用户名: 密码: 验证码:
SWAT模型运行结构及文件系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SWAT(Soil and Water Assessment Tool)模型是一个流域尺度、基于物理基础的分布式水文模型,可以模拟流域内部的多种地理过程,如产水、产沙、养分和农药的迁移与转化,并预测不同的管理措施对流域过程的影响。SWAT有其特定的应用领域和尺度限制,在实际应用中需要采取多模型协作的方法;另一方面,很多应用需要将SWAT模型作为定量评价工具集成到特定的流域管理系统中,而由于SWAT模型空间运行单元采用多层次组织,模型运行需要的基础数据结构复杂,类型多样,集成应用涉及问题多、难度大。解决以上问题的较好方法就是多模型的协作和开发通用的模型集成方法,而面临的瓶颈问题就是模型集成中跨GIS系统平台的输入数据组织和处理的通用方法。本文就这些问题进行了探讨,主要研究成果如下:
     1.详细阐述了SWAT模型的运行结构组织形式,结合实例给出了控制模型运行的配置文件的写法。实现了不同地理条件下各种水文过程的模拟,包括陆相水文循环、河道演算、水库演算、点源输入等。验证结果表明,通过修改配置文件调用不同的功能模块的方法可以实现对SWAT模型运行过程的控制。
     2.在Visual Studio.NET2005环境下采用C#语言开发了一套用于定制SWAT模型运行文件的动态链接库程序。利用面向对象技术,把SWAT模型的写输入文件操作封装在具体的实现类中,最后生成了40多个不同功能的类。数据库的相关操作使用了ADO.NET技术,采用了异常处理机制和可重用的相关技术。利用编译生成的DLL文件,可以实现模型输入数据定制处理和组织。
SWAT (Soil and Water Assessment Tool) is a physically based, distributed non-point pollution model system developed by USDA. It can be used modeling multiple geographic processes as well as predicting the impacts of different management practices on water, sediment, agricultural chemical yields and pesticide fate in a river basin scale. SWAT model was initially developed in modeling the comprehensive impacts of management practices in a large basin, it also has some limitations in application in small scales and some certain application fields. So it has been widely used in cooperating with other models or integrated as a quantitative component into a certain Basin Management System. However, running of the model varies among different input data types organized in different spatial descretization units and requires a complex set of data. The application process is also problematic and difficult. A good way to solve these problems is to integrate multiple models and develop a universal way for model integration. In this method, the bottleneck is to organize and manipulate the input data files in a proper way that can cross the different GIS platforms in model integration. The main contents and research results are as follows:
     1. The inner running structure of SWAT was discussed based on the analysis of its components, and the core configuration file using for running model was presented with an example. It simulated different geographical conditions of the various hydrological process simulations, including the land phase of the hydrologic cycle, channel flood routing, reservoir routing, point-source data input, and so on. The results showed that by modifying the configuration file called functional modules of different ways can control the SWAT model operation process.
     2. In Visual Studio.NET2005 environment using C # language developed a dynamic link library files procedure which can custom SWAT model running files. Use object-oriented technology, the SWAT model written input file operation was encapsulated in different classes. As a result, there were more than 40 different functional classes gendered. The operation of the database related to the use of the ADO.NET technology, the exception handling mechanism and reusable technology were involved. By the use of compiler-generated DLL files, can be customized to achieve model input data processing and organization.
引文
[1]Neitsch S L,Arnold J G,Kiniry J R,et al.Soil and Water Assessment Tool Theoretical Documentation Version 2000[M].2002.
    [2]Neitsch S L,Arnold J G,Kiniry J R,et ai.Soil and Water Assessment Tool Theretical Documentation Version 2005[M].2005.
    [3]Neitsch S L,Arnold J G,Kiniry J R,et al.Soil and Water Assessment Tool Users' Manual Version2000[M].2002.
    [4]USEPA.BASINS Version3.1 Users' Manual[M].2004.
    [5]Neitsch S L.Differences between SWAT99.2 and SWAT2000[M].2001.
    [6]Fitzhugh T W,Mackay D S.Impact of subwatershed partitioning on modeled source- and transport-limited sediment yields in an agricultural nonpoint source pollution nodel[J].Journal Of Soil And Water Conservation.2001,56(2):137-143.
    [7]Abel S,Hetrick J,Lin J,et al.MODEL EVALUATION PROCESS.1998.http://www.epa.gov/scipoly/sap/1998/j uly/1part5.pdf.
    [8]Aronld J G,Muttiah R S,Sriniavsan R,et al.Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin[J].Journal Of Hydrology.2000,227:21-40.
    [9]Tripathi M P,Panda R K,Raghuwanshi N S.Identification and Prioritisation of Critical Sub-watersheds for Soil Conservation Management using the SWAT model[J].Biosystems Engineering.2003,85(3):365-379.
    [10]Grizzetti G,Bouraoui F,Granlund K,et al.Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed(Finland)using the SWAT mnodel[J].Ecological Modelling.2003,169:25-38.
    [11]Pacheco P,Farrow D,Muttiah R,et al.Development of Land-based Pollution Sources Inventory for the Gulf of Maine Regional Watershed.1996.http://www.brc.tamus.edu/srin/projects/noaa.html.
    [12]H.george Ward J,Benaman J.Models for TMDL application in TEXAS watercourses:screening and model review.1999.http://www.crwr.utexas.edu/reports/pdf/1999/rpt99-7.pdf.
    [13]李硕.GIS和遥感辅助下流域模拟的空间参数化与离散化研究与应用[D].南京:南京师范大学,2002.
    [14]张雪松,郝芳华,杨志峰.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究.2003,10(4):38-42.
    [15]胡远安,程声通,贾海峰.非点源模型中的水文模拟-以SWAT模型在芦溪小流域的应用为例[J].环境科学研究.2003,16(5):30-36.
    [16]宋艳华,马金辉.SWAT模型辅助下的生态恢复水文响应-以陇西黄土高原华家岭南河流域为例[J].生态学报.2008,28(2):636-644.
    [17]黄清华,张万昌.SWAT分布式水义模型在黑河干流山区流域的改进及应用[J].南京林业大学学报(自然科学版).2004,28(2):22-26.
    [18]宋艳华,马金辉.SWAT模型在陇两黄土高原地区的适用性研究[J].干旱区地理.2007,30(6):933-938.
    [19]刘吉峰,霍世青,李世杰,et aI.SWAT模型在青海湖布哈河流域径流变化成因分析中的应用[J].河海大学学报(自然科学版).2007,35(2):159-163.
    [20]王林,张明旭,陈兴伟.基于SWAT模型的晋江西溪流域径流模拟[J].亚热带资源与环境学报.2007,2(1):28-33.
    [21]赖格英,十革.太湖流域营养物质输移的模拟评估研究[J].河海大学学报(自然科学版).2007,35(2):140-144
    [22]Singh A,Rudra R,Yang W.Adapting SWAT for Riparian Wetlands in an Ontario Watershed[C].2005.
    [23]Bruggeman A,van der Meijden G.Assessment of Water Use in a Small Watershed in Northern Syria,Using SWAT[C].2005.
    [24]Macdonald D,Kiniry J,Arnold J,et al.Developing Parameters to Simulate Trees with SWAT[C].2005.
    [25]Theresa,Lu Q.SDA SWAT Edition:Efficient Spatial Data Analysis & Visulization for SWAT Result[C].2005.
    [26]P.Cau,E.Lorrai.A Decision Support System Based on the SWAT Model for the Sardinian Water Authorities[C].2005.
    [27]Bazzani G M.DSIRR:A DSS for an Ecnomic and Environment Analysis of Irrigation and Water Policy[C].2003.
    [28]Gassman P W,Campbell T,Secchi S,et al.The i_SWAT Software Package:A Tool for Supporting SWAT Watershed Applications[C].2005.
    [29]Singh V P.水文系统-流域模拟[M].郑州:黄河水利出版社,2000.
    [30]Freeze P A,Harlan R L.Blue print for a physically-based digital simulated hydrologic response mode[J].Hrdro.Sci.1969,9:237-258.
    [31]李硕,曾志远,张运生.环境模拟和GIS集成的初步研究[J].冰川冻土.2002,24(2):134-141.
    [32]姚长青,杨志峰,赵彦伟.流域模拟模型与GIS集成研究现状与展掣[J].水土保持研究.2005,12(6):138-141.
    [33]朱雪芹,潘世兵.张建立.流域水文模型和GIS集成技术研究现状与展望[J].地理与地理信息科学. 2003,19(3):10-13.
    [34]Neitsch S L,Arnold J G,Kiniry J R,et al.Soil and Water Assessment Tool Theoretical Documentation Version 2000[M].2002.
    [35]Di Luzio M,Srinivasan R,Arnold J G,et al.ArcView Interface fro SWAT2000 User's Guide[M].2002.
    [36]Soil Conservation Service.Urban Hydrology for small watershed[S].U.S.,USDA,1975.
    [37]Hargreaves G H,Samani Z A.Reference crop evaportranpiration from temperture.[J].Applied Engr.Agric.1985,1:96-99.
    [38]Priestley C H,Taylor R J.On the assessment of surface heat flux and evaporation using large-scal parameters.[J].Weather Rev.1972,100:81-92.
    [39]Monteith J L.Evaporation and the environment.[C].London U.K.:Cambridge Univ.Press,1965.
    [40]Service U S C.National Engineering Handbook Section 4 Hydrology,Chapter 19[M].1983.
    [41]Wischmeier W H,Smith D D.Predicting rainfall losses:A guide to conservation planning[M].USDA Agricultural Handbook No.537 U.S.Gov.Print,1978.
    [42]Williams J R,Nicks A D,Amold J G.Simulator for water resources in rural basins[J].Journal of Hydraulic Engineering.1985,111(6):970-986.
    [43]Williams J R,Hann R W.Optimal operation of large agricultural watersheds with water quality constraints[R].Texas Water Resources Institute,Texas A&M Univ.,1978.
    [44]Leonard R A,Knisel W G,Still D A.GLEAMS:Groundwater Loading Effects of Agricultural Management Systems[J].Transactions of the American Society of Agricultural Engineers.1987,30(5):1403-1418.
    [45]Williams J R.Flood Routing with Variable Travel Time Or Variable Storage Coefficients Trans[J].ASAE.1969,12(I):100-103.
    [46]Bagnold R A.Bedload transport in natural rivers[J].Water Resources Res.1977,3(2):303-312.
    [47]Williams J R.SPNM,a model for predicting sediment,phosphorus,and nitrogen yields from agricultural basins[J].Water Resour.Bull.1980,16(5):843-848.
    [48]Thomann R V,Mueller J A.Principles of Surface Water Quality Modeling and Control[M].New York:1987.
    [49]Chapra S C.Surface water-quality modeling[M].Boston:1997.
    [50]芮孝芳,蒋孝成,张金存.流域水文模型的发展[J].水文.2006,26(3):22-26.
    [5l]李硕,孙波,曾志远,et al.遥感、GlS辅助下流域空间离散化方法研究[J].土壤学报.2004,41(2):183-190.
    [52]Neitsch S L,Arnold J G,Kiniry J R,et al.Soil and Water Assessment Tool.Theretical Documentation Version 2005[M].2005.
    [53]Neitsch S L,Arnold J G,Kiniry J R,et al.Soil and Water Assessment Tool Input/Output File Documentation Version 2005[M].2004.
    [54]Neitshch S L.Differences between SWAT2000 and SWAT2005[M].2005.
    [55]Chen Z,Huang G H,Chakma A.Integrated environmental risk assessment through a GIS-based decision-support system[C].1998.
    [56]Pickett S L,Damson C.Air Quality Analysis Using AcrViewGIS and CAL3QHC[C].2001.
    [57]刘学,王兴李,王光谦.基于GIS的泥石流过程模拟三维可视化[J].水科学进展.1999,10(4):388-392.
    [58]赵玲,赵东至,张丰收.基于GIS的海域环境质量评价模型研究[J].遥感技术与应用.1998,13(3):61-65.
    [59]林年丰,汤洁.GIS与环境模拟在环境地学研究中的作用和意义[J].土壤与环境.2000,9(4):259-262.
    [60]Hoffman K,Gabriel J..NET Framework高级编程[M].北京:清华大学出版社,2002.
    [61]Prosise J.Microsoft.NET程序设计技术内幕[M].北京:清华大学出版社,2002.
    [62]范辉,刘惊雷,傅铭.Visual C++6.0程序设计简明教程[M].北京:高等教育出版社,2001.
    [63]Gamma E,Helm R,Johnson R,et al.设计模式:可复用面向对象软件的基础[M].北京:机械工业出版社,2000.
    [64]Hunt A,Thomas D.单元测试之道C#版-使用NUnit[M].电了工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700