用户名: 密码: 验证码:
基于全寿命理论的海工混凝土耐久性优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将以混凝土结构全寿命理论为指导,以建设期海工混凝土的耐久性劣化为主要研究对象,在混凝土原材料高性能化、混凝土结构耐久性检测以及混凝土配合比优化三方面进行研究:(1)针对细骨料级配特征对混凝土耐久性能影响进行研究,分析细骨料级配特征与混凝土抗氯盐侵蚀性能之间的关系;(2)分析混凝土抗氯盐侵蚀性能变化规律及各内因、外因的影响规律,对海工混凝土的耐久性设计提出要求;(3)基于耐久性和低碳绿色环保要求,对氯盐侵蚀环境中混凝土配合比的设计进行优化和改进,并编制设计软件。
     具体研究内容如下:
     1、将分形理论引入细骨料的级配特征的分析,提出用体积分形维数这一富含空隙率、骨料密度、级配特征等信息的参数来描述细骨料;并对砂浆和混凝土试件的抗氯离子扩散性能进行试验,提出细骨料体积分形维数和混凝土性能之间的对应关系。对骨料随机分布进行二维数值模拟,将骨料的不同级配转化为二维数值模拟时的骨料面积率,对骨料随机分布模型进行有限元计算,并结合混凝土试件氯盐侵蚀试验,分析不同骨料级配对混凝土抗氯盐侵蚀性能的影响。
     2、通过①对浙江沿海港口、日本沿海部分港口的现场原位氯离子侵蚀检测,②对杭州湾大桥暴露试验站和日本港湾空港技术研究所(PARI, Port and Airport Research Insitute)暴露试验站内试件的氯离子侵蚀状态检测,③对进行室内加速试验的试件的氯离子侵蚀状态检测,以及④对文献资源的搜集整理,获得各类混凝土受到盐侵蚀后的耐久性检测原始检测数据;并通过收集整理相应的混凝土资料和必要的环境水文信息等资料,利用Web技术与Django技术编制了基于网络平台的数据库管理系统,配合使用MySQL技术进行数据库的操作设计和连接,完成数据库管理系统的编写,其中包括了混凝土材料信息、环境作用、结构服役年限、试验方法、检测方法完备的信息。通过分析这些不同来源的检测数据,得到影响沿海、近海混凝土结构耐久性劣化的关键因素及耐久性劣化规律,用作沿海及近海混凝土结构全寿命管理的重要信息来源和基础,并为评价混凝土抗氯盐侵蚀性能劣化规律提供重要的数据支持。
     3、基于混凝土对氯离子侵蚀的抗力为耐久性能研究指标,对服役初期的混凝土在养护条件和服役环境耦合作用下的抗氯离子性能发展变化进行试验研究,分析养护条件和后期服役环境在混凝土抗氯盐侵蚀性能变化上的耦合效应。对服役初期的混凝土在养护条件和服役环境耦合作用下的抗氯离子性能发展变化进行试验研究,比较某一服役环境中氯离子扩散系数及稳态电迁移系数随早期养护龄期不同的变化规律,针对不同的后期服役环境的腐蚀特点对初期养护工艺提出要求。
     4、基于已建立的服役海工混凝土结构氯离子侵蚀检测数据库,归纳整理采用不同试验方法获得的数据,对氯离子扩散系数的时变效应进行分析,结合混凝土配合比特征参数给出不同混凝土的氯离子扩散系数的时间衰减系数。根据我国《混凝土结构耐久性设计与施工指南》的建议,确定以28天基准龄期时的快速电迁移系数DRCM,28作为基于耐久性要求的混凝土设计时的抗力指标;基于数据库中丰富的检测数据及养护条件与暴露环境耦合作用的试验结果,讨论不同的混凝土氯离子抗力指标(D。和DRCM)间的联系和转换规律,并给出设计指标的材料影响(内因)系数kmaterial、环境影响(外因)系数ke等的经验公式或经验取值,为进行基于抗氯离子侵蚀性能要求的混凝土材料优化设计建立基础。
     5、采用非线性分析方法建立混凝土的抗氯盐侵蚀性能指标与混凝土配合比设计参数之间的映射关系,确定基于混凝土材料组成的氯离子快速电迁移系数DRCM,28的预测模型。在传统混凝土配合比设计方法的基础上,将混凝土的抗氯离子扩散性能作为重要的判定依据引入设计流程,并结合节能减排的要求考虑混凝土建设期的CO2排放量,对海工混凝土的配合比设计进行优化计算,编写混凝土配合比优化设计的软件系统;综合考虑建设成本的经济性和延长混凝土使用寿命,获得混凝土优化设计后的经济效益和社会效。
     本文得到国家重点工程科技专项课题“杭州湾跨海大桥混凝土结构耐久性长期性能研究”、国家自然科学基金重点课题“氯盐侵蚀环境的混凝土结构耐久性设计与评估基础理论研究”(50538070)、浙江省科技计划项目“港口与海岸工程防腐蚀关键技术与配套设备的开发应用”(编号:2006C13090),中日(NSFC/JSPS)国际合作项目“基于全寿命管理的混凝土结构耐久性设计理论”,浙江省科技项目“九堡大桥耐久性研究与监测技术子课题——新型组合结构桥梁的耐久性研究”等的资助,特此致谢。
Based on concrete structure life cycle theory, the marine concrete durability deterioration under the chloride attack is studied, with the discussion on concrete design and performance optimization and the life span analyzing that considers economic and social benefit. The principle of material choosing and application is proposed. A chloride investigation database is established by onsite detecting, exposure tests, artificial simulating tests and accelerated tests in and abroad. The chloride resistance paten of the detected marine concrete is discussed. Under the requests of concrete durability and CO2 emission limitation, a modified concrete design method which is in concern with the chloride resistance and energy saving of the marine concrete is suggested. Concrete mixture design software is developed.
     The flow of this research is as follows.
     1. The fractal theory is introduced into the analysis of fine aggregates particles distribution. The mass and volume fractal dimensions of aggregates piles are deduced. Experiment is designed to detect the relationship between fine aggregates grading and concrete performance. Numerical study is adopted too. A two-dimension circle aggregate distribution model is set up. The aggregates volume fraction is transformed into circle aggregate area volume in the finite element computerization. The experiment results metchs with the numerical computering results.
     2. A chloride investigating database is established. It contains different data from:①etecting the chloride resistance of the marine concrete structures on the specific ports in Zhejiang province and Japan;②xposure testing in Hangzhou Bay Bridge and Port and Airport Research Institute, Japan;③accelerated tests of artificial environments simulating tests and the electrical accelerated tests. The database also collects the material, climate and environmental information. Web technology combined with Django software is introduced to setup a database managing system. MySQL is planted in the system to manipulate the database system. This database is an important information source for the life cycle theory-based concrete durability research and to support the evaluation of the marine concrete structures chloride resistance.
     3. The co-effect of initial curing condition and exposure environments on concrete chloride resistance is discussed by experiment. Two methods of exposure testing and steady state migration tests are adopted. The chloride transportation model in unsaturated concrete is used to simulate the chloride movement characters in longer term's exposure. The curing effect coefficient kc on chloride resistance of concrete is suggested for different service environments. The different initial curing conditions are advised for the concrete to use in different environments too.
     4. Based on the established database, the time dependent reducing parameters of the chloride diffusion coefficients Da and the migration coefficients DRCM are worked out. The empirical expressions of these two parameters are given. By considering the suggestion in, the migration coefficient DRCM,28 at 28d age is determined as the durability design index of concrete material. By introducing the multi-environmental time similarity (METS), the relationship between Da and DRCM is studied. The material effect coefficient Kmateriai and environment effect coefficient ke are also studied. Their values in specific conditions are suggested.
     5. The relationship between concrete mixture design indexes and the chloride resistance is developed by using nonlinear analysis methods. The nonlinear and neural network predicting models are established to estimate the DRCM,28 values from the concrete mixtures. The predicting models are introduced into the traditional concrete mixture design process. In addition, the CO2 emission of marine concrete material manufacturing, transportation and construction are considered. A piece of designing software is developed. The benefits of the optimized concrete on economy, energy saving and service life expending are obtained.
     This research was supported by the project of National Natural Science Fund "Fundamental Research on Durability Design and Assessment of Concrete Structures in Chloride Erosive Environment" (50538070), the science and technology project of Zhejiang Province "Key Anti-corrosion Techniques of Harbor and Costal Engineering and Development and Application of Supporting Facilities" (2006C13090), the agreement project of Chinese and Japanese (NSFC/JSPS) "Durability design theory of concrete structure based on Life-Cycle Cost Management Technique", the science and technology project of Zhejiang Province "Durability Research and Monitory Technique on Jiubao Project-Durability Study on the Composite Structural Bridge". Their support is gratefully acknowledged.
引文
[1-1]Metha PK. Fifty year's progress[C]. Durability of Concrete 2nd International Conference, Montreal,1991:1-31.
    [1-2]覃维祖.混凝土结构耐久性的整体论[J].建筑技术.2003,30(1):19-22.
    [1-3]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版).2002,36(4):371-380.
    [1-4]Brown JH. Carbonation, the effect of exposure and concrete quality:Field survey results from some 400 structures[C]. Durability of Building Materials and Component. Proceedings of the Fifth International Conference. London:Spon Press,1990.
    [1-5]Comit E Euro-International Du B Eton. Durable Concrete Structure:CEB Design Guide[M]. London:Thomas Telford,1992.
    [1-6]JSCE. Proposed Recommendation on Durability Design for Concrete Structure[M]. Tokyo: Concrete Library of JSCE,1990.
    [1-7]The European Union-Brite Euram Ⅲ. General guidelines for durability design and redesign (Document BE95-1347/R15) [S],2000.
    [1-8]贡金鑫,赵国藩.钢筋混凝土结构耐久性研究的进展[J].
    [1-9]史庆轩,李小健,牛荻涛.锈蚀钢筋混凝土偏心受压构件承载力试验研究[R].现有混凝土结构耐久性的评估(攀登计划项目年度研究报告),1998.
    [1-10]张誉,刘亚芹,张伟平.混凝土碳化深度计算模式的试验与修正——混凝土碳化快速试验研究(二)[R].钢筋锈蚀预测模型(攀登计划项目年度研究报告).上海:同济大学结构工程学院.1996.
    [1-11]王林科,牛荻涛,王庆霖.混凝土中钢筋腐蚀模型验证分析[R].现有混凝土结构耐久性评估(攀登计划项目年度研究报告).1996.
    [1-12]金伟良,袁迎曙,卫军,王海龙.氯盐环境下混凝土结构耐久性理论与设计方法[M].北京,科学出版社.2011.
    [1-13]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社.2002.
    [1-14]JTJ275-2000海港工程混凝土结构防腐技术规范[S].北京:人民交通出版社,2001.
    [1-15]GB/T 50476-2008混凝土结构耐久性设计规范[S].北京:中国建筑工业出版社,2008.
    [1-16]李海波,鄢飞,赵羽习等.钢筋混凝土结构开裂时刻的钢筋锈胀力模型[J].浙江大学学报(工学版),2000(34):415422.
    [1-17]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001,7:57-62.
    [1-18]赵羽习,金伟良.混凝土锈胀时刻钢筋锈蚀率的数值分析方法[J].浙江大学学报(工学版),2008,42(6):1080-1084.
    [1-19]惠云玲.混凝土结构中钢筋锈蚀评估的试验研究报告[R].冶金部建筑研究总院,1985.
    [1-20]Alonso C, Andrade C, Rodrigues J, etal. Factors controlling cracking of concrete affected reinforcement corrosion[J].. Material and structures,1998,31(211):435-441.
    [1-21]Dai J G, Kato E, Iwanami M, etal. Variations of steel corrosion and it-induced and influenced cracks in RC tensile ties accelerately deteriorated by impressed-current method[C]. Yokota H, Shimomura T, editors. Proceedings of International Workshop on Life Cycle Management of Coastal Concrete Structures, Port and Airport Research Institute,Nagaoka, Japan, 2006:101-108.
    [1-22]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,34(3):47-52.
    [1-23]洪小健,赵鸣.加载速率对锈蚀钢筋与混凝土粘结性能的影响[J].同济大学学报,2002,30(7):792-796.
    [1-24]Ting S C, Nowak A S. Effect of reinforcing Steel Area Loss on Flexural behavior of Reinforced Concrete Beams [J]. ACI Structural Journal,1991, (88):309-314.
    [1-25]陈驹.氯离子侵蚀作用下混凝土构件的耐久性[D].硕士学位论文,杭州:浙江大学,2002.
    [1-26]牛荻涛,翟彬,王林科等.锈蚀钢筋混凝土梁的承载力分析[J].建筑结构,1999(8):23-25.
    [1-27]CEB-FIP Mode Code[S].UK:Redwppd Books, Trowbridge, Wiltshire,1990.
    [1-28]GB50010-2002,凝土结构设计规范[S].中国建筑工业出版社.2005
    [1-29]Department of Transportation, FHWA. Life Cycle Cost Analysis Primer[R]. Officer Asset Management,2002
    [1-30]National Highway System design nation Act:LCCA Requirements[M]. FHWA-HNG-40, 1996
    [1-31]Jawad, Dima J. Life cycle cost optimization for infrastructure facilities[D]. Rutgers:The States University of New Jersey,2003
    [1-32]中华人民共和国中央人民政府专题专栏.中华人民共和国国民经济和社会发展第十一个五年规划纲要[DB/OL].
    [1-33]中华人民共和国中央人民政府专题专栏.中华人民共和国国民经济和社会发展第十二个五年规划纲要[DB/OL].
    [1-34]黄卫.全面贯彻落实科学发展观,开创建设工程质量管理工作新局面[EB/OL]. [2009-03-30]. http://www.cin.gov.cn/indus/speech/2006122101.htm
    [1-35]百度法律.建设部、国家发展和改革委员会、财政部、监察部、审计署关于加强大型公共建筑工程建设管理的若干意见(建质[2007]1号)[EB/OL]. [2009-03-30]. http://law.baidu.com/pages/chinalawinfo/8/30/42b7fc7a93565095da63096690f9f128_0.html
    [1-36]刘芳.混凝土中氯离子浓度确定及耐蚀剂的作用[D].浙江大学.2006.
    [1-37]夏晋.锈蚀钢筋混凝土结构力学性能研究[D].浙江大学.2010.
    [1-38]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].浙江大学.2007.
    [1-39]Gordon A. The Economic of The 31's Concept[J]. Charted Surveyor Building and Quantity Surveying Quarterly,1974
    [1-40]Orshan O. Life Cycle Cost:A tool for comparing building alternative[J]. Proceeding Symposium on Quality and Cost in Building,1980,1(3):63.
    [1-41]ASTM E917A83. American Society for Testing and Materials, Standard Practice for measure life Costs of Building and Building Systems[M].1983
    [1-42]Frangopol D.M. Life cycle cost analysis for bridges[C]. Bridge Safety and Reliability, ASCE, 1999:210-236
    [1-43]Das P.C. Prioritization of bridge maintenance needs[C]. Case studies in optimal design and maintenance planning of civil infrastructure systems, ASCE,1999:26-44
    [1-44]American Institute of Architects. Life Cycle Cost Analysis:A Guide for Architects[M]. The USA:American Library Association,1977
    [1-45]Royal Institute of Chartered Surveyors. Life Cycle Costing:A Work Example[M]. London: Surveyors Publication,1987
    [1-46]Royal Institute of British architects. Life Cycle Costing For Architects:A Draft Design Manual[M]. College of Estate Management,1986
    [1-47]Royal Institute of Chartered Surveyors. Life Cycle Costing For Construction[M]. London: Surveyors Publication,1986
    [1-48]ISO 2394. General Principles on Reliability for Structures(Second Edition)[S].1998
    [1-49]BD 36 & BA 28. Evaluation of Maintenance Costs in Comparing Alternative Designs for Highway Structures[J]. Design Manual for Roads and Bridges--Highway Structures:Approval Procedures & General Design[S].1992
    [1-50]Miyamoto A., Kawamura K., Nakamura H. Bridge management system and maintenance optimization for existing bridges[J]. Computer-aided Civil and Infrastructure Engineering,2000, 15(1):45-55
    [1-51]陈肇元,徐有邻.土建结构工程的安全性与耐久性[J].建筑技术,2002,33(4):248-253
    [1-52]陈艾荣,马军海.桥梁全寿命设计方法及关键科学问题[A].全国公路科技青年论坛论文集[C].2005,168-184
    [1-53]叶文亚,管仲国,李建中等.预应力混凝土桥梁全寿命设计研究现状和展望[A].上海市公路学会第七届年会学术论文集[C].2005,166-170
    [1-54]邵旭东,彭建新,晏班夫.桥梁全寿命设计方法框架性研究[J].公路,2006,51(1):44-49
    [1-55]金伟良,吕清芳.混凝土结构设计耐久性环境区划标准[J].东南大学学报(英文版),2007,23(1):98-104
    [1-56]金伟良,袁迎曙,卫军,王海龙.氯盐环境霞混凝土结构耐久性理论与设计方法[M].北京,科学出版社.2011.
    [1-57]王要武.大中型建设项目立项评估若干问题的研究[D].哈尔滨建筑大学,2000
    [1-58]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社.2002.
    [1-59]张誉,将利学.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003
    [1-60]刘志勇,孙伟,杨鼎宜,周新刚.基于氯离子渗透的海工混凝土寿命预测模型进展[J].工业建筑,2004,34(6):61-64
    [1-61]Hansen E. J. & Saouma V. E. Numerical Simulation of Reinforced Concrete Deterioration Part 1:Chloride Diffusion[J].ACI Materials Journal,1999,96(2):173-180
    [1-62]惠云玲.混凝土结构中钢筋锈蚀程度评估和预测试验研究[J].工业建筑,1997,27(6):6-9
    [1-63]惠云玲.混凝土结构钢筋锈蚀耐久性损伤评估及寿命预测方法[J].工业建筑,1997,27(6):19-22
    [1-64]H. Yokota & M. Iwanami. Life-cycle management of degraded RC structures in ports and harbors[C]. Proceedings of the International Workshop on Life Cycle Management of Coastal Concrete Structures, Nagaoka, Japan,2006,59-67
    [1-65]李跃华,赵志曼,柯友军.普通硅酸盐水泥与缓凝减水剂相容性模糊综合评判[J].混凝土.2007(1):4042.
    [1-66]ASTM C109[S]. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. Annual Book of ASTM Standards. Vol 04.01.
    [1-67]GB8077-87,混凝土外加剂匀质性试验方法[S].北京:中国标准出版社.
    [1-68]D.L.Kantro. Influence of Water Reducing Admixtures on Properties of Cement Pastes-Aminiateures Lump Test[J]. Cement and Concrete Aggegates.1980(2):6-39.
    [1-69]卢坚.海水耐蚀剂的研究与应用[J].新型建筑材料.2003.9:61-62.
    [1-70]JGJ 52-2006普通混凝土用砂、石质量及检验方法标准[S].中国建筑工业出版社.2007.6.
    [1-71]GB/T14684-2000建筑用砂[S].中国建筑工业出版社.2000.
    [1-72]GB/T14685-2001建筑用碎石、卵石[S].中国建筑工业出版社.2001.
    [1-73]森野奎二.各种岩石骨材和水泥砂浆的附着形状[A].混凝土工学年次讲演会论文集第二回,1980.
    [1-74]A.Cetin, E.L. Caeeasquillo. High-Performance Concrete:Influence of Coarse Aggregates on Mechanical Properties[J]. ACI Material Journal.1998,95(3):252-261.
    [1-75]飞板基夫.高强度混凝土骨料品质评定标准的相关研究1:混凝土抗压强度测试[A].日本建筑学会大会学术报告集.1989.10.
    [1-76]国府胜郎,飞板基夫.高强度混凝土和骨料[J].混凝土工学.1990.28(2).
    [1-77]A.Cetin, L.Carrasquillo. High Performance Concrete:Influence of Coarse Aggregates on Mechanical Properties[J]. ACI Materials Journal.1998,95(3):252-261.
    [1-78]Mandelbrod BB. The Fractal Geometry of Nature [M]. San Francisco Freemann W H,1982.
    [1-79]P.K. Mehta, P.C. Aitcin. Priciple on Preparation of High Performance Concerete. Concrete and Aggregate[J]. Cement, Concrete and Aggregates Journal.1990.12(2):3-14.
    [1-81]L.Basheer, P.A.M. Basheer, A.E. Long. Influence of coarse aggregate on the permeation durability and the microstrcutrue characteristics of ordinary Portland cement concrete[J]. Construction and Building Materials.2005(19):682-690.
    [1-82]Mandelbrod BB. The Fractal Geometry of Nature [M]. San Francisco Freemann W H,1982.
    [1-83]吴中伟,廉慧珍.高性能混凝土[M].北京.中国铁道工业出版社.p105.
    [1-84]李果,戴靠山,袁迎曙.钢筋混凝土耐久性实验方法研究[J].淮海工学院学报.2002,11(3):56-59.
    [1-85]刘芳.混凝土中氯离子浓度确定及耐蚀剂的作用[D].浙江大学,2006.
    [1-86]倪国荣.公路混凝土桥梁结构耐久性概率预测、评估方法和软件系统[D].浙江大学,2006.
    [1-87]P.Castro, O.T. Derincon, E.J Pazini. Interpretation of chloride profiles from concrete exposed to tropical marine environments[J]. Cement and Concrete Research.2001,31(4):529-537.
    [1-88]丁睿.钢管混凝土拱桥健康监测的光纤传感研究.土木工程学报.2005,38(11):68-74.
    [1-89]谢峻,江见鲸.大跨度预应力混凝土箱梁桥的健康监测系统.清华大学学报(自然科学版).2006.46(12):1957-1960.
    [1-90]高俊启,施斌.BOTDR检测钢筋混凝土梁分布式应变的试验研究.土木工程学报.2005,38(9):74-79.
    [1-91]G.L. Kalousek, L.. Porter, E.J. Benton. Concrete for long-time service in sulfate environment [J]. Cement and Concrete Research,1972,2(1):79-89.
    [1-92]金立兵,金伟良,等.沿海混凝土结构的现场暴露试验站设计[J].水运工程,2008(2):14-18.
    [1-93]金立兵,金伟良,赵羽习.沿海混凝土结构耐久性现场试验方法的优选[J].东南大学学报(自然科学版),2006,36 Sup(Ⅱ):61-67.
    [1-94]Weiliang JIN, Libing JIN.Environment-Based On Experimental Design Of Concrete Structures [A].2nd International Conference on Advances in Experimental Structural Engineering [C]:In:Structural Engineers,2007 Vol.23(Sup):757-764.
    [1-95]赵铁军,李秋义.高强与高性能混凝土及其应用.北京:中国建材工业出版社.2004:191-194.
    [1-96]康保慧.中港系统东北(锦州港)建筑材料暴露试验站的设计与建造[J].中国港湾建设,2004(2):35-38.
    [1-97]马孝轩,仇新刚.混凝土及钢筋混凝土材料酸性土壤腐蚀规律的试验研究[J].混凝土与水泥制品,2000(2):9-13.
    [1-98]李云峰.混凝土结构环境模拟试验技术及相关理论研究[D].南京:河海大学土木工程学院,2005.
    [1-99]李云峰,吴胜兴.现代混凝土结构环境模拟实验室技术[J].中国工程科学,2005,7(2):81-85,96.
    [1-100]Don Romanchik. Space simulation needs multiple chambers [J], Test & measurement World, 2003,23(3):A6-8.
    [1-101]吴延鹏.建筑材料与结构耐久性实验小型人工气候室设计[J].建筑热能通风空调,2001,20(2):63-64.
    [1-102]J. Li, M. Li, and Z. Sun. Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corrosion test methods, Corrosion,1999, 55(5):498-502.
    [1-103]Mary Litsikas. Put products through their environmental paces [J]. Quality,1997,36(2): 40-44.
    [1-104]金伟良,赵羽习.发明专利:多功能步入式人工环境符合模拟耐久性试验装置)(ZL2007 2 0111807.8)..浙江大学.
    [1-105].金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江大学2008.5.
    [1-106]Luping Tang, P.A.M. Basheer. Evaluation of different laboratory methods for testing resistance of concrete to chloride ingress[J]. Concrete Platform 2007, Proceedings of an International Conference, Belfast, April 2007, s.209-218
    [1-107]CCES01-2004,2005,钢筋混凝土结构耐久性设计与施工指南,(修订版)[S].北京.中 国建筑工业出版社.2008.
    [1-108]JSCE-G573-2003. Measurement method for distribution of total chloride ion in concrete structure.
    [1-109]CHLORTEST. Resistance of concrete to chloride ingress-From laboratory tests to in-field performance. Testing Resistance of Concrete to Chloride ingress-A proposal to CEN for consideration as EN standard.
    [1-110]蒋林华.试验方法对混凝土抗氯离子渗透扩散性的影响[J].混凝土.2001(11):8-11.
    [1-111]李娟.混凝土抗氯离子渗透性试验方法比较研究[J].河海大学学报(自然科学版).2004(1):55-58.
    [1-112]陈伟,许宏发.确定混凝土中氯离子扩散系数的方法及适用性评价[J].混凝土2004(12):12-14,28.
    [1-113]Guideline for Practical Use of Methods for Testing the Resistance of Concrete to Chloride Ingress. Resistance of concrete to chloride ingress-From laboratory tests to in-field performance. CHLORTEST-EU Funded Research Project under 5FP GROWTH Programme.
    [1-114]马保国,何永佳,吕林女.高性能混凝土配合比设计[J].武汉理工大学学报.2002,24(7):14-17.
    [1-115]万朝均.高强超高强高性能混凝土配合比设计经验探讨[J].混凝土.2002(3):41-43.
    [1-116]陈建奎,王栋民.高性能混凝土(HPC)配合比设计新法-全计算法[J].硅酸盐学报,2000,28(2):194-198
    [1-117]陈斌,李富强,刘国华.混凝土配合比的非线性多目标优化算法研究[J].浙江大学学报(工学版).2005,39(1):16-19.
    [1-118]李昕,刘幸,田继平.基于MATLAB的高性能混凝土配合比优化设计[J].混凝土.2004,2:57-59.
    [1-119]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].清华大学出版社.2005.
    [1-120]Murat Pala. Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks[J].. Construction and building materials[J].2007(21):384-394
    [1-122]J.Bai, S.Wild. Using neural networks to predict workability of concrete incorporating to metakaolin and fly ash. Advances in Engineering Software[J].2003.34(11-12):663-669.
    [1-123]Fuat Demir. Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Construction and building materials[J].2008.22(7):1428-1435.
    [1-124]陈斌.混凝土配合比优化及结构早期裂缝防治研究[D].浙江大学博士学位论文.2005
    [1-125]李伟超,宋大猛,陈斌.基于遗传算法的人工神经网络[J]计算机工程与设计2006(2):316-318.
    [1-126]王德怀,陈肇元.高性能混凝土的配合比设计[J].混凝土.1996(3):4-10.
    [1-127]JGJ55-2000,普通混凝土配合比设计规程[S].北匕京.中国建筑工业出版社.2000
    [1-128]廉慧珍,路新瀛.按耐久性设计高性能混凝土原则和方法[J].建筑技术.2001.32(1):8-11.
    [1-129]GB/T 50378-2006,绿色建筑评价标准[S].中华人民共和国建设部.北京.2006.
    [1-130]Akash Rao, Kumar N. Jha, Sudhir Misra. Use of aggregates from recycled construction and demolition waste in concrete. Resources. Conservation and Recycling[J].2007,50(1):71-81.
    [1-131]L. Evangelista, J. de Brito. Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites [J].2010.32(1):9-14.
    [1-132]刘昕,张雄,李雯霞,张永娟,沈中林.国内外再生粗骨料研究新进展[J].建筑技术.2010.1:63-66.
    [1-133]何宏涛.水泥生产二氧化碳排放分析和定量化探讨[J].水泥工程.2009(1):61-65.
    [2-2]ASTM C32-03[S] Standard Specification for Concrete Aggregates. p5.
    [2-3]GB/T14684-2001建筑用砂[S].北京:中国标准出版社.2001.10.
    [2-4]Mandelbrod BB. The Fractal Geometry of Nature [M]. San Francisco Freemann W H,1982.
    [2-5]李国强,邓学钧.级配骨料的分形效应[J].混凝土,1995:2-7.
    [2-6]Turcotte D L.Fractals andfragmentation. Journal Geophys Research.1986,91(2):921-1926.
    [2-7]张季如,朱瑞赓,祝文化.用粒径的数量分布表征的土壤分形特征[J].水利学报,2004(4):67-71,79.
    [2-8]Tlyer S W, Wheateralt S W. Fractals scaling of soil particle size distribution:Analysis and limitations. Soil science society of america journal.1992.56(21):362-369.
    [2-9]Su Yongzhong, Zhao Halin, Zhao Wenzhi, et al. Fractal features of soil particle size distribution and the implication for indicating desertification[J]. Geoderma,2004.122:43-49.
    [2-10]陶高梁,张季如.表征孔隙及颗粒体积与尺度分布的两类岩土体分形模型[J].科学通报,2009.54(6):497-846.
    [2-11]王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报.2005,42(4):545-550.
    [2-12]谢和平.分形几何——数学基础与应用[M].重庆.重庆大学出版社.1991.5.
    [2-13]Falconer. Fractal Geometry:Mathematical Foundation and Applications[M], Wiley, New York,1990.
    [2-14]杨瑞华,许志鸿.密级配沥青混合料集料分形分维与路用性能的关系[J].土木工程学报.2007,3:98-103,109.
    [2-15]JGJ 52-2006.普通混凝土用砂、石质量及检验方法标准[S].北京,中国建筑工业出版社,2007.02.
    [2-16]GB/T50476-2008混凝土结构耐久性设计规范[S].北京,中国建筑工业出版社,2008.11.
    [2-17]Zheng J J, Li C Q. and Zhou X Z. Thickness of interfacial transition zone and cement content profiles around aggregates. Magazine of Concrete Research,2005,57(7): 397-406.
    [2-18]Nilsen A U, Monterio P J M. Concrete:a three phase material[J]. Cement and concrete Research,1993,23(1):147-151.
    [2-19]Garboczi E J, Ar boczi E J, Bentz D P. Digital simulation of the aggregate-cement paste interfacial zone in concrete[J]. Journal of Materials Research,1991,6(2):196-201.
    [2-20]Ollivier J P, Maso J C, Bourdette B. Interfacial transition zone in concrete[J], Advanced Cement Based Materials,1995,2(1):30-38.
    [2-21]Scrivener K L. The microstructure of concrete[A]. In:Skalny J P ed. Materials Science of Concrete I [M]. Westerville, Ohio:The American Ceramic Society 1989.127-161.
    [2-22]Mindess S. Bonding in cementitious composites:how important is it?[A]. In:Mindess S, Shah S P eds. Bonding in Cementitious Composites[C]. Pittsburgh, Pennsylvania: Materials Research Society,1988(114).2-10.
    [2-23]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [2-24]毛科峰.混凝土氯离子扩散系数和表面开裂时间预测[D].浙江:浙江工业大学,2007.
    [2-25]Yang C C, Su J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement and Concrete Research,2002,32(10):1559-1565.
    [2-26]郑建军,周欣竹,刘彦青.混凝土骨料二维分布的模拟和应用.水利学报.2003.7:80-84.
    [3-1]徐国葆.我国沿海大气中盐雾含量与分布[J].环境技术.1994.3:1-7.
    [3-2]JSCE-G573-2003. Measurement method for distribution of total chloride ion in concrete structure.
    [3-3]金立兵,金伟良,赵羽习.沿海混凝土结构耐久性现场试验方法的优选.东南大学学报(自然科学版)[J] 2006,36 Sup(Ⅱ):61-67.
    [3-4]金立兵,金伟良,陈涛.沿海混凝土结构的现场暴露试验站设计[J].水运工程,2008.2:13-18.
    [3-5]赵铁军,李秋义主编.高强与高性能混凝土及其应用[M].北京:中国建材工业出版社,2004:191-194.
    [3-6]康保慧.中港系统东北(锦州港)建筑材料暴露试验站的设计与建造[J].中国港湾建设,2004(2):35-38.
    [3-7]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江大学.2008.
    [3-8]JTJ 275-2000海港工程混凝土结构防腐技术规范[S].中华人民共和国交通部,2001.
    [3-9]卢振永.氯盐腐蚀环境的人工气候模拟试验方法[D].浙江大学.2007.
    [3-10]GB/T 10125—1997人造气氛腐蚀试验——盐雾试验[S].北京:中国标准出版社,1997.
    [3-11]F. Yamada, T. Hosoyamada, T. Shimomura. Numerical study of production and transportation of airborne chloride and its field measurement [A].Proceedings of the International Workshop on Life Cycle Management of Coastal Concrete Structures,2006, Nagaoka, Japan: 11-16.
    [3-12]CCES01-2004,混凝土结构耐久性设计与施工指南[M].北京,中国建筑工业出版社.2005.
    [3-13]何智海,刘宝举.粉煤灰混凝土抗氯离子渗透性能的试验研究[J].粉煤灰的综合利用.2007.4:23-27.
    [3-14]欧阳华林,苏祖平,徐明.大掺量磨细矿渣粉高性能混凝土的试验研究[J].世界桥梁.2006.1:56-59.
    [3-15]杨进波,Folker H. WIT TMANN,赵铁军,阎培渝.混凝土氯离子扩散系数试验研究[J].建筑材料学报.2007.4:223-229.
    [3-16]杨芳,肖佳,胡成功.粉煤灰和矿渣微粉单、双掺对混凝土强度和氯离子渗透性能的影响[J].粉煤灰.2007.4:11-14.
    [3-17]吴丽君,邓德华.RCM法测试混凝土氯离子渗透扩散性[J].混凝土.2006.1:100-103.
    [3-18]愿通鹏,邓德华,曾志,潘武略.矿物掺合料抗氯离子扩散性能的试验研究[J].混凝土.2005.11:60-62,70. 58回年次学术讲演会.1996.9.
    [3-22]竹田宣典.电气泳董试试验にょゐ表面保護材の塩化物ィ才ン遮断性の评价.コンクリート工学年次论文集.2006.28(1).
    [4-1]C.D. Atis, F.Ozcan. Influence of dry and wet curing conditions on compressive strength of silica fume concrete[J]. Building and Environment.2005.40:1678-1683.
    [4-2]Nasir Shafiq, J.G. Cabrera. Effects of initial curing condition on the fluid transport properties in OPC and Fly ash blended cement concrete[J]. Cement and ConcreteComposites.2004.36: 381-387.
    [4-3]A.A Ramezanianpour. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume[J]. Cement and Concrete Composites.1995.17:125-133.
    [4-4]J.M.Khatib, P.S.Mangat. Influence of super plasticizer and curing on porosity and pore structure of cement paste[J]. Cement and concrete composites.1999.21:431-437.
    [4-5]C.Jaegermann. Effect of water-cement ratio and curing on chloride penetration into concrete exposed to Mediterranean Sea climate[J]. ACI Materials.1990.84(4):334-339.
    [4-6]T.U. Mohammed, H.Hamada Relationship between free chloride and total chloride contents in concrete, Cem. Concr. Res.33(2003)1487-1490.
    [4-7]刘芳.混凝土中氯离子浓度确定及耐蚀剂的作用[D].浙江大学.2006.
    [4-8]JSCE-G571-2003. Test method for effective diffusion coefficient of chloride ion in concrete by migration[S]. JSCE Standards.
    [4-9]P. C. Kreijger, The skin of concrete:Composition and properties[J]. Materials and Structures. 1984.17:275-283.
    [4-10]P.Teemkhajornkit, T.Nawa, K.Krumisawa. Effect of water curing conditions on the hydration degree and compressive strengths of fly ash-cement paste[J]. Cement and Concrete Composites.2006.28:781-789.
    [4-11]W. J.McCarter, D.W.Watson, T.M.Chrisp. Surface zone concrete:Drying, absorption, and moisture distribution[J]. Journal of Materials in Civil Engineering.2001.13:49-57.
    [4-12]H.Nilson, D. Darwin, C.Dolan. Design of Concrete Structures[M]. McGraw Hill Higher Education.2003.
    [4-13]Koichi Maekawa, Rajesh Chaube, Toshiharu Kishi. Modeling of Concrete Performance[M]. E&FN Spon, London,1999.
    [4-14]R.P. Chaube, T. Shimomura, K. Maekawa. Multiphase water movement in concrete as a multi-component system [A]. Proceedings of the 5th RILEM International Symposium on Creep and Shrinkage in Concrete, Barcelona, E&FN Spon, London,1993,139-144.
    [4-15]张奕.氯离子在混凝土中的输运机理研究[D].浙江大学,2008.
    [4-16]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江大学2008.5.
    [4-17]A. A. Ramezanianpour. Effect of Curing on the Compressive Strength,Resistance to Chloride-Ion Penetration and Porosity of Concretes Incorporating Slag, Fly Ash or Silica Fume. Cement&Concrete Composites.1995 (17):125-133.
    [5-1]GB/T50476-2008混凝土结构耐久性设计规范[S].中国建筑工业出版社.2009.1.
    [5-2]LIFECON. Service Life Models:Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and typed of structures in Europe[R]. Life cycle Management of Concrete Infrasturctures for Improved Sustainability.2003.
    [5-3]Duracrete. BRPR-CT95-O132-E95-1347General guidelines for durability design and redesign[S]. European Union-Brite Euram III,2000.
    [5-4]O. Troconis de Rincon, P. Castro, E.I. Moreno, A.A. Torres-Acosta, et al. Chloride profiles in two marine structures-meaning and some predictions. BUILDING AND ENVIRONMENT, 2004,39(9):1065-1070.
    [5-5]高祥杰.海港码头氯离子侵蚀混凝土实测分析研究[D].浙江大学.2008.
    [5-6]General Guidelines for Durability Design and Redesign [M], DuraCrete, Feb,2000.
    [5-7]Life-365. Computer Program for Predicting the Service Life and Life Cycle Costs of RC Exposed to Chloride [R], Oct.2000 Version 1.0.0.
    [5-8]中国土木工程学会标准.混凝土结构耐久性设计与施工指南(CCES 01-2004)[S]北京:中国建筑工业出版社,2005.
    [5-9]K. Audenaert, Q. Yuan, G. De Schutter. On the time dependency of the chloride migration coefficient in concrete [J]. Construction and Building Materials.2010.24:396-401.
    [5-10]LIFECON. Service Life Models:Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and typed of structures in Europe[R]. Life cycle Management of Concrete Infrasturctures for Improved Sustainability.2003.
    [5-11]Wei-Liang JIN, Li-Bing JIN,Hai-Long WANG. A new similarity experimental method of concrete structural durability. International Conference on Microstructure Related durability of Cementitious Composites, Nanjing China,2008.
    [5-12]王传坤.混凝土氯离子侵蚀和碳化试验标准化研究[D],浙江大学.2010.
    [6-1]CEB-FIP Mode Code[S].UK:Redwppd Books, Trowbridge, Wiltshire,1990.
    [6-2]ACI 357. Guide for the Design and Construction of Fixed Offshore Concrete Structures[S].
    [6-3]AS1480, The Concrete Structures Code[S]. Standards Association of Australia, Sydney,1974.
    [6-4]DNV Offshore Standard[S]. 挪威般级社.2005.
    [6-6]JTJ 275-2000,海港工程混凝土结构防腐蚀技术规范[S].中华人民共和国交通部.2001.
    [6-7]GB/T50476-2008混凝土结构耐久性设计规范[S].中国建筑工业出版社.2009.1.
    [6-8]JTJ 275-2000,海港工程混凝土结构防腐蚀技术规范[S].中华人民共和国交通部.2001.
    [6-9]JSCE Standards Specifications for Concrete Structures, "Materials and Construction". Japanese Society of Civil Engineering.2002.
    [6-10]Satoshi Maeda, Koji Takewaka. Analysis of data on chloride diffusion process into concrete under marine environment. The Ninth East Asia-Pacific Conference on Structural Engineering and Construction. CMT136-141.
    [6-11]John Luciano, Matthew Miltenberger. Predicting Chloride Diffusion Coefficients from Concrete Mixture Proportions. ACI Materials Journal.1999,96(6):698-702
    [6-12]D.W. Hobbs. Aggregate influence on chloride ion diffusion into concrete[J]. Cement and Concrete Research.1999,29(12):1995-1998.
    [6-13]M.D.A. Thomas and E.C. Bentz. Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides.2000.
    [6-14]DLT 5330-2005,水工混凝土配合比设计规程[S].中华人民共和国国家发展和改革委员会.2005.
    [6-15]JGJ55-2000,普通混凝土配合比设计规程[S].中华人民共和国建设部.2001.
    [6-16]陈斌.混凝土配合比优化及结构早期裂缝防治研究[D].浙江大学.2005.
    [6-17]K.M. Lee, H.K. Lee, S.H. Lee, G.Y. Kim.Autogenous shrinkage of concrete containing granulated blast-furnace slag.Cement and Concrete Research.2006,36:7-12.
    [6-18]阮静,叶见曙,谢发祥,王键.高强度混凝土水化热的研究.东南大学学报.2001(3):4-9.
    [6-19]K. Eguchi, K. Teranishi. Prediction equation of drying shrinkage of concrete based on composite model.Cement and Concrete Research.2005(35):1-6.
    [6-20]Vu K.A.T, Stewart M.G. Strucutral reliability of concrete bridges including imporved chloride-induced corrosion models.[J]. Structural Safety,2000.22:313-333.
    [6-21]Bamforth P.B. The derivation of input data for modeling chloride ingress from eight-yer U.K. coastal exposure trials[J]. Magazine of Concrete Research.1999,51(2).
    [6-22]Duracrete. General Guidelines for Durability Design and Redesign[S]. The European Union-Brite Euram Ⅲ. Document BE95-1347/R15.2000.
    [6-23]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江大学2008.
    [6-24]DuraCrete. General Guidelines for Durability Design and Redesign[S]. The European Union-Brite Euram Ⅲ. Document BE95-1347/R15,2000.
    [6-25]S.E. Hussain, A.S.Al-Gahtani, Rasheeduzzafar. Chloride Threshold for Corrosion of Reinforcement in Concrete[J]. ACI Materials Journal.1996,93(6):534-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700