd:Petrogradskii agronomicheskii institut.151.
    Stolle E, Rohde M, Vautrin D, Solignac M, Schmid-Hempel P, Schmid-Hempel R, Moritz RF.2009. Novel microsatelliteDNA loci for Bombus terrestris (Linnaeus,1758). Molecular Ecology Resources,9(5):13451352.
    Stolle E, Wilfert L, Schmid-Hempel R, Schmid-Hempel P, Kube M, Reinhardt R, Moritz RFA.2011. A second generationgenetic map of the bumblebee; Bombus terrestris (Linnaeus,1758) reveals slow genome and chromosomeevolution in the Apidae. BMC Genomics,12(1):117.
    Sun HQ, Luo YB, Ge S.2003. A preliminary study on pollination biology of an endangered orchid, Changnienia amoena,in Shennongjia. Acta Botanica Sinica,45(9):10191023.
    Thorp RW, Horning DS, Dunning LL.1983. Bumble bees and cuckoo bumble bees of California (Hymenoptera: Apidae).Bulletin of the California Insect Survey,23,1–79.
    Vanhala T, Tuiskula-Haavisto M, Elo K, Vilkki J, M ki-Tanila A.1998. Evaluation of genetic variability and geneticdistances between eight chicken lines using microsatellite markers. Poultry Science,77(6):783790.
    Velthuis HHW, van Doorn A.2006. A century of advances in bumblebee domestication and the economic andenvironmental aspects of its commercialization for pollination. Apidologie,37,421–451.
    Waldbieser GC, Bosworth BG, Nonneman DJ, Wolters WR.2001. A microsatellite-based genetic linkage map forchannel catfish, Ictalurus punctatus. Genetics,158(2):727–734.
    Weber JL.1990. Informativeness of human (dC-dA)n(dG-dT)n polymorphisms. Genomics,7(4):524530.
    Weber JL, May PE.1989. Abundant class of human DNA polymorphisms which can be typed using the polymerasechain reaction. American Journal of Human Genetics,44(3):388–396.
    Widmer A, Schmid-Hempel P.1999. The population genetic structure of a large temperate pollinator species, Bombuspascuorum (Scopoli)(Hymenoptera: Apidae). Molecular Ecology,8(3):387398.
    Widmer A, Schmid-Hempel P, Estoup A, Scholl A.1998. Population genetic structure and colonization history of Bombusterrestris s.l.(Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity,81(5):563572.
    Williams PH.1985. A preliminary cladistic investigation of relationships among the bumble bees (Hymenoptera, Apidae).Systematic Entomology,10(2):239255.
    Williams PH.1991. The bumble bees of the Kashmir Himalaya (Hymenoptera: Apidae, Bombini). Bulletin of the BritishMuseum (Natural History)(Entomology),60,1–204.
    Williams PH.1998. An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera:Apidae, Bombini). Bulletin of the Natural History Museum (Entomology),67,79–152.
    Williams PH.2007. The distribution of bumblebee colour patterns world-wide: possible significance forthermoregulation, crypsis, and warning mimicry. Biological Journal of the Linnean Society,92,97–118.
    Williams PH, Cameron SA, Hines HM, Cederberg B, Rasmont P.2008. A simplified subgeneric classification of thebumblebees (genus Bombus). Apidologie,39,46–74.
    Williams PH, Osborne JL.2009a. Bumblebee vulnerability and conservation world-wide. Apidologie,40,367–387.
    Williams PH, Tang Y, Yao J, Cameron S.2009b. The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini).Systematics&Biodiversity,7(2),101–190.
    Williams P, An J, Huang J, Yao J.2010a. BBCI: A new initiative to document Chinese bumblebees for pollinationresearch. Journal of Apicultural Research,49(2),221–222.
    Williams PH, Ito M, Matsumura T, Kudo I.2010b. The bumblebees of Nepal Himalaya (Hymenoptera: Apidae). InsectaMatsumurana, New series66,115–151.
    Wright S.1978. Evolution and the genetics of populations, variability within and among natural populations. Chicago:The University of Chicago Press.1–590.
    Xie ZH, Williams PH, Tang Y.2008. The effect of grazing on bumblebees in the high rangelands of the eastern TibetanPlateau of Sichuan. Journal of Insect Conservation,12,695–703.
    Yokoyama J, Fukuda T, Yokoyama A, Nakajima M.2004. Extensive size homoplasy at a microsatellite locus in theJapanese bumblebee, Bombus diversus. Entomological Science,7(2):189–197.
    Zane L, Bargelloni L, Patarnello T.2002. Strategies for microsatellite isolation: a review. Molecular Ecology,11(1):1–16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700