用户名: 密码: 验证码:
东北虎及其猎物种群监测和人虎冲突研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2002-2013年应用大样方法、样带法、传统的俄罗斯有蹄类调查方(FMP法)、网络信息收集法、样线法、样线片段足迹链占有法等野外抽样调查技术,结合Bootstrap重抽样、蒙特卡洛模拟、多元统计分析和地理信息系统技术等,对东北虎及其猎物种群数量监测方法评估、东北虎及其猎物种群现状及变动趋势、猎物种群监测方案设计、虎及其猎物间关系、东北虎猎物种群恢复型和人虎冲突开展研究,获得如下主要结果:
     1)东北虎猎物种群数量监测方法评估。传统的样带法(样带宽度为100米),猎物密度为:D(马鹿)=0.054±0.009只/km2,D(狍)=2.81±0.72只/km2,D(野猪)=0.99±0.16只/km2,D(梅花鹿)=0.26±0.06只/km2;改进后的样带法(样带宽度为足迹链宽带,即为昼夜活动直径),猎物密度为:D(马鹿)=0.004±0.0017只/km2,D(狍)=0.32±0.07只/km2,D(野猪)=0.33±0.05只/km2,D(梅花鹿)=0.0094±0.002只/km2。传统的俄罗斯调查法(FMP法),猎物密度为:D(马鹿)=0.0096±0.005只/km2;D(狍)=0.93±0.24只/km2;D(野猪)=0.058±0.013只/kn2;D(梅花鹿)=0.0194±0.009只/km2。大样方调查法,猎物密度为:D(马鹿)=0.006±0.007只/km2,D(狍)=0.654±0.148只/km2,D(野猪)=0.311±0.154只/km2,D(梅花鹿)=0.074±0.042只/km2。样带法调查误差主要来源于样带的宽度的确定和换算系数的准确性。传统样带宽度以透视度(远小于足迹链宽度)来计算密度,导致密度远高于实际密度。采用足迹链宽度作为样带宽度,用一条样带调查猎物足迹链宽度内的猎物密度在理论上会产生足迹链遗漏。换算系数在不同的时空,不同猎物个体间差异较大,有待深入研究。传统的俄罗斯调查方法(FMP)需要知道动物的每日运动距离。国内对东北虎猎物日运动距离需进一步研究。大样方法通过在足迹链宽度范围内(猎物家域内)布设多条样线,将足迹链宽度范围内产生足迹链遗漏的几率减低。同时在一个大样方内通过多条样线排除重复的足迹链,并以一条足迹链相对于一只动物(即换算系数为1)统计样方出现的动物数,避免了繁杂的换算系数。
     2)东北虎猎物足迹链密度和猎物密度关系探讨。猎物密度和其足迹链密度呈显著的线性正比例关系,马鹿、狍子和野猪密度和其足迹链密度关系式分别为:Y=0.6835x+0.0736(n=53,R2=0.5732,p<0.05),Y=0.4847x+0.1746(n=48,R2=0.8143,p<0.05),Y=0.3802x+0.1864(n=53,R2=0.5296,p<0.05),(Y为猎物密度,x为猎物足迹链密度)。相对于野猪而言,马鹿和狍子的足迹链密度能更好的指示真实密度,这可能和不同物种的行为有关。
     3)东北虎猎物种群数量监测。调查期间的方差(within survey time variance)为0.98。整体样方间方差(overall within-sample variance)为0.15(范围0.04-0.22)。2011年2-3月,共调查40条样线,每条样线长度8-12km,对狍子而言,如每2年监测1次,a=0.2,B=0.2,r=10%开展监测则有0.916的能力监测到狍子种群足迹链≥10%的下降趋势或者0.926的能力监测到狍子种群足迹链足迹链≥10%的增长;对野猪而言,有0.813的能力监测到野猪种群足迹链≥10%的下降趋势或者1的能力监测到足迹链≥10%的增长。其他监测因素不变,随着样线数量的增加,探测到猎物种群足迹链固定变化率的能力也随之增强。每2年监测1次,每条样线为8-12km,当样线达到24-32条时有80%的概率监测到研究地区狍子种群足迹链减少≥10%或增加≥10%的波动。每2年监测1次,每条长度为8-12km,样线为16-24条时,有80%的概率野猪种群足迹链增加≥10%的变动,当样线达到32-40条,有80%的概率监测到整个地区野猪足迹链减少≥10%的变动。a从0.05,0.1,0.15,0.20变化时探测到东北虎猎物种群足迹链固定变化率的能力也随之增强。研究地区梅花鹿和马鹿的足迹链密度为0的样线比例特高,无法用MONITOR软件设置监测方案。
     4)东北虎猎物足迹链调查法准确性和精度探讨。当调查18条样线(或抽样距离达到171.71km),30条样线(或抽样距离达到297.47km)时能分别满足狍子,野猪的种群数量调查准确性的最低需求。在研究地区,对狍子和野猪的调查,1km2调查面积内至少需分别抽样0.1648km,0.2855km的样线。其他东北虎猎物(梅花鹿,马鹿)由于其调查遇见率极低,无法被评估。基于准确性指标,不同研究地区,随着狍子或野猪密度的增加,其最佳取样努力减少。同一地区,猎物密度大的物种(狍子),其最佳取样努力小于密度小的东北虎猎物物种(野猪)的最佳取样努力。
     5)东北虎猎物种群变动趋势:预实验15条样线,不同的猎物物种的探测概率都很高。狍子在阔叶林中p=0.96,其他林型中p=0.94;野猪在阔叶林中p=1.0,其他林型中p=0.92(p为探测概率)。阔叶林中的调查条件记录值(值域1.62-2.15)高于其他林型调查条件记录值(值域1.56-2.54)。从2010-2013年,研究地区狍子种群指数增加了2.4倍。年平均种群指数回归斜率显著的大于O。野猪、梅花鹿、马鹿、斑羚和原麝等物种的种群密度也呈上升趋势,但其增长都没有显著大于0。人为干扰减轻的情况下,狍子种群能快速野外恢复,但是种群年增长率远低于其内禀增长率。在保护干涉前,狍子和野猪的密度就相对较高,显示狍子和野猪抗人为干扰能力强。而梅花鹿、马鹿、斑羚和原麝种群基数太低,除了外部影响外,可能存在着物种内对种群恢复的限制。
     6)中国野生东北虎数量监测方法有效性评估。(1)用虎网络信息收集法研究2006年完达山东部地区东北虎的种群现状,结果显示东完达山地区2006年东北虎数量为6—9只,由1只成年雄虎,2—3只成年雌虎,2--4只亚成体虎和1只小于1岁的幼体虎组成;(2)用猎物生物量和捕食者关系法得到东完达山地区2002年东北虎的密度为0.356只/100km2,能容纳22—27只东北虎;(3)用样线法在黑龙江的老爷岭南部和吉林省大龙岭北部面积1735.99km2的区域内设置样线64条,总长609kmm,没有发现东北虎足迹链。样线调查的结果表明,在2011年2月—3月该调查区域东北虎的数量为0只。监测结果表明,用猎物生物量和捕食者关系得到东北虎数量远远超过现实数量,人们对东北虎猎物的盗猎和猎套对虎的伤害可能是其主要原因;样线法调查得出的结果低于现实种群,主要原因是虎数量极低和调查者对野生虎行为学了解甚少,较难在野外有效的发现虎信息;且样线法监测仅应用于当东北虎以一定的密度(即有定居虎)存在的情况下(多数监测样线能发现虎信息)。虽然和样线法一样存在着诸如专家估计密度和真实密度之间的关系、虎足迹数量和虎真实密度间关系不确定、保守估计等内在缺点,在目前中国东北地区野生东北虎种群密度极低、且多是穿越于中俄边境地区的游荡个体的现状下,网络信息收集法是一种高效、可行的东北虎监测方法。此外,其他监测方法,如占有法、基于标志重捕远红外照相法、粪便DNA法、足迹数码信息法、警犬法等,应根据各种方法的理论前提、误差来源、适用范围和虎是否定居及密度等具体情况有选择地加以应用,且有些方法可能成为未来中国野生东北虎种群的有效监测工具。
     7)中国东北虎种群现状及其对野生东北虎保护应用研究。(1)2004年11月到2010年4月,东完达山地区共监测到138条可靠信息,研究地区由2只定居雌虎,一只定居雄虎,4-5只游荡虎和5只幼崽组成,其中2只幼崽生长为亚成体,但都没能在研究地区定居。虎的平均种群保持相对稳定,为4.83±1.47只到6.33±1.63只,虎最高密度为1.15/1000km2,成年虎种群密度最高为0.72/1000km2。(2)2002-2007年于中国东北地区监测到343条可靠信息。国内东北虎共为5个分布区:东完达山分布区,南部老爷岭-大龙岭虎分布区,北老爷岭分布区,张广才岭分布区(吉林省张广才岭和黑龙江省张广才岭南部山区),哈尔巴岭分布区。其中东完达山和南部老爷岭-大龙岭虎分布区每年都多次发现虎信息,且多次发现小虎信息,为虎的繁殖栖息地。而张广才岭分布区、哈尔巴岭分布区和北老爷岭分布区虎活动频次不高,每2-3年才监测到虎信息。表明此三处分布区可能能被游荡虎到达,却不适应定居虎生存。除2002年外,年东北虎种群数量保持相对稳定,为12-19只。东完达山分布区有2-3只长期定居个体,除此之外,东北境内其他东北虎均属来回于中俄边界的游荡虎。
     8)虎和猎物关系:猎物是否限制中国东北虎种群野外恢复?2002年,研究地区东北虎猎物的生物量密度为87.9kg/km2。基于Karanth et al.(2004)的模型,东完达山虎密度为0.205955076个/100km2:基于Carbone and Gittleman (2002)虎的密度为0.356个/100km2;基于Miquelle et al.(1999)的公式,虎的密度为0.722个/100km2。三个模型得到虎数量都远高于监测到的虎数量,暗示着研究地区可能存在着对虎的盗猎。基于15个地区虎猎物生物量和虎密度,获得关系式:T=4.1012(LnPb)-21.626[F=19.17454,n=15,p=0.000898,R2=0.6312],其中T为虎密度(individuals/100km2),Pb为虎猎物生物量(,kg/km2),最低可维持定居虎长期生存的猎物生物量为195kg/km2,东完达山猎物种群不足以维持可长期生存的东北虎种群需要。从2002年到2008年,东完达山地区东北虎的主要猎物(3种)种群数量急剧下降。7年间,东北虎猎物密度下降达39.53%-44.80%。显示猎物贫乏是影响东完达山虎种群恢复的重要因子。
     9)吉林省珲春地区人虎冲突研究。从2001年12月到2010年7月,珲春地区内共发生191起人虎冲突事件,年均发生23.125次(x=23.125±16.5567,范围:11-54)。导致1人死亡,3人受伤;16匹马,188只牛,11只狗,32只羊,1只猪死亡;1匹马,43头牛,1只狗受伤。平均单次虎攻击牛的数量显著大于攻击马的数量(T=2.036,p=0.043)。平均单次攻击牛的数量和攻击狗的数量(T=-0.147,p=0.883)及平均单次攻击狗的数量和马的数量(T=1.731,p=0.096)都没有显著差异。假设无人为干扰情况下,虎可取食完猎物全部可利用部分。珲春地区至少有84.03%的虎取食行为受到人为干扰。虎对马和牛不存在偏好性,但相对于牛犊而言,虎偏好成年牛(χ2=22.843,df=l,p<0.05);对于母牛而言,虎偏好公牛(χ2=82.569,df=1,p<0.05)。下雪期月平均被虎攻击的牛数量(x=0.916±0.26565)显著低于无雪期月平均数(x=2.4043±0.25485),(T=-5.293,p<0.01)。2001年12月到2010年7月份,家畜损失共达77035美元,年平均损失9062.94美元。拖迹平均长度为40.3455米(40.3455±_37.46947,n=55)。拖迹的长度和被捕杀的家畜体重无关(p>0.05,rs=-0.7,n=40)。捕杀现场的隐蔽度(x=0.25±0.07)显著低于取食场所的隐蔽度(x=0.54±0.14),(r=0.19,p<0.05,n=25)。71.31%的冲突发生在树林中,88.52%发生在坡度为0-30间,84.43%发生在海拔50-317米间,更多发生在东或南坡。
A study was conducted to evaluate the accuracy and practicability of several ungulate and tiger sample survey methods, design suitable ungulate monitoring plan for nature reserves for tiger conservation, explore the relationship between amur tiger and their prey and alleviate the conflict between tiger and human in Northeat China from2002to2013by using field population sample survey techniques, multiple statistical analysis, Bootstrap resample techniques et al., The main results were revealed as followes:
     1) Assessment of monitoring methods for ungulate population abundance in Northeast China:
     The accuracy and feasibility of three methods (belt transect method, Sample Plot Method recommend by experts from America, Russia and China, FMP method.) for monitoring ungulate population abundance were assessed in the Dalongling Nature Reserve, Heilongjiang Province and Wangqing Nature Reserve, Jilin Province from2010to2011.The results showed that:(1) the ungulate density by using the traditional transect belt (the width of transect belt is100m) are0.054±0.009individuals/km2,2.81±0.72individuals/km2,0.99±0.16individuals/km2,0.26±0.06individuals/km2for red deer, roe deer, wild boar, and sika deer respectively, Using the improved transect belt method (the width of transect belt equal to daily movement length of unglate), the density of ungulate are0.0042±0.0017individuals/km2,0.32±0.07individuals/km2,0.33±0.05individuals/km2,0.0094±0.002individuals/km2for red deer, roe deer, wild boar, and sika deer respectively.(2) the ungulate density by using FMP method are0.0096±0.005individuals/km2,0.93±0.24individuals/km2,0.058±0.013individuals/km2,0.0194±0.009individuals/km2for red deer, roe deer, wild boar, and sika deer respectively.(3) the ungulate density by using Sample Plot Method recommend by experts from America, Russia and China are0.006±0.007individuals/km2,0.654±0.148individuals/km2,0.311±0.154individuals/km2,0.074±0.042individuals/km2for red deer, roe deer, wild boar, and sika deer respectively. In the Russian Far East and elsewhere in Russia, the Formozov-Malyshev-Pereleshin (FMP) formula has been used to estimate the density of large mammals. However, the FMP requires knowledge of the mean daily distances moved by individuals and the factors affecting daily travel distances are not known for ungualte species in northeastern China. The precision of the traditional Chinese belt transect method is diminished by uncertainty about the width of the strip and the accuracy of the conversion coefficient that relates the number of tracks to the number of individual ungulates. Contray to above two methods, sample Plot Method recommend by experts from America, Russia and China avoids the conversion coefficient and has more accurate estime for ungulate density.
     2) Study on the relationship between spoor density and true density of ungulate:
     The feasibility of ungulate spoor for monitoring ungulate population abundance was assessed in Eastern Wanda Mountains, Heilongjiang Province in2002. The result showed that there are significantly linear correlation between the ungulate population density and ungulate spoor density. The fomula are Y=0.6835x+0.0736(n=53, R2=0.5732) for red deer, Y=0.4847x+0.1746(n=48, R2=0.8143) for roe deer, Y=0.3802x+0.1864(n=53, R2=0.5296) for wild boar respectively.
     3) Ungulate population monitoring design for nature reserve:
     We examined the efficacy of employing a spoor-count index to monitor trends in abundance of the ungulate, the main prey of amur tiger in the Northeast China. Results of simulations examining power suggested that spoor counts could be employed as part of a system to monitor unglate abundance given the critical assumption that changes in spoor counts reflected changes in ungualte population size. The mean coefficient of variance in sample unit track rate, estimated by ten sample units for3times, was0.15(range:0.04-0.22). Monte Carlo simulation suggests a monitoring system employing24to32routes8to12km long, sampled twice each year, could provide over80%power to detect a10%annual decline and increase in rod deer tracks with a20%chance of type I errors (a=0.20); A monitoring system employing32to40routes8to12km long, sampled twice each year, could provide over80%power to detect a10%annual decline in wild boar tracks with a20%chance of type I errors (a=0.20); and16to24routes8to12km long, sampled twice each year, could provide over80%power to detect a10%annual increasing in wild boar tracks with a20%chance of type I errors (a=0.20).
     4) Study on accurey of transect line method based on ungulate spoor:
     Estimations approached the real situation with increasing sampling effort. With increasing sampling effort, the accuracy of abundance estimation followed an exponential form. Bootstrap analysis of surveyed ungulate indicated that population sizes could reasonably be established from30line transects for wild boar (sampling distance:297.47km),150line transects for red deer (sampling distance:750km) and18line transects for roe deer (sampling distance:171.71km). A power law relationship between ungualte density and the optimal sampling effort was determined.
     5) Population trend and recovery patterns of ungulate
     Using a sign-based index of abundance, we measured4-year trends in abundance of six ungulate species in Wangqing Nature Reserve in Northeast China. Regression slopes of annual indices against time indicated that population growth rates (r) is0.107for roe deer, which is significant bigger than zero. Thus, roe deer can recover relatively rapidly from low population levels. Although population growth rates (r) of other ungulate species all are positive value, they are not significant bigger than zero. Wild pigs were already relatively abundant when monitoring started, illustrating their resilience to hunting The unexpected failure of red deer, sika deer, musk deer, goral to recover suggests that reproductive behavior may override seemingly positive interventions (i.e., stopping poaching) that reduce mortality.
     6) Assessment of monitoring methods for tiger population abundance in Northeast China:
     The accuracy and feasibility of three methods (Information collecting networks, traditional transect survey and tiger-prey biomass relationships) for monitoring Amur tiger population abundance were assessed in the eastern Wanda Mountains, Heilongjiang Province and8bordering forest area between the southern Laoye Mountains in Heilongjiang Province and the northern Dalong Mountains in Jilin province during2002-2011.The results showed that:(1) there were at least6-9wild Amur tiger in the eastern Wanda Mountains (1male,2-3adult females,2-4sub-adults and1cub), in2006by using an information network for tigers;(2) there were22-27wild tigers in the eastern Wanda Mountains in2002-2004based on the prey biomass relationship method, which obviously exaggerated the tiger population size; and (3)0tigers in8bordering forestry areas between the southern Laoye mountains in Heilongjiang Province and the northern Dalong Mountains in Jilin province, in2011by using traditional transect method, which underestimated the true tiger population size. The reasons for exaggeration of the tiger population using the biomass method could be previous losses of tigers from the area due to snares and competition with another carnivore, especially with people for ungulates. The transect method may have underestimated tiger densities in the survey areas because it was based on little prior knowledge of tiger behavior. It could only be usefully applied when tigers exist in at least moderate densities (i.e., when there is a high probability of encountering tiger tracks along a suite of routes). Although there is inherent potential error and bias, such as the unclear relationships of "expert estimates" and the true density, and between tiger track densities and actual tiger densities, same as the transect method, the monitoring of tiger populations using information networks provides a record of minimum tiger presence, and may be an appropriate approach when tiger presence is extremely rare, transitory and unstable, such as in northeast China. This approach is economically efficient and should be further improved by established a wider network across the landscape to encompass all potential tiger habitat using better trained monitoring staff.
     7) Population status of Amur tiger and implication for its conservation in Northeast China:
     From November2004to April2010, tiger information colleting system was used to monitor tigers in Eastern Wandashan Montains, Northeastern China, to quantify changes in abundance of demographic groups and to identify underlying causes. Mean abundance in Eastern Wandashan Mountains were5or6tigers, the tiger population remained relatively stable. Transients and the number of tiger offspring were generally recorded at low levels. The number of breeding animals in the study also remained stable, with about2breeding females and1breeding male, which highlight the region as a potential source pool for Amur tiger population recovery in Northeast China. We also researched population status of Amur tiger in Northeast China,2002-2007, using tiger information colleting system. The results show that:there were6isolated Amur tiger distribution regions in Northeast China. They were the Eastern Wanda Mountains, the Northern Laoye Mountains, the Southern Laoye Mountains and the Dalong Mountains, the Zhangguangcai Mountains, the Haerba Mountains tiger distribution regions respectively, among which the Zhangguangcai Mountains and the Haerba Mountains distribution regions, central Northeast China distribution areas, and Northern Laoye Mountains apparently represented regions still accessible to dispersing tigers, but were not suitable for retaining a resident population. The amur tiger was on the verge of extinction in northeast China and average less than20tigers occurred in Northeast China from year2002-2007, which was presently sustained by emigration of individuals from Russia. Only with the exception of the eastern Wandanshan Mountains, there no longer existed a resident, stable tiger population elsewhere in Northeast China, and that, no reproduction of young was occurring. The Amur tiger in Northeast China existed largely as nomadic, isolated individuals. Based on the results of our research, we suggest identify tiger ecological corridor between China and Russian, alleviate the threats hindering the fluent immigration, shift our tiger conservation strategy from nature reserve or region-focused to landscape-focused management so that entire tiger populations are treated as a single management unit, establish a management zone less strict than nature reserve in Eastern Wanda Mountain and take effective activities to increase the prey density and alleviate the human-tiger conflict.
     8) The relationship between tiger and their prey:does prey density limit tiger recovery in northeast China?
     A residual population of Amur tigers probably survives in the Eastern Wanda Mountains (EWM) in China, where the main prey species are red deer (Cervus elaphus), eastern roe deer (Capreolus pygargus) and wild boar (Sus scrofa ussuricus). We used53snow sample plots each containing about29km of transects to detect ungulate presence, and determined their total density in EWM in2002to be87.9±8.9kg·km-2. We then applied these data to three published models that predict the relationship between tiger density and prey biomass density to obtain three estimates of tiger carrying capacity in EWM. Existing estimates of tiger density suggest that tigers were below carrying capacity estimates. Relationships between prey density and tiger density from15studies indicated a threshold prey biomass of195(CI,33-433)kg·km-2below which a tiger population cannot be sustained.Therefore, we concluded that the EWM population of tigers is in peril. We compared densities between the years2002and2008using comparable data and found that the EWM populations of the three ungulate prey species all experienced decreases of c.40-45%, apparently due to intense poaching. This rapid decline in prey density and pervasive threats to tigers and their prey in the EWM demands immediate and effective protection of ungulate and tiger populations from poaching if tigers are to persist and recover.
     9) Conflict between tiger and human (HTC) in Hunchun National Nature Reserve, Northeast China:
     We examined human-tiger conflict in Hunchun, Northeast China using data gathered from December2001to July2010.191cases of human-tiger conflict were documented, caused to3people injured and1people killed,16horses,188cattle,14dogs,27sheep,1pig killed and1horse,43cattle and1dog injured. Human disturbed the tiger feeding for cattle in at less100case of119total cattle killed cases (84.03%). Tigers attacked more cattle than horses per attack There were no significant difference between numbers of cattle attacked per attack than dog and between dogs and horse per attack. Tigers killed cattle and horse according to their availability. Examination of cattle kills showed that tiger killed a significantly greater proportion larger prey (e.g., bulls for cattle sex and adult for cattle classes). Overall, cattle predation was greatest in non-snowfall period which corresponded with lax livestock management. Cattle freely roam in forest and less well guarded during that time. The total of economic loss to tiger was valued at US$77035, of which the majority (88.21%, US$67950) was cattle loss. Horse and sheep loss account for8.44%and2.29%of total monetary loss respectively. Average annual livestock loss to tiger was US$9062.94. We measured the distance of drag for55times, the average of drag distance was about40.3455m (40.3455±37.46947, n=55). The mean hiding cover in killing sites (x=0.25±0.07) was lower than hiding cover in feeding sites (x=0.54±0.14),(T=0.19,p<0.05, n=25). The mean nearest distance to road was0.832056314km (0.832056314km±1.002989), and and the mean nearest distance to river was0.2633203km (0.2633203±0.24379), mean nearest distance to settlement was3.596962188km (3.596962188±2.199674308). Implications of our findings for mitigating livestock losses and for conserving large carnivores in Northeast China are discussed.
引文
[1]Sanderson E, Forrest J, Loucks C, Ginsberg J, Dinerstein E, Seidensticker J, Leimgruber P, Songer M, Heydlauff A, O'Brien T, Bryja G, Klenzendorf S, Wikramanayake E. Setting Priorities for the Conservation and Recovery of Wild Tigers:2005-2015. The Technical Assessment.. WCS, WWF, Smithsonian, and NFWF-STF, New York and Washington, D.C.2006.
    [2]Karanth K U, Stith B M. Prey depletion as a critical determinant of tiger population viability. In: Seidensticker J S, Christie, S., Jackson, P. (Eds.), Riding the Tiger:Tiger Conservation in Human Dominated Landscapes. Cambridge University Press, Cambridge, pp.100-113.1999.
    [3]Tilson R, Defu H and Muntifering J. Dramatic decline of wild South China tigers Panthera tigris amoyensis:field survey of priority tiger reserves. Oryx,2004,38:40-47.
    [4]Luo S J, Kim J H, Johnson W E, van der Walt J, Martenson J, Yuhki N, Miquelle D G, Uphyrkina O, Goodrich J M, Quigley H B, Tilson R, Brady G, Martelli P, Subramaniam V, McDougal C, Hean S, Huang S Q, Pan W S, Karanth U K, Sunquist M, Smith J L D, O'Brien S J. Phylogeography and genetic ancestry of tigers(Panthera tigris). Public Library of Science Biology,2004,2(12):e442-e442.
    [5]马逸清.我国的东北虎.野生动物,1979,1:22-26
    [6]Matyushkin E N, Pikunov D G, Dunishenko Y M, Miquelle D G, Nikolaev I G, Smirnov E N, Salkina G. P and Abramov V.G.. Numbers, Distribution, and Habitat Status of the amur tiger in the Russian Far East:Express-report. Final report to the USAID. Russian Far East Environmental Policy and Technology Project,1996.
    [7]杨世和,蒋志刚,Wu T, Li X,Yang X, Han D, Miquelle G, Pokunov D G, DunishenkoY M, Nikolaev I G.1998年冬季在吉林省东部进行地野外虎豹调查.给联合国开发计划署和国际野生生物保护协会的报告.1998.
    [8]Sun B G, Zhang E D, Miquelle D. Siberian tigers on brink of extinction in China. Cat News,1999, 31:2-2.
    [9]于孝臣,孙宝刚,孙海义,关国生,周宣滨.黑龙江省东北虎的分布和种群数量.野生动物,2000,21(2):14-16.
    [10]李彤,蒋劲松,吴志刚,韩晓东,吴景才,杨兴家.吉林省东北虎的调查.兽类学报,2001,21(1):1-6.
    [11]Won C. and Smith K G. History and current status of mammals of the Korean Peninsula. Mammal Review,1999,29(1):3-33.
    [12]Institute of Geography, DPR Korea. A survey of tigers and prey resources in the Paektusan area, Lyangan province, North Korea, in winter,1998. unpubl. report.1998.
    [13]马逸清.东北虎分布区的历史变迁.自然资源研究,1983,4:44-48
    [14]Woodroffe R and Ginsberg J. R. Edge effects and the extinction of populations inside protected areas. Science,1998,280:2126-2128.
    [15]Nowell K. andJackson P. Wild Cats:Status survey and conservation action plan. IUCN, Gland, Switzerland.1996.
    [16]Linkie M, Chapron G., Martyr D J, Holden J and Leader-Williams N. Assessing the viability of tiger subpopulations in a fragmented landscape. Journal of Applied Ecology,2006,43:576-586.
    [17]苏丽敏,王宁,杨承华.珲春地区东北虎保护现状调查.地理教学,2006,4:6-7.
    [18]Karanth K U, Nichols J D, Kumar N S, and Hines J. Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology,2006,87:2925-2937.
    [19]吴宪忠,张明海.黑龙江省境内东北虎数量分布现状.野生动物,1994,17(1):3-7.
    [20]Eduardo C, Grace W, Alferdo D C. Monitoring mammal populations in Costa Rican Protected Areas under different hunting restrictions. Conservation Biology,2000,14(6):1580-1591.
    [21]Marsh D M and Trenham P C. Current Trends in Plant and Animal Population Monitoring. Conservation Biology,2008,22:647-655.
    [22]Williams B K, Nichols J D and Conroy M J. Analysis and management of animal populations. San Diego:Academic Press,2002.
    [23]张常智,张明海.黑龙江省东完达山地区东北虎猎物种群现状及动态趋势.生态学报,2011,31(21):6481-6487.
    [24]Miquelle D G., Smirnov E N, Merrill T W, Myslenkov A E, Quigley H B, Hornocker M G, Schleyer B. Hierarchical spatial analysis of Amur tiger relationships to habitat and prey, In Riding the Tiger:Tiger Conservation in Human-dominated Landscapes. eds J. Seidensticker, S. Christie, P. Jackson, pp.71-99. Cambridge University Press, Cambridge.1999.
    [25]唐继荣,徐宏发,徐正强.鹿类动物数量调查方法探讨.兽类学报,2001,21(3):221-230.
    [26]Woodroffe R. Predators and people:using human densities to interpret declines of large carnivores. Animal Conservation,2000,3:165-173.
    [27]Smith R J, Easton J, Nhancale B A, Armstrong A J, Culverwell J,Dlamini S D, Goodman P S, Loffler L, Matthews W S, Monadjem A, Mulqueeny C M, Ngwenya P, Ntumi C P, Soto B. and Leader-Williams N. Designing a transfrontier conservation landscape for the Maputaland centre of endemism using biodiversity, economic and threat data. Biological Conservation,2008,141: 2127-2138.
    [28]Donald P F and Evans A D. Habitat connectivity and matrix restoration:the wider implications of agri-environment schemes. Journal of Applied Ecology,2006,43:209-218.
    [29]Gopal R, Qureshi Q, Bhardwaj M, Singh R K J, Jhala Y V, Evaluating the status of the endangered tiger Panthera tigris and its prey in Panna Tiger Reserve, Madhya Pradesh, India. Oryx,2010,44: 383-389.
    [30]Gormley A, Forsyth D, Griffioen P, Lindeman M, Ramsey D, Scroggie M. and Woodford L. Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology,2011,48:25-34.
    [31]MacKenzie D I and Kendall W L. How should detection probability be incorporated into estimates of relative abundance? Ecology,2002,83:2387-2393.
    [32]Mackenzie D I. and Royle J A. Designing occupancy studies:general advice and allocating survey effort. Journal of Applied Ecology,2005,42:1105-1114.
    [33]蒋志刚.陕西老县城自然保护区的生物多样性.北京:清华大学出版社.2006.
    [34]Jones J P G, Collen B, Atkinson G, Baxter P W J, Bubb P, Illian J B, Katzner T E, Keane A, Loh, J, McDonald-Madden E, Nicholson E, Pereira H M, Possingham H P, Andrew S P, Rodrigues A S L, Ruiz-Gutierrez V, Sommerville M and Milner-Gulland E J. The why,what and how of global biodiversity indicators beyond the 2010 target. Conservation Biology,2011,25:450-457.
    [35]De Barba M, Waits L P, Genovesi P, Randi E, Chirichella R and Cetto E. Comparing opportunistic and systematic sampling methods for noninvasive genetic monitoring of a small translocated brown bear population. Journal of Applied Ecology,2010,47:172-181.
    [36]Van B, Bly M P, B, VerCauteren T. and Tyre A J. Making better sense of monitoring data from low density species using a spatially explicit modeling approach. Journal of Applied Ecology,2011,48, 47-55.
    [37]Mordecai R, Mattsson B, Tzilkowski C J and Cooper R. Addressing challenges when studyingmobile or episodic species:Hierarchical Bayes estimation of occupancy and use. Journal of Applied Ecology,2011,48:56-66.
    [38]刘宇,张恩迪,李志宏,陈晓婕.吉林省珲春自然保护区野生东北虎捕食家畜的状况.兽类学 报,2006,26(3):213-220.
    [39]李冰,张恩迪,张振华,刘宇.吉林珲春自然保护区东北虎种群的初步监测.兽类学报,2008,28(4):333-341.
    [40]Barlow A C D, Ahmed M I U, Rahman M M, Howlader A, Smith A C, Smith J L D. Linking monitoring and intervention for improved management of tigers in the Sundarbans of Bangladesh. Biological Conservation,2008,141(8):2032-2040.
    [41]Sunquist M E. The social organization of tigers Panthera tigris in Royal Chitwan National Park Nepal. Smithsonian Contributions to Zoology.1981.
    [42]Reddy H S, Srinivasulu C, Thusli R K. Prey selection by the India tiger(Panther a tigris tigris) in Nagarjunasagar Srisailam Tiger Reserve, India. Mammalian Biology,2004,69 (6):384-391.
    [43]朴仁珠,关国生,张明海.中国驼鹿种群数量及分布现状的研究.兽类学报,1995,15(1):11-16.
    [44]Stephens P A, Zaumyslova O Y, Miquelle D G, Myslenkov A I, Hayward G D. Estimating population density from indirect sign:track counts and the Formozov-Malyshev-Pereleshin formula. Animal Conservation,2006,9(3):339-348.
    [45]田新民,张明海.基于粪便DNA的马鹿种群数量和性比[J].生态学报,2010,(22):6249-6254.
    [46]李振新, Fridolin, Z., Mark, H., Andrey, P., Frank, M.L,朱春全,Dale, M.中国长白山区东北虎潜在栖息地研究.北京,中国林业出版社,2010.
    [47]孙海义,卢向东,田家龙,程守涛,李德福,董红雨.黑龙江省东北虎野外种群监测研究.林业科技,2005,30(6):33-35.
    [48]黄祥云,胡德夫,刘伟石,Jeff Muntifering.宜黄自然保护区华南虎野生种群调查及栖息地评价[J].北京林业大学学报,2003,4:54-58.
    [49]周绍春.东北虎及其猎物的种群大小、生境选择与评价研究[D].东北林业大学,2011.
    [50]Karanth K U. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biological conservation,1995,71(3):333-338.
    [51]Mills L S, Citta J J, Lair K P, Schwartz M K, Tallmon D A. Estimating animal abundance using noninvasive DNA sampling:promise and pitfalls. Ecological Application,2000,10(1):283-394.
    [52]Riordan P. Unsupervised recognition of individual tigers and snow leopards from their footprints. Animal Conservation,1998,1(4):253-262.
    [53]Kerley L L, Salkina G P. Using scent-matching dogs to identify individual Amur tigers from scats. Journal of Wildlife Management,2007,71(4):1349-1356.
    [54]Mackenzie D I, Nickols J D, Lachman G B, Deocge S, Royle A J, Landgtimn C A. Estimating site occupancy rates when detection probabilities are less than one. Ecology,2002,83(8):2248-2255.
    [55]Mackenzie D I, Nickols J D, Hines J E, Knutson M G, Franklin A B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology,2003,84(8): 2200-2207.
    [56]Karanth K U, Nichol S J D, Kumar N S, Link W A, Hines J E. Tigers and their prey:predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences of the USA,2004,101(14):4854-4858.
    [57]Carbone C, Gittleman J L. A common rule for the scaling of carnivore density. Science,2002, 295(5563):2273-2276.
    [58]Servin J I, Rau J R, Delibes Y M. Use of radio tracking to improve the estimation by track counts of the relative abundance of red fox. Acta Theriologica,1987,32(30):489-492.
    [59]Rabinowitz A. Estimating the Indochinese tiger Panthera tigris carbetti population in Thailand. Biological Conservation,1993,65(3):213-217.
    [60]Smith J L D, Ahearn S C, McDougal C. Landscape Analysis of Tiger Distribution and Habitat Quality in Nepal. Conservation Biology,1998,12(6):1338-1346.
    [61]Guy A B, Rob S, Luke T B H. Impact of conservation interventions on the dynamics and persistence of a persecuted leopard (Panthera pardus) population. Biological Conservation, 2009,11(142):2681-2690.
    [62]Jennelle C S, Runge M C and MacKenzie D I. The use of photographic rates to estimate densities of tigers and other cryptic mammals:a comment on misleading conclusions. Animal Conservation, 2002,5:119-120.
    [63]Subramanya K, Carey P. Age-related effects of chlorpyrifos and parathion on acetylcholine synthesis in rat striatum.Neurotoxicology and Teratology,2003,5(25):599-606.
    [64]Smallwood K S, Fitzhugh E L. A track count for estimating mountain lion Felis concolor californica population trend[J]. Biological Conservation,1995,71(3):251-259.
    [65]Beier P, Cunningham S C. Power of track surveys to detect changes in cougar populations [J]. Wildlife Society Bulletin,1996,24(3):540-546.
    [66]Hayward G D, Miquelle D G, Smirnov E N, Nations C. Monitoring Amur tiger populations: characteristics of track surveys in snow. Wildlife Society Bulletin,2002,30(4):1150-1159.
    [67]刘宁.野生动物数量调查方法综述[J].云南林业科技,1998,2:59-61.
    [68]Jonathan B, Sam D, Paul G, Bruce P and John R C. Density estimation in wildlife surveys. Wildlife Society Bulletin,2004,32 (4),1242-1247.
    [69]Schwarz C J, Seber G A F. Estimating animal abundance:Review III. Statistical Science,1999,14: 427-456.
    [70]Stander P E. Spoor counts as indices of large carnivore populations:the relationship between spoor frequency, sampling effort and true density. Journal of Applied Ecology,1998,35:378-385.
    [71]Funston P J, Mills M G L and Biggs H C. Factors affecting the hunting success of male and female lions in the Kruger National Park. Journal of Zoology,2001,253:419-431.
    [72]Gusset M, Burgener N. Estimating larger carnivore numbers from track counts and measurements[J]. African Journal of Ecology,2005,43(4):320-324.
    [73]Otis D. Analysis of habitat selection studies with multiple patches within cover types. Journal of Wildlife Management,1997,61:1016-1022.
    [74]Sharma S, Jhala Y. and Sawarkar V B. Identification of individual tigers (Panthera tigris) from their pugmarks. Journal of Zoology,2005,267:9-18.
    [75]Miquelle D G, Smirnov E N, Quigley H G, Hornocker M G., Nikolaev I G., Matyushkin E N. Food habits of amur tigers in Sikhote-Ali Zapovednik and Russian Far East, and implication for conservation. Journal of Wildlife Research,1996,1(2):138-147.
    [76]周绍春,张明海,孙海义.黑龙江省完达山东部林区东北虎猎物生物量分析.生态学报,2011,32(1):145-153.
    [77]Andheria A P, Kauanth K U, Kumar N S and Kumar N S. Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. Journal of Zoology,2007,273:169-175.
    [78]Roth T, Weber D. Top predators as indicators for species richness? Prey species are just as useful. Journal of applied ecology,2008,45:987-991.
    [79]Miquelle D. Habitat aviliability for amur tiger and amur leopard under changing climate and disturbance regimes.2011.
    [80]Linnell J D C, Swenson J E and Andersen R. Predators and people:conservation of large carnivores is possible at high human densities if management policy is favourable. Animal Conservation,2001,4:345-349.
    [81]Goodrich J M, Kerley L L, Smirnov E N, Miquelle D G. and McDonald T. Survival rates and causes of mortality of amur tigers on and near the Sikhote-AlinBiosphere Zapovednik. Tigers in Sikhote-Alin Zapovednik:Ecology and Conservation (eds D.G. Miquelle, E.N. Smirnov & J.M. Goodrich), PSP, Vladivostok, Russia.2005.[in Russian].
    [82]Busch D E, Trexler J C. Monitoring ecosystems, interdisciplinary approaches for evaluating ecoregional initiatives. Island Press, Covelo, California, USA.2003.
    [83]Kaplanov L G. Tiger of the Sikhote-Alin. Moscow Society of Naturalists, New series,1948,14 (29):18-45.
    [84]Matyushkin E N and Yudakov A G. Traces of the amur tiger. Okhota and Okhot,1974,5:12-17(In Russian).
    [85]Floyd T J, Mech L D and Jordan P A. Relating wolf scat contents to prey consumed. Journal of Wildlife Management,1978,42:528-532.
    [86]Trites AW and Joy R. Dietary ananysis from fecal samples:how many scats are enough? Journal of Mammal,2005,86:704-712.
    [87]Koppiker B R and Sabnis J H. Indentification of hairs of some Indian mammals. Journal of Bombay Nat. History Society,1977,75:5-20.
    [88]Putman R J. Facts from faeces revisited. Trends in Ecology and Evaluation.1977,12(6):223-227.
    [89]Baillie S R, Sutherland W J, Freeman S N, Gregory R D and Paradis E. Consequences of large-scale processes for the conservation of bird populations. Journal of Applied Ecology,2000,37: 88-102.
    [90]Brown K A, Spector S andWu W. Multi-scale analysis of species introductions:combining landscape and demographic models to improve management decisions about non-native species. Journal of Applied Ecology,2008,45:1639-1648.
    [91]Bailey D, Schmidt-Entling M H, Eberhart P, Herrmann J D, Hofer G, Kormann U and Herzog F. Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. Journal of Applied Ecology,2010,47:1003-1013.
    [92]Esler D. Applying metapopulation theory to conservation of migratory birds. Conservation Biology,2000,14:366-372.
    [93]Rouquette J R and Thompson D J. Patterns of movement and dispersal in an endangered damselfly and the consequences for its management. Journal of Applied Ecology,2007,44:692-701.
    [94]Legg C J, Nagy L. Why most conservation monitoring is, but need not be, a waste of time [J]. Journal of Environmental Management,2006,78(2):194-199.
    [95]Jhala Y, Qureshi Q, Gopal R. Can the abundance of tigers be assessed from their signs?[J]. Journal of Applied Ecology,2011,48(1):14-24.
    [96]Joseph L N, Field S A, Wilcox C and Possingham H P. Presenceabsence versus abundance data formonitoring threatened species. Conservation Biology,2006,20:1679-1687.
    [97]Singh N J and Milner-Gulland E J. Conserving a moving target:planning protection for a migratory species as its distribution changes. Journal of Applied Ecology,2011,48:35-46.
    [98]Regan T, Chade's I and Possingham H. Optimally managing under imperfect detection:a method for plant invasions. Journal of Applied Ecology,2011,48:76-85.
    [99]Baxter P and Possingham H P. Optimizing search strategies for invasive pests:learn before you leap. Journal of Applied Ecology,2011,48,86-95.
    [100]Treves A and Karanth K U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conservation Biology,2003.17(6):1491-1499.
    [101]Nyhus P J and Tilson R. Characterizing human-tiger conflict in Sumatra, Indonesia:implication for conservation. Oryx,2004,38(1):68-74.
    [102]Jackson P. The status of tiger in 1993 and threats to its future. Cat news. World Conservation Union Cat Specialist Group, Gland, Switzerland.1993.
    [103]Karanth K U and Madhusudan M D. Mitigating human-wildlife conflicts in southern Asia. Pages 250-264 in J.Terborgh, C. P.Van Schaik, M.Rao, andL. C.Davenport, editors. Making parks work:identifying key factors to implementing parks in the tropics. Island Press, Covelo, California.2002
    [104]Goodrich J M, Miquelle D G, Smirnov E N, Kerley L L, Quigley H B, Hornocker M G. Spatial structure of Amur (Siberian) tigers (Panthera tigris altaica) on Sikhote-Alin Biosphere Zapovednik, Russia. Journal of Mammalogy,2010,91(3):737-748.
    [105]Woodroffe R, Ginsberg J R. Conserving the African wild dog Lycaon pictus. Ⅱ. Is there a role for reintroduction [J]. Oryx,1999,33(2):143-151.
    [106]Miquelle D G, Pikunov D G, Dunishenko Y M, Aramilev V V, Nikolaev I G, Abramov V K, Smirnov E N, Salkina G P, Seryodkin I V, Gaponov V V, Fomenko P V, Litvinov M N, Kostyria A V, Yudin V G, Korkisko V G, Murzin A A. A survey of Amur (Siberian) tigers in the Russian Far East,2004-2005. Final Report to Save the Tiger Fund.2006.
    [107]张恩迪.中国虎的现状和拯救对策[J].小学自然教学,2000,3:43.
    [108]Nyhus P J, Tilson R. Panthera Tigris vs Homo sapiens:Conflict, Coexistence or Extinction[J]. Tigers of the World, Second Edition:The Science, Politics and Conservation of Panthera tigris, 2010.
    [109]McDougal C. The man-eating tiger in geographical and historical perspective[J]. Tigers of the World. Noyes Publications, Park Ridge, New Jersey,1987.
    [110]Barlow A C D, McDougal C, Smith J L D, et al. Temporal variation in tiger (Panthera tigris) populations and its implications for monitoring[J]. Journal of Mammalogy,2009,90(2):472-478.
    [111]Gurung B, Smith J L D, McDougal C. Factors associated with human-killing tigers in Chitwan National Park, Nepal[J]. Biological Conservation,2008,141(12):3069-3078.
    [112]Nugraha R T, Sugardjito J. Assessment and management options of human-tiger conflicts in Kerinci Seblat National Park, Sumatra, Indonesia[J]. Mammal study,2009,34(3):141-154.
    [113]Kawanishi K, Seidensticker J. Collaboration and partnerships are essential to sustain wild Tiger populations[J]. Tigers of the World,2010:175-184.
    [114]Quigley H, Herrero S. Characterization and prevention of attacks on humans[J]. Conservation Biology,2005,9:27.
    [115]Meriggi A and Lovari S. A review of wolf predation in southern Europe:does the wolf prefer wild prey to livestock Journal of Applied Ecology,1996,33:1561-1571.
    [116]Wang S W, Macdonald D W. Feeding habits and niche partitioning in a predator guild composed of tigers, leopards and dholes in a temperate ecosystem in central Bhutan[J]. Journal of Zoology, 2009,277(4):275-283.
    [117]Suminski H R. Mountain lion predation on domestic livestock in Nevada. Vertebrate Pest Conference,1982,10:62-66.
    [118]Evans W. The cougar in New Mexico:biology, status, depredation of livestock and management recommendations. New Mexico Department of Game and Fish, Santa Fe.1983.
    [119]Vorster H H, Lotter A P, Odendaal I. Benefits from supplementation of the current recommended diabetic diet with gel fibre[J]. Int Clin Nutr Rev,1988,8:140-6.
    [120]Ginsberg J R, Macdonald D W. Foxes, wolves, jackals, and dogs:an action plan for the conservation of canids[M]. Iucn,1990.
    [121]Sangay T, Vernes K. Human-wildlife conflict in the Kingdom of Bhutan:Patterns of livestock predation by large mammalian carnivores[J]. Biological Conservation,2008,141(5):1272-1282.
    [122]Ranganathan J, Chan K M A, Karanth K U, Smith J L D. Where can tigers persist in the future? A landscape-scale, density-based population model for the Indian subcontinent. Biological conservation,2008,141:67-77.
    [123]Thouless C R and Sakwa J. Shocking elephants:fences and crop raiders in Laikipia District, Kenya. Biological Conservation,1995,72:99-107.
    [124]Naughton-Treves L, Mena J L, Treves A. Wildlife Survival Beyond Park Boundaries:the Impact of Slash-and-Burn Agriculture and Hunting on Mammals in Tambopata, Peru[J]. Conservation Biology,2003,17(4):1106-1117.
    [125]Treves A L, Naughton-Treves E L, Harper D J, Mladenoff R A, Rose T, Sickley A and Wydeven A P. Predicting human-carnivore conflict:a spatial model based on 25 years of wolf predation on livestock. Conservation Biology,2004,18:125-132.
    [126]蔡静,蒋志刚.人与大型兽类的冲突:野生动物保护所面临的新挑战[J].兽类学报,2006,26(2):183-190.
    [127]Smuts G L. Interrelations between predators, prey, and their environment[J]. BioScience,1978: 316-320.
    [128]Lindzey F. Mountain lion[J]. Wild furbearer management and conservation in North America. Ontario Ministry of Natural Resources, Toronto, Canada,1987,4:657-668.
    [129]Fall M W, Jackson W B. The tools and techniques of wildlife damage management-changing needs:an introduction[J]. International biodeterioration and biodegradation,2002,49(2):87-91.
    [130]Drake D, Grande J. Assessment of wildlife depredation to agricultural crops in New Jersey[J]. Journal of Extension,2002,40(1)13-33.
    [131]Conover D O, Munch S B. Sustaining fisheries yields over evolutionary time scales[J]. Science, 2002,297(5578):94-96.
    [132]Treves A, Jurewicz R R, Naughton-Treves L, et al. Wolf depredation on domestic animals in Wisconsin,1976-2000[J]. Wildlife Society Bulletin,2002,14:231-241.
    [133]Karanth K U. Nagarahole:limits and opportunities in wildlife conservation. Pages 189-202 in J.Terborgh, C. P.Van Schaik, M.Rao, and L. C.Davenport, editors. Making parks work: identifying key factors to implementing parks in the tropics.Island Press,Covelo, California.2002.
    [134]Bradley P, Misura K M S, Baker D. Toward high-resolution de novo structure prediction for small proteins[J]. Science,2005,309(5742):1868-1871.
    [135]Goodrich J M. and Miquelle D G. Translocation of problem Amur tigers Panthera tigris altaica to alleviate tiger-human conflicts. Oryx,2005,39(4):1-4.
    [136]Smith J L D and McDougal C. The contribution of variance in lifetime reproduction to effective population size in tigers. Conservation Biology,1991,5:484-489.
    [137]Goodrich D C, Keefer T O, Unkrich C L. Long-term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States[J]. Water Resources Research,2008,44(5): W05S04.
    [138]Mizutani F. Home range of leopards and their impact on livestock on Kenyan ranches[C]//Symposia of the Zoological Society of London.1993,65:425-439.
    [139]Mason J R, Shivik J A and Fall M W. Chemical repellents and other aversive strategies in predation management. Endangered Species Update,2001,18:175-181.
    [140]Shivik J A., Treves A and Callahan P. Nonlethal techniques for managing predation:primary and secondary repellents. Conservation Biology,2003.17:1531-1537.
    [141]Okello M M, D'amour D E. Agricultural expansion within Kimana electric fences and implications for natural resource conservation around Amboseli National Park, Kenya[J]. Journal of Arid Environments,2008,72(12):2179-2192.
    [142]Breitenmoser U, Aagst C, Landry J M C, Linnell J D C and Weber J MNonlethal techniques for reducing depredation[J]. People and Wildlife:Conflict or Coexistence,2005,4:49-71.
    [143]Khan M M H. Can domestic dogs save humans from tigers Panthera tigris?[J]. Oryx,2009, 43(01):44-47.
    [144]Sanyal P. Managing the man-eaters in the Sundarbans Tiger Reserve of India:a case study[J]. Tigers of the world:the biology, biopolitics, man agement, and conservation of an endangered species. New Jersey.1987.
    [145]Mukherjee S. Tiger human conflicts in Sundarban tiger reserve, West Bengal, India[J]. Tigerpaper.2003.
    [146]Mishra C, Madhusudan M D, Allen P and McCarthy T. The role of incentive programs in conserving the snow leopard. Conservation Biology,2003,17:1512-1520.
    [147]Johnson A, Vongkhamheng C, Hedemark M and Saithongdam T. Effects of human-carnivore conlict on tiger (panthera tigris) and prey populations in Lao PDR. Animal Conservation,2006,9: 421-430.
    [148]李冰.珲春自然保护区东北虎及猎物种群现状及保护研究[D].华东师范大学,2010.
    [149]Corbett J. The Man-eaters of Kumaon[J].1944.
    [150]Rabinowitz A. The density and behavior of large cats in a dry tropical forest mosaic in Huai Kha Khaeng Wildlife Sanctuary Thailand. Natural History Bulletin of the Siam Society,1989.37:235-251.
    [151]Hoogesteijn R H, Hoogesteijm A H and Mondolfi E. Jaguar predation and conservation:cattle mortality caused by felines on three ranches in the Venezuelan llanos. Symposium of the Zoological Society of London,1993,65:391-407.
    [152]Musiani M, Mamo C, Boitani L, Callaghan C, Gates C C, Mattei L, Visalberghi E, Breck S and Volpi G. Wolf depredation trends and the use of fladry barriers to protect livestock in western North America. Conservation Biology,2003,17:1538-1547.
    [153]Nyhus P J, Fisher H, Madden F and Osofsky S. Taking the bite out of wildlife damage:the challenges of wildlife compensation schemes. Conservation in Practice,2003,4(2):37-43.
    [154]Treves A, Plumptre A J, Hunter L T B, Ziwa J. Identifying a potential lion Panthera leo stronghold in Queen Elizabeth National Park, Uganda, and Pare National des Virunga, Democratic Republic of Congo Oryx,2009,43:658-658.
    [155]Bulte E H, Rondeau D. Research and Management Viewpoint:Why compensating wildlife damages may be bad for conservation[J]. Journal of Wildlife Management,2005,69(1):14-19.
    [156]Madhusudan M D. Living amidst large wildlife:livestock and crop depredation by large mammals in the interior villages of Bhadra Tiger Reserve, south India[J]. Environmental Management,2003,31(4):466-475.
    [157]Nyhus P J, Osofsky S A, Ferraro P. Bearing the costs of human-wildlife conflict:the challenges of compensation schemes[J].2005.
    [158]Starr C. Social benefit versus technological risk. What is our society willing to pay for safety?[J]. Science,1969.
    [159]Prokop P, Fancovicova J, Kubiatko M. Vampires are still alive:Slovakian students' attitudes toward bats[J]. Anthrozoos:A Multidisciplinary Journal of The Interactions of People & Animals, 2009,22(1):19-30.
    [160]Roskaft E, Bjerke T, Kaltenborn B, et al. Patterns of self-reported fear towards large carnivores among the Norwegian public[J]. Evolution and Human Behavior,2003,24(3):184-198.
    [161]Naughton-Treves L, Treves A. Socio-ecological factors shaping local support for wildlife:crop-raiding by elephants and other wildlife in Africa[J]. Conservation Biology,2005,9:252.
    [162]Hazzah L N. Living among lions (Panthera leo):coexistence or killing? Community attitudes towards conservation initiatives and the motivations behind lion killing in Kenyan Maasailand[D]. University of Wisconsin,2006.
    [163]Marker L L. Aspects of cheetah (Acinonyx jubatus) biology, ecology and conservation strategies on Namibian farmlands[M]. Oxford:University of Oxford.2002.
    [164]Skogen K, Mauz I, Krange O. Cry Wolf!:Narratives of Wolf Recovery in France and Norway[J]. Rural Sociology,2008,73(1):105-133.
    [165]McNeely J A, Sochaczewski P S. Soul of the tiger:searching for nature's answers in Southeast Asia[M]. University of Hawaii Press,1991.
    [166]马建章,孟宪林.美国野生动物管理历史简介[J].野生动物,1990,(03):3-6+16.
    [167]陈九屹,孙全辉,张逦嘉,等.吉林珲春自然保护区东北虎及其猎物资源调查[J].动物学杂志,2011,46(2):46-52.
    [168]Fritzen B. Fit fur die Spritze", Managementtraining fur Frauen im Non-Profit-Bereich dargestellt am Beispiel der Fortbildungsreihe der Pfadfinderinnenschaft St. Georg[D].,1995.
    [169]冯海潼.马鹿足迹链的调查方法[J].野生动物,1981,(04):33-34.
    [170]Wilson B G. Constructivist learning environments:Case studies in instructional design[J].1996.
    [171]Potvin F, Breton L. Testing 2 aerial survey techniques on deer in fenced enclosures-visual double-counts and thermal infrared sensing[J]. Wildlife Society Bulletin,2005,33(1):317-325.
    [172]Havens K J, Sharp E J. Using thermal imagery in the aerial survey of animals[J]. Wildlife Society Bulletin,1998:17-23.
    [173]Zaumyslova O Y. Ungulate population dynamics in the coastal zone of the Sikhote-Alin Reserve[C]//Results of protection and research of the Sikhote-Alin natural landscape. Papers presented at the International Science and Management Conference devoted to the 70th anniversay of the Sikhote-Alin State Reserve, Terney, Primorksiy Region.2005:191-202.
    [174]Cohen C, Castellani L. New perspectives on catch[J]. Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,1988,91(1):31.
    [175]Hatch S A. Statistical power for detecting trends with applications to seabird monitoring[J]. Biological Conservation,2003,111(3):317-329.
    [176]Seavy N E, Reynolds M H. Is statistical power to detect trends a good assessment of population monitoring?[J]. Biological Conservation,2007,140(1):187-191.
    [177]朴正吉,睢亚臣,崔志刚,张国利,王群,傅学魁.长白山自然保护区猫科动物种群数量变化及现状[J].动物学杂志,2011,(03):78-84.
    [178]Mapstone B D. Scalable decision rules for environmental impact studies:effect size, Type I, and Type II errors[J]. Ecological Applications,1995:401-410.
    [179]Gibbs J P and Eduard E. Program Monitor:Estimating the statistical power of ecological monitoring programs. Version 11.0.0.2010.
    [180]Gibbs J P, Ramirez A P. Program monitor:estimating the statistical power of ecological monitoring.Version 10.0.2006.
    [181]周世强,张和民.卧龙野生大熊猫种群监测期间的生境动态分析[J].云南环境科学,2000,19(08):43-45.
    [182]Martin R B, De Meulenaer T. Survey of the status of the leopard (Panthera pardus) in Sub-Saharan Africa[C]. Secretariat of the Convention on International Trade Endangered Species of Wild Fauna and Flora.1988.
    [183]Norton T T. Experimental myopia in tree shrews[J]. Myopia and the control of eye growth, 1990,34:178-199.
    [184]Efron B. Bootstrap methods:another look at the jackknife[J]. The annals of Statistics,1979,7(1): 1-26.
    [185]孔丹莉,丁元林.非参数bootstrap方法及其应用[J].数理医药学杂志,2006,19(3):232-233.
    [186]刘勇,岳冰,胡致强,张忠,丁树春,朱勇,丁群.一种用于车辆检测的自适应背景更新算法[A].中国仪器仪表学会电子测量与仪器分会.2011下一代自动测试系统学术研讨会论文集[C].中国仪器仪表学会电子测量与仪器分会:,2011:4.
    [187]Hui C, McGeoch M A and Warren M. A spatially explicit approach to estimating species occupancy and spatial correlation. Journal of Animal Ecology,2006,75:140-147.
    [188]Prasad S, Krishnaswamy J, Chellam R. Ruminant-mediated Seed Dispersal of an Economically Valuable Tree in Indian Dry Forests 1[J]. Biotropica,2006,38(5):679-682.
    [189]Adler PB, Raff D A, Laurenroth W K. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia,2001,128:465-479.
    [190]郑祥,鲍毅新,葛宝明.中国有蹄类栖息地选择研究进展[J].浙江师范大学学报(自然科学版),2004,(04):72-77.
    [191]Groom M J. Threats to biodiversity. In:Groom, M.J., Meffe, G.K., Carroll, C.R. (Eds.), Principles of conservation biology. Sinauer Associates, Sunderland, USA, pp.63-109.2006.
    [192]Mace G M, Balmford A. Patterns and processes in contemporary mammalian extinctions. In: Entwistle, A., Dunstone, N. (Eds.), Priorities for the Conservation of Mammalian Diversity:Has the Panda had its Day? Cambridge University Press, Cambridge, UK, pp.27-52.2000.
    [193]Baillie J E M, Hilton-Taylor, C, Stuart S. (Eds.) 2004 IUCN Red List of Threatened Species:A Global Species Assessment. IUCN, Gland, Switzerland.2004.
    [194]Srikosamatara S. Density and bio mass of large herbivores and other mammals in a dry tropical forest, western Thailand. Journal of Tropical Ecology,1993,9" 33-43.
    [195]张敏等.辽宁省原麝资源现状及管理措施.辽宁林业科技,2005,3:60-62.
    [196]吴建平,张明海,陶金.黑龙江省原麝资源现状及保护.野生动物,2003,1:25.
    [197]Srikosamatara S, Suteethorn V. Populations of Gaur and Banteng and their management in Thailand[J]. Natural History Bulletin of the Siam Society,1995,43:55-83.
    [198]Steinmetz R. Gaur (Bos gaurus) and banteng (B. javanicus) in the lowland forest mosaic of Xe Pian Protected Area,Lao PDR:abundance, habitat use, and conservation Mammalia,68 (2004), pp. 141-157.2001.
    [199]Lynam A J, Round P D, Brockelman W Y. Status of Birds and Large Mammals in Thailand's Dong Phayayen-Khao Yai forest Complex. Biodiversity Research and Training Program (BRT) and Wildlife Conservation Society, Bangkok.2006.
    [200]赵文双,王可有,张树浩.辽宁省原麝资源现状及保护管理对策.野生动物,2001,2:45-46.
    [201]毕俊怀.内蒙古鹿科动物分布现状与资源研究.内蒙古师范大学学报2001,1:52-56.
    [202]Pattanavibool A, Dearden P. Fragmentation and wildlife in montane evergreen forests, northern Thailand. Biological Conservation,2002,107:155-164.
    [203]Tungittiplakorn W, Dearden P. Hunting and wildlife use in some Hmong communities in northern Thailand. Natural History Bulletin of the Siam Society,2002,50:57-73.
    [204]Gibbs J P, Droege S, Eagle P. Monitoring populations of plants and animals. BioScience 1998, 48:935-940.
    [205]Muchaal P K, Ngandjui G. Impact of village hunting on wildlife populations in the western Dja Reserve, Cameroon. Conservation Bio logy,1999,13:385-396.
    [206]Bennett E L, Nyaol A J, Sompud J. Saving Borneo's bacon:the sustainability of hunting in Sarawak and Sabah. In:Robinson, J.G., Bennett, E.L. (Eds.), Hunting for sustainability in tropical forests. Columbia University Press, New York, pp.305-324.2000.
    [207]Jenkins R K B, Corti G R, Fanning E, Roettcher K. Management implications of antelope habitat use in the Kilombero Valley, Tanzania. Oryx,2002,36:161-169.
    [208]Hines J E, MacKenzie D I. RESENCE, version 2.0.2004.
    [209]Caughley G. Analysis of vertebrate populations. John Wiley, New York.1977.
    [210]Thompson W L, White G C, Go wan C. Monitoring Vertebrate Populations. Academic Press, San Diego, USA.1998.
    [211]Elzinga C L, Saltzer D W, Wiloughby J W, Gibbs J P. Monitoring Plant and Animal Populations. Blackwell Science, Malden, Massachusetts, USA.2001.
    [212]Quinn G P, Keough M J. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.2002.
    [213]Burnham K P, Anderson D R, Laake J L. Estimation of density from line transect sampling of biological populations [J]. Wildlife monographs,1980 (72):3-202.
    [214]邢林,宋延龄,罗宁,艾热提.哈密地区天山马鹿种群数量及结构.生物多样性研究进展.北京:中国科学技术技术出版社.1995.
    [215]高行宜,姚军.北天山喀拉乌成山(乌鲁木齐南山)的马鹿资源进行了调查.地方病通报,2007,22(2):6-8.
    [216]Coulson T, Guinness F, Pemberton J, Clutton-Brock T. The demographic consequences of releasing a population of red deer from culling. Ecology,2004,85:411-422.
    [217]Robinson J G, Redford KH. Intrinsic rate of natural increase in Neotropical forest mammals: relationship to phylogeny and diet. Oecologia,1986,68,516-520.
    [218]Robert S\, Wanlop C, Naret S, Erb C, Montri K. Population recovery patterns of Southeast Asian ungulates after poaching. Biological Conservation,2010,14342-51.
    [219]Choquenot D, Dexter N. Spatial variation in food limitation:the effects of foraging constraints on the distribution and abundance of feral pigs in the rangelands. In:Floyd, R.B., Sheppard, A.W., De Barro, P.J. (Eds.), Frontiers of Population Ecology. CSIRO Publishing, Collingwood, Australia, pp.531-546.1996.
    [220]Mysterud A, Coulson T, Stenseth N C. The role of males in the dynamics of ungulate populations. Journal of Animal Ecology,2002,71:907-915.
    [221]Milner J M, Nilsen E B, Andreassen H P. Demographic side effects of selective hunting in ungulates and carnivores. Conservation Biology,2007,21:36-47.
    [222]Milner-Gulland E J, Bennett E L. Wild meat:the bigger picture. Trends in Ecology and Evolution,2003,18:351-357.
    [223]Miquelle D G. Are moose mice? The function of scent urination in moose. American Naturalist, 1991,138:460-477.
    [224]Johansson A, Liberg O. Functional aspects of marking behavior by male roe deer (Capreolus capreolus). Journal of Mammalogy,1996,77:558-567.
    [225]McComb K E. Female choice for high roaring rates in red deer, Cervus elaphus. Animal Behavior,1991,41:79-88.
    [226]Komers P E, Birgersson B, Ekvall K. Timing of estrus in fallow deer is adjusted to the age of available mates[J]. The American Naturalist,1999,153(4):431-436.
    [227]Aung M, McShea W J, Htung S, Than A, Soe T M, Monfort S, Wemmer C. Ecology and social organization of a tropical deer (Cervus eldi thamin). Journal of Mammalogy,2001,82:836-847.
    [228]张恩迪,戴尔米奎尔,王天厚,康蔼黎.中国野生东北虎恢复进展和展望.北京:中国林业出版社.2005.
    [229]Smirnov E N, Miquelle D G. Population dynamics of the Amur tiger in Sikhote-AlinState biosphere reserve//Seidensticker J, Christie S, Jackson P, eds. Riding the Tiger:Tiger Conservation in Human-dominated Landscapes. Cambridge:Cambridge University Press,61-70.1999:
    [230]Yudakov A G, Nikolae IG. Ecology of the Amur Tiger. Winter Observations during 1970-1973 in the Western Section of Central Sikhote-Alin. Moscow:Nauka Press.1987.
    [231]张常智.黑龙江省完达山地区东北虎猎物种群现状及东北虎生境利用研究[D].哈尔滨:东北林业大学.2007
    [232]马逸清.黑龙江省兽类志.哈尔滨:黑龙江科学技术出版社.1986.
    [233]Schaller G B. The Serengeti Lion. Chicago:University of Chicago Press.1972.
    [234]刘群秀.黑龙江省完达山林区马鹿种群生存力分析[D].哈尔滨:东北林业大学,2006.
    [235]周绍春,孙海义,张明海,卢向东,杨娇,李林.黑龙江省东北虎分布区域及其数量动态.兽类学报,2008,28(2):165-173.
    [236]乌勒斯.涉猎台上的风景.北京:中国林业出版社.2007.
    [237]Karanth U. A View from the Machan-How Science can Save the Fragile Predator. Permanent Black. India:New Delhi.2006.
    [238]Morin P A, Woodruff D S. Noninvasive genotyping for vertebrate conservation[J]. Molecular genetic approaches in conservation,1996:298-313.
    [239]张常智,张明海,姜广顺.中国野生东北虎数量监测方法有效性评估.生态学报,2012,32(19):5943-5952.
    [240]David S J L, McDougal C, Miquelle D. Scent marking in free-ranging tigers, Panthera tigris [J]. Animal Behaviour,1989,37:1-10.
    [241]Smith J L D. The role of dispersal in structuring the Chitwan tiger population[J]. Behaviour, 1993:165-195.
    [242]Sankhala K. Tigers in the wild-their distribution and habitat preferences[C]//First international symposium on the management and breeding of the tiger, Int. Tiger Studb., Leipzig, Germany. 1979,56:43-59.
    [243]Karanth K U Tigers in India:A critical review of field censuses.R.L Tilson, U.S Seal (Eds.), Tigers of the World:The Biology, Biopolitics, Management and Conservation of an Endangered Species, Noyes Publications, Park Ridge, New Jersey:18-33.1987.
    [244]Faust T, Tilson R. Estimating how many tigers are in Sumatra:a beginning[J]. Sumatran Tiger Population and Habitat Viability Analysis Report. Jakarta:Indonesian Directorate of Forest Protection and Nature Conservation and IUCN/SSC Conservation Breeding Specialist Group. Apple Valley, Minnesota.1994.
    [245]Matyushkin D P. Functional Cellular Interactions in the Neuromuscular Apparatus[J].1980.
    [246]Taylor B L, Gerrodette T. The uses of statistical power in conservation biology:the vaquita and northern spotted owl[J]. Conservation biology,1993,7(3):489-500.
    [247]Lynam A J, Rabinowitz A, Myint T, et al. Estimating abundance with sparse data:tigers in northern Myanmar[J]. Population ecology,2009,51(1):115-121.
    [248]Miquelle D G., Pikunov Y M, Dunishenko V V, Aramilev I G., Nikolaev V K, Abramov E N, Smirnov G P, Salkina I V, Seryodkin V V, Gapanov P V,Fomenko M N, Litvinov A V, Kostyria V G, Yudin V G, Korkisko K G and Murzin A A.2005 Amur tiger census. Cat News,2007,46,11-14.
    [249]Miquelle D G, Pikunov D G. Status of the Amur tiger and Far Eastern leopard[J]. The Russian Far East:A reference guide for conservation and development. McKinleyville, California:Daniel and Daniel Publishers,2003:106-109.
    [250]Sanderson M, Zobel J. Information retrieval system evaluation:effort, sensitivity, and reliability[C]//Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval. ACM,2005,162-169.
    [251]Seidensticker J. Large carnivores and the consequences of habitat insularization:ecology and conservation of tigers in Indonesia and Bangladesh[J].1986.
    [252]Fuller T K, Sievert P R. Carnivore demography and the consequences of changes in prey availability[J].2001.
    [253]Khorozyan I. Research and conservation of the Persian leopard (Panthera pardus saxicolor) in Bamu national park, Fars province, Iran[J]. Yerevan, Armenia,2008.
    [254]McNab B K. Basal rate of metabolism, body size, and food habits in the Order Carnivora, In Carnivore behavior, ecology and evolution ed. J.L. Gittleman, pp.335-354. Comstock Associates, Ithaca, New York.1989.
    [255]White C R, Seymour R S. Allometric scaling of mammalian metabolism. Journal of Experimental Biology,2005,208:1611-1619.
    [256]Carbone C, Teacher A, Rowcliffe J M. The costs of carnivory. Plos Biology,2007,5:363-368.
    [257]Emmons L. Body size and feeding tactics. P.62 in GREAT CATS, J.Seidensticker, S. Lumpkin eds. Emmaus, PA, Rodale Press,1991.
    [258]Seidensticker J. Tigers:Top carnivores and controlling processes in Asian forests. In Wikramanayake E., E. Dinerstein, C. Loucks, D. Olson, J. Morrison, J. Lamoreux, M. McKnight, P. Hedao (eds.) Terrestrial ecoregions of the IndoPacific:A conservation assessment. Island Press, Washington DC. Pp:56-59.2002.
    [259]Uma R, Richard G C, Neil W P. Tiger decline caused by the reduction of larger ungulate prey: evidence from a study of leopard diets in southern India. Biological Conservation,1999,89(2): 113-120.
    [260]Kawanishi K, Sunquist M E. Conservation status of tigers in a primary rainforest of peninsular Malaysia. Biological Conservation,2004,120:329-344.
    [261]Karanth K U, Nichols J D. Estimation of tiger densities in India using photographic captures and recaptures[J]. Ecology,1998,79(8):2852-2862.
    [262]Karanth KU and Nichols J D. Ecological status and conservation of tigers in India. Final technical report to the Division of International Conservation, US Fish and Wildlife Service, Washington DC and Wildlife Conservation Society, New York, Center for Wildlife Studies, Banglore, India,2000.
    [263]O'Brien T G, Kinnaird M F, Wibisono H T. Crouching tigers, hidden prey:Sumatran tiger and prey populations in a tropical forest landscape[J]. Animal Conservation,2003,6(02):131-139.
    [264]Wang S W, Macdonald D W. The use of camera traps for estimating tiger and leopard populations in the high altitude mountains of Bhutan[J]. Biological Conservation,2009,142(3): 606-613.
    [265]Abishek M, Eun Y J, Basudeb B, Douglas B W. Dissecting microbiological systems using materials science, Trends in Microbiology, Volume 17, Issue 3, March 2009, Pages 100-108, ISSN 0966-842X,10.1016/j.tim.2008.11.007.
    [266]Schaller G G. The deer and the tiger:a study of wildlife in India. Chicago, IL:University of Chicago Press,1967.
    [267]Karanth K U and Sunquist M E. Population structure, density and biomass of large herbivores in the tropical forests of Nagarahole, India. Journal of Tropical Ecology,1992,8:21-35.
    [268]Medway L. The wild pig remains from the west Mouth, Niah Cave. Sarawak Museum Journal,1978,-25 (46NS):21-33.
    [269]Seidensticker J. On the ecological separation between tigers and leopards[J]. Biotropica,1976: 225-234.
    [270]Tamang K M. Population characteristics of the tiger and its prey[J]. Unpubl. Report to DNPWC, Kathmandu.1979.
    [271]Prater S H. The book of Indian animals. Bombay Natural History Society[J].1971.
    [272]Eisenberg J F, Seidensticker J. Ungulates in southern Asia:a consideration of biomass estimates for selected habitats[J]. Biological Conservation,1976,10(4):293-308.
    [273]Karanth K U, Sunquist M E. Prey selection by tiger, leopard and dhole in tropical forests[J]. Journal of Animal Ecology,1995:439-450.
    [274]Bagchi S, Goyal S P, Sankar K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forest in western India[J]. Journal of Zoology,2003,260(03):285-290.
    [275]Ginsberg J, Miquelle D, Zhang E D. Coordination of efforts to survey ungulate across the range of the Amur tiger. Final Report US Fisheries and Wildlife Service.2002.
    [276]Frank S. Koppelman, Vaneet Sethi, Chieh-hua Wen. Alternative nested logit models:a response to comments by Andrew Daly on an earlier paper of Frank Koppelman and Chieh-hua Wen. Transportation Research Part B:Methodological,2001,8(35):725-729.
    [277]国庆喜,王化儒,高梅香.景观破碎化对东北虎主要猎物种群动态影响的模拟[J].生态学报,2010,(01):15-23.
    [278]刘群秀,马建章,谢绪昌,张明海.黑龙江完达山东部林区偷猎对野生马鹿种群的影响[J].野生动物,2007,(02):7-10.
    [279]Mishra C. High altitude survival:conflicts between pastoralism and wildlife in the Trans-Himalaya. Ph.D. dissertation. Wageningen University, Wageningen, The Netherlands.2001.
    [280]Conforti V. Cascelli A. Local perceptions of jaguars (Panthera onca) and pumas (Puma concolor) in the Igua u National Park area, south Brazil[J]. Conservation. Biology,2003,111:215-221.
    [281]刘宇.吉林珲春自然保护区冬季野生东北虎(Panthera tigris altaica)生态学问题研究[D]. 华东师范大学,2005.
    [282]李冰,张恩迪,刘忠宝.吉林珲春自然保护区东北虎捕食家畜研究(英文)[J].兽类学报,2009,(03):231-238.
    [283]Miller F L, Gunn A, Broughton E. Surplus killing as exemplified by wolf predation on newborn caribou[J]. Canadian Journal of Zoology,1985,63(2):295-300.
    [284]Hayes R D, Baer A M, Wotschikowsky U, et al. Kill rate by wolves on moose in the Yukon[J]. Canadian Journal of Zoology,2000,78(1):49-59.
    [285]Berg R T, Butterfield R M. New concepts of cattle growth[M]. Sydney University Press.,1976.
    [286]Butterfield R M. New concept of sheep growth[J].1988.
    [287]Kerley L L, Goodrich J M, Miquelle D G, Smirnov E N, Quigley H B and Hornocker M G. Effects of roads and human disturbance on Amur tigers. Conservation Bio logy,2002,.16(1):97-108.
    [288]Miquelle D, Nikolaev I, Goodrich J, Litvinov B, Smirnov E and Suvorov E. Searching for the co-existence recipe:a case study of conflicts between people and tigers in the Russian Far East. In People and Wildlife:Conflict or Co-existence? (eds R. Woodroffe & S. Thirgood), pp.305-322. Cambridge University Press, Cambridge, UK.2005.
    [289]Ramakrishnan U, Coss R G and Pelkey N W. Tiger decline caused by the reduction of large ungulate prey:evidence from a study of leopard diets in southern India. Biological Conservation, 1999.,89:113-120.
    [290]Saberwal V K, Gibbs J P, Chellam R. Lion-Human Conflict in the Gir Forest, India[J]. Conservation Biology,1994,8(2):501-507.
    [291]Seidensticker J, Christie S, Jackson P. Introducing the tiger[J]. Riding the Tiger:Tiger conservation in human dominated landscapes.1999
    [292]Zohary D, Tchernov E, Horwitz L. The role of unconscious selection in the domestication of sheep and goats[J]. Journal of Zoology,1998,245(02):129-135.
    [293]Landa A, Gudvangen K, Swenson J E and Roskaft E. Factors associated with wolverine (Gulo gulo) predation on domestic sheep. Journal of Applied Ecology,1999,36:963-973.
    [294]Wang S W, Macdonald D W. Livestock predation by carnivores in Jigme Singye Wangchuck National Park, Bhutan[J]. Biological Conservation,2006,129(4):558-565.
    [295]Goodrich J M, Seryodkin I, Miquelle D G, et al. Conflicts between Amur (Siberian) tigers and humans in the Russian Far East[J]. Biological Conservation,2011,144(1):584-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700