用户名: 密码: 验证码:
电力需求侧响应的效益评估与特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力工业的改革、发展,以及社会环境的不断演变,电力需求侧(即用户)的作用正在被逐步得到重新的认识,尤其是化石燃料的枯竭、环保形势的严峻,以及大规模可再生能源发电等并入电网趋势的推进,使电力系统在维持电压、频率质量前提下,发电与需求的实时平衡面临困境,使维持这一平衡可使用的资源越显匮乏。由此,如何将需求侧纳入到电力系统的主动调控之中,以促使电力系统安全、可靠、经济的运行,正在成为业界的共识。因此,在这一背景下,急切需要回答需求侧响应机制与效果的若干问题。如:在市场机制下,发电侧与需求侧间平衡的经济规律,需求侧变动的经济效益指标,以及需求侧变动带来的效益评估等;需求侧大比重的某类别负荷或某行业负荷的用电规律;需求响应作用下的用电行为规律;以及电价制定中,目标群体的聚类及其特征的抽取,以及各类别下电价实施效果评估等问题。这些问题的研究,可为充分挖掘需求侧资源,发挥需求侧在电网运行中的良性互动作用提供理论指导和技术支持。
     本文在总结电力需求侧研究成果的基础上,以需求侧响应特性为核心,围绕与发电侧互动、降温负荷规律、阶梯电价和分时电价激励效果等若干角度,依据优化数学理论、统计回归理论、数据挖掘技术,开展了富有成效的研究,其创新性的研究工作和成果体现如下:
     (1)考虑机组启停的需求响应效益评估。需求侧响应产生效益的本质是发电侧整体的效率,只有使发电侧效率提高的需求侧响应才是需要的。针对目前需求响应效益评估中不考虑响应后机组启停状态发生改变所存在的问题,以日前机组启停决策问题为基础,建立了考虑需求侧直接参与市场的电力库模型,依据拉格朗日松弛法对该模型予以求解。依此,从综合效益和边际效益两方面探讨需求转移可能引起的机组启停状态的改变,以及电价的变动,同时分析了考虑机组启停后,系统整体和各市场参与者的效益变化,以及效益的再分配机制,揭示了机组启停变化可能引起新的电价尖峰对效益评估的影响,并依据边际效益,分析了用户需求响应参与程度不同时,用户侧与发电侧利益的变化规律,指出需求响应的实施应兼顾发电侧和用户侧。
     (2)考虑非气象因素的夏季降温负荷回归分析。季节性变化会导致需求侧用电规律的变化,这一变化中存在大量可实施需求响应的成分,而这一成分又与用电者的状况构成紧密的联系。针对目前电网夏季降温负荷变化规律研究中,仅关注气温等自然环境因素的影响,从而导致模型对降温负荷规律的反映普适性不强的问题,对降温负荷关于温度因子的回归模型做进一步深入分析,从中揭示出非气象因素,即经济状况和发达程度,对降温负荷的关键影响。由此,提出考虑经济水平因子和区位电能消费倾向因子等概念下的夏季降温负荷模型,从而提高了模型在时域与地域上的广泛适用性。该模型应用于地区电网,可为地区电网挖掘降温负荷的需求响应资源,有针对性地制定迎峰度夏需求响应措施提供科学依据。
     (3)分时电价下用户响应行为的模型与算法。分时电价是国内外都在采用的需求响应措施,也是电力市场化的根本。因此,在若干用户中,分时电价的效果究竟如何,用电行为受分时电价影响的规律是什么等问题急待需要解决。由此,在分时电价实施的背景下,基于电力用户响应行为的大量历史数据,针对如何挖掘其中的用户用电响应规律问题,建立分时电价下电力用户响应行为规律的模型与算法,解决了回归模型输入与输出属性的确定问题,以及含丰富数据信息的训练样本的构建问题,从而实现通过支持向量机回归对该规律的挖掘,取得较好效果。
     (4)基于用户聚类的阶梯电价制定方法。阶梯电价是引导不同收入的居民群体(实践中以不同月用电量代表)合理用电,从而促进能源节约的电价政策。在阶梯电价制定中,分档的数量以及各档基准电量的合理确定是核心问题,它关系到如何在尽可能方便操作的情况下,找准目标群体并施以合理激励。基于居民月用电量曲线,本文应用自组织映射(SOM)聚类算法建立了一种居民月用电量聚类分析方法,能够分类把握居民月用电量特征规律,实现了对居民用电阶梯电价分档数及档基准电量的准确提取。本文得出的档基准电量反映出,居民用电存在明显的城乡差异与地区差异,能够为阶梯电价的进一步实施提供了重要参考。
     (5)在地区电网中,高耗能行业的负荷在总负荷中占比重很大,它们的用电规律是否能准确把握,实施需求响应措施后效果如何,对于整个地区电网的需求侧管理是至关重要的。在地区电网用电信息采集系统广泛普及的条件下,积累了大量行业及行业中用户个体的负荷信息历史记录,对这样数据进行分析是发现行业用电规律与响应规律的重要途径。本文运用频域分解方法和聚类算法,分别对6类高耗能行业用电的规律以及实施分时电价的效果进行讨论,实现了对行业用电规律与响应规律的准确把握,这将为今后有针对性地对行业负荷进行调控奠定良好的基础。
     总之,本文课题是新形势下电力需求侧研究中亟待解决的问题。这些问题的深入探讨和研究,可以使需求侧行为规律把握更清晰,需求侧作用效果更显著,需求侧激励机制的决策更有的放矢。
With the revolution and development of electricity industry and the evolving social environment, the effect of electricity demand side (namely consumers) is gradually re-recognized. Especially, the depletion of fossil fuels, severe pressure on environment, and the large scale integration of renewable generation into power grid make the real time balance between supply and demand becomes more difficult on the premise of the system voltage and frequency quality requirements. The available resources which can be used to keep the balance become scarcer. In order to keep the safe, reliable and economical operation of power systems, it is very necessary to involve the demand side into the active management of the power system and this has already become a consensus of the industry. Therefore, under this background it is eager to solve the problems related to demand response effect and mechanism. These problems include economic rules of balance between supply and demand under the market mechanism, profit of demand side variation, assessment of the profit of the demand side variation, electricity consumption regularity of some large loads belongs to the same category or industry, variation principle of demand under demand response mechanism, clustering of consumers' roup, and the assessment of implementation effect of various electricity price models, etc. The research on these problems can provide theoretical guide and technical support for exploiting demand side resources. They are also helpful when understanding the positive interaction between demand and power grid operation. Based on the existing research on electricity demand, the characteristics of demand response are emphasized. This thesis studies the positive interaction between demand side and generating units, characteristics of cooling loads, assessment of implementation effect of time-of-use electricity price model and multi-step electricity model. The novelty and achievements of the research are shown below:
     (1) Responsive profit assessment of demand considering unit on/off status. The essence of the profit produced by the demand response reflects the entire efficiency of generating units. The required demand responses are those who can enhance the efficiency of generation side. In the previous research, when assessing the demand response profit, the variation of unit status is not considered. In this thesis, based on the unit status of day-ahead unit commitment problem, the power pool bidding model which considers the direct participation of demand is established. The model is solved by Lagrangian relaxation method. After the demand is switched, the variations of unit status and electricity price are analyzed in terms of both general profit and marginal profit. The variation and redistribution of profit of every market participant after considering the unit status is computed and analyzed. New electricity price spike which results from the variation of unit status may occur and the effect of the price spike on the profit assessment is revealed. The variations of interest of supply and demand under different demand response participating degree are analyzed in terms of marginal profit. The research reveals that the implementation of demand response should take into account the interest of both supply and demand.
     (2) Regression analysis of summer cooling loads considering non-meteorological factors. The demand is seasonally varied and this variation underpins the implementation of demand response management which strongly related to the consumers. Inthe previous research, the research on the variation role of summer grid cooling loads only considers the effect of temperature. Thus the universality of the model is not good enough to reflect the regularity of the cooling loads. In this thesis, the regression model of the cooling loads with respect to the temperature is further analyzed. The key effect of non-meteorological aspects, namely economic conditions and level of development, on the cooling loads is also analyzed. A new summer cooling load model which considers the economical factor and regional energy consumption prosperity factor is proposed. The applicability of the model is enhanced in terms of time domain and geography. When this model is used in regional power systems, it can exploit the cooling loads as demand response resources, and can help in making the demand response strategy.
     (3) Model and algorithm of demand response behavior under time-of-use electricity price. Time-of-use electricity is used around the world and it is the basis of the electricity market. Therefore, the implementation effect of time-of-use electricity on some loads needs to be considered. And how the electricity consumption is affected by the time-of-use electricity price also needs to be carefully analyzed. When time-of-use electricity price is implemented, based on the tremendous consumer historical data during the analysis of demand response behavior, the regulation of demand response will be revealed. The model and algorithm of demand response regulation based on time-of-use electricity price will be established. The determination of input and output attributes of the regression model is solved, and the training sample with rich data is also established. Finally, the support vector machine based regression model is successfully implemented.
     (4) Determination of multi-step electricity price based on demand clustering. Multi-step electricity price can induce consumers with different level of incomes (which are represented by monthly electricity consumption in practice) consumes electricity reasonably. Finally the total energy can be saved. During the determination of multi-step electricity price, the center problems are to find the methods to determine the number of block and the energy amount for each block. The methods should be simple enough. These methods should also be able to find the appropriate consumers efficiently and reasonably stimulate the consumers. Based on the consumers'monthly demand curve, a demand clustering analysis method is established based on SOM cluster algorithm. This method can achieve the demand characteristics by classifying the consumers. And it can determine the number of block and energy of each block of the multi-step electricity price accurately. The obtained energy of each block reflects the electricity consumption difference between rural and urban, and between different regions. The proposed method provides important support for the further implementing of multi-step electricity price model.
     (5) In the regional power system, loads in energy-intensive industries account for a large proportion of the total load. Whether their electricity consumption can be accurately seized has a significant effect on the implementation of the demand response of the entire regional system. Since the information collection system is widespread implemented in region power system, numerous historical load data in many industries are collected. The industrial electricity consumption principles and response characteristics can be achieved based on the analysis of these historical data. In this thesis, frequency domain decomposition method and cluster algorithm are used, the electricity consumption principles of six energy-intensive industries are analyzed. The effect of time-of-use electricity price is discussed. The electricity consumption principle and response characteristic of industries are analyzed. All of these establish a good basis for adjusting the demand in an industry. In a word, this thesis solves the demanding problems in electricity demand side research. The effect of demand is correctly understood by in-depth analysis of these problems mentioned above. The load characteristics and consumer behavior are accurately described. The effect of demand response will be more prominent and the demand side incentive mechanism will be more targeted.
引文
[1]Hobbs B F, Rouse H B, Hoog D.T. Measuring the economic value of demand-side and supply resources in integrated resource planning models[J]. IEEE Trans on Power Systems,1993,8(3): 979-987.
    [2]Kirschen D S, Strbac G, Fundamentals of power system economics[M], John Willey & Sons Ltd, England,2004
    [3]谢开,刘永奇,朱治中,于尔铿.面向未来的智能电网[J].中国电力,2008,41(6):19-22
    [4]韩学山,杨明,张利.价值调度推进智能化电网发展的思考[J].电力系统自动化,2010,34(2):6-10
    [5]张钦,王锡凡,付敏,等.需求响应视角下的智能电网[J].电力系统自动化,2009,33(17):49-55.
    [6]Kirschen D S. Demand-side view of electricity markets[J]. IEEE Trans on Power Systems,2003, 18 (2):520-527.
    [7]Gellings Clark W. The concept of demand-side management for electric utilities[J]. Proceedings of the IEEE,1985,73(10):1468-1470
    [8]何大愚.美国加州电灾的分析与思考[J].电力系统自动化,2001,25(11):17-19,31
    [9]Steven Stoft,宋永华等译.电力系统经济——电力市场设计[M].中国电力出版社,北京,2006
    [10]张钦,王锡凡,王建学,等.电力市场下需求响应研究综述[J].电力系统自动化,2008,32(3):97-106.
    [11]赵鸿图,朱治中,于尔铿.电力市场中需求响应市场与需求响应项目研究[J].电网技术,2010,34(5):146-153.
    [12]Strbac G, Farmer E D and Cory B J. Framework for the incorporation of demand-side in a competitive electricity market[J]. Generation, Transmission and Distribution, IEE Proceedings-,1996,143 (3):232-237
    [13]Wang J, Redondo N E, Galiana F D. Demand-side reserve offers in joint energy/reserve electricity markets[J]. IEEE Trans on Power Systems,2003,18 (4):1300-1306.
    [14]曾庆禹.需求侧参与的电力批发市场定价机制[J].电网技术,2004,28(17):6-10
    [15]North American Electric Reliability Corporation. Potential Reliability Impact of Emerging Flexible Recourses, IVGTF Task-1-5 [R]. Princeton:NERC,2011.6.
    [16]Woychik E C Optimizing Demand Response[J]. Public Utilities Fortnightly,2008(5):52-56.
    [17]Duncan S. Callaway, Ian A. Hiskens. Achieving Controllability of Electric loads[J]. Proceedings of the IEEE,2011,99(1):184-199.
    [18]U. S. Department of Energy. Benefits of demand response in electricity markets and recommendations for achieving them:a report to the United State Congress pursuant to section 1252 of the Energy Policy Act of 2005 [R/OL]. [2008-02-21]. http://www.oe.energy.gov/DocumentsandMedia/congress_1252d.pdf.
    [19]王明俊.智能电网热点问题探讨[J].电网技术,2009,33(18):9-16.
    [20]Brooks, A., Lu, E., Reicher, D., Spirakis, C., Weihl, B.. Demand Dispatch. Power and Energy Magazine[J]. IEEE,2010,8(3):20-29
    [21]Federal Energy Regulatory Commission. National Action Plan on Demand Response[R/OL]. http://www.ferc.gov/legal/staff-reports/06-17-10-demand-response.pdf, 2010.6.
    [22]Jason W. Black. Integrating Demand into the U.S. Electric Power System:Technical, Economic, and Regulatory Frameworks for Responsive Load[D]. Boston:Massachusetts Institute of Technology,2005.
    [23]Federal Energy Regulatory Commission. Assessment of demand response and advanced metering:2006 staff report[R/OL]. [2008-08-21]. http://www.ferc.gov/legal/staff-reports/demand-response.pdf.
    [24]Federal Energy Regulatory Commission. Assessment of demand response and advanced metering:2007 staff report[R/OL]. [2008-09-13]. http://www.ferc.gov/legal/staff-reports/09-07-demand-response.pdf.
    [25]Federal Energy Regulatory Commission. Assessment of demand response and advanced metering:2008 staff report [R/OL]. [2008-12-30]. http://www.ferc.gov/legal/staff-reports/12-08-demand-response.pdf.
    [26]Federal Energy Regulatory Commission. A national assessment of demand response potential: staff report [R/OL]. [2009-06-18]. http://www.ferc.gov/legal/staff-reports/06-09-demand-response.pdf.
    [27]Federal Energy Regulatory Commission.2010 National Action Plan [R/OL].[2010-06-17]. http://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential/action-plan.asp
    [28]V. Stanojevic, V. Silva, D. Pudjianto, et al. Application of storage and demand side management to optimize existing network capacity[C].20th International Conference and Exhibition on Electricity Distribution, June 2009.
    [29]中华人民共和国国家发展和改革委员会经济运行局.电力需求侧管理在中国之—~之十[R/OL]. [2005.8.8-2005.8.29]. http://yxj.ndrc.gov.cn/dlxqgy
    [30]CL Su. Optimal Demand-Side Participation in Day-Ahead Electricity Markets[].2007, eee.manchester.ca.uk.
    [31]Ruff, L.. Economic Principles of Demand Response in Electricity[R/OL]. [2010-06-17]. Report to the Edison Electric Institute.2002
    [32]Keith, G.,Biewald, B.,White, D. and Drunsic, M. (2003), Modeling Demand Response and Air Emissions in New England, Synapse Energy Economics:1-27.
    [33]Wang J, Redondo N E, Galiana F D. Demand-side reserve offers in joint energy/reserve electricity markets[J]. IEEE Trans on Power Systems,2003,18 (4):1300-1306.
    [34]Rassenti S J, Smith V L, Wilson B J. Controlling market power and price spikes in electricity networks:demand-side bidding[J]. Economic Sciences,2003,10 (5):2998-3003.
    [35]王蓓蓓,李扬,金午桥等.需求侧竞价对高峰电价影响的成本效益分析[J].中国电力,2006,39(1):31-35.
    [36]Federal Energy Regulatory Commission. National Demand Response Potential Model Guide[R/OL]. [2009-06-30]. http://www.ferc.gov/industries/electric/indus-act/demand-response/NADR-guide.pdf
    [37]The Brattle Group. Quantifying Demand Response Benefits in PJM.2007.
    [38]L Hoch, D Chattopadhyay, J Fazio, B Fulford, K McCall. Assessing the Value of Demand Response in the NEM. December 2006.
    [39]顾明宏.扬州市电力负荷特性及DSM潜力分析[D].东南大学硕士学位论文,2005.
    [40]Ahmad Faruqui, and Lisa Wood. Quantifying the Benefits of Dynamic Pricing in the Mass Market. January 2008.
    [41]唐捷,任震,高志华.峰谷分时电价的成本效益分析模型及其应用[J].电网技术,2007,31(6):61-66.
    [42]Ilic, M., Black, J. W. and Watz, J. L.. Potential Benefits of Implementing Load Control [C]. IEEE Power Engineering Society Winter Meeting,2002.
    [43]王建学,王锡凡,王秀丽.电力市场可中断负荷合同模型研究[J].中国电机工程学报,2005,25(9):11-16
    [44]王何舟,顾洁.可中断负荷的优化管理[J].上海交通大学学报,2007,41(11):1901-1904
    [45]吴秋伟,汪蕾,程浩忠.削峰填谷最优时基于DSM分时电价的确定与分析[J].继电器,2004,32(3):10-14.
    [46]王蓓蓓,李扬,高赐威.智能电网框架下的需求侧管理展望与思考[J].电力系统自动化,2009,33(20):17-22.
    [47]温权,李敬如,赵静.空调负荷计算方法及应用[J].电力需求侧管理,2005,7(4):16-18.
    [48]李扬,王治华,卢毅,等.南京市夏季气温—日峰荷特性分析[J].电网技术,2001,25(7):63-66.
    [49]季强,周昭茂,徐仁武,等.当前电力需求侧管理工作中亟待解决的若干问题[J].电网技术,2006,30(增刊):615-618.
    [50]张志强.基于电网侧的空调负荷特性分析及其调控措施研究[D].北京:华北电力大学,2007.
    [51]Callaway D S. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy[D]. Michigan:University of Michigan,2009.
    [52]Hart G W. Nonintrusive appliance load monitoring[J]. Proceedings of IEEE,1992,80(12): 1870-1891.
    [53]黎鹏.非侵入式电力负荷分解与监测[D].天津:天津大学,2009.
    [54]王治华,李扬,赵翠宇,等.南京市夏季气温敏感负荷研究[J].电力系统自动化,2002,26(3):60-63.
    [55]王治华,杨晓梅,李扬,等.气温与典型季节电力负荷关系的研究[J].电力自动化设备,2002,22(3):16-18.
    [56]张利民,付红军,李育燕,等.空调降温负荷比例估计及其对电压稳定的影响[J].继电器,2005,33(22):33-36.
    [57]陈谦,陆杨文,孙建波,等.含有空调的综合电力负荷建模研究[J].高电压技术,2008,34(4):759-762.
    [58]田立亭,史双龙,贾卓.电动汽车充电功率需求的统计学建模方法[J].电力系统自动化,2010,34(11):126-130.
    [59]罗卓伟,胡泽春,宋永华,等.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):36-42.
    [60]张钦,王锡凡,王建学,等.电力市场下需求响应研究综述[J].电力系统自动化,2008,32(3):97-106.
    [61]Kirschen D S, Strbac G, Cumperayot P, Mendes D de Paiva. Factoring the elasticity of demand in electricity prices[J]. IEEE Transactions on Power Systems,2000,15 (2):612-617
    [62]秦祯芳,岳顺民,余贻鑫等.零售端电力市场中的电量电价弹性矩阵[J].电力系统自动化,2004,28(5):16-20
    [63]辛洁晴,程浩忠.电力需求短期分时价格弹性的特性及其应用[J].电力系统自动化,2007,31(10):32-36
    [64]刘严,谭忠富,乞建勋.峰谷分时电价设计的优化模型[J].中国管理科学,2005,13(5):87-92.
    [65]阮文骏,王蓓蓓,李扬,杨胜春.峰谷分时电价下的用户响应行为研究[J].电网技术,2012,36(7):86-93.
    [66]袁家海,李蒙,胡兆光.基于多智能体模拟方法的大用户峰谷电价响应研究[J].电网技 术,2005,29(23):44-49.
    [67]谈金晶,王蓓蓓,李扬.基于多智能体的用户分时电价响应模型[J].电网技术,2012,36(2):257-263.
    [68]Celebie E, Fuller J D. A model for efficient consumer pricing schemes in electricity markets[J]. IEEE Trans on Power Systems,2007,22(1):60-67.
    [69]姚珺玉,刘俊勇,刘友波,等.计及时滞指标灵敏度的用户电价响应模式划分方法[J].电网技术,2010,34(4):30-36.
    [70]吴秋伟,汪蕾,程浩忠.削峰填谷最优时基于DSM分时电价的确定与分析[J].继电器,2004,32(3):10-14
    [71]束洪春,董俊,吴水军,唐岚,廖泽龙,王文,杨强.销售侧分行业实行丰枯峰谷分时电价初探[J].电力系统自动化,2006,30(14):36-40
    [72]刘昌,姚建刚等.基于DSM的分时电价的确定与分析[J].继电器,2005,33(15):57-62
    [73]丁宁,吴军基,邹云.基于DSM的峰谷时段划分及分时电价研究.电力系统自动化,2008,32(15):66-71
    [74]黄健柏,黄向宇,邵留国等.基于系统动力学的峰谷分时电价模型与仿真(一)模型的建立[J].电力系统自动化,2006,30(11):18-23
    [75]黄健柏,黄向宇,邵留国等.基于系统动力学的峰谷分时电价模型与仿真(二)仿真结果及其分析[J].电力系统自动化,2006,30(12):23-26.
    [76]杨娟,刘树杰.阶梯电价的国际实践[J].中国经贸导刊,2010(10):27-28
    [77]李成仁,余嘉明.日韩居民阶梯电价经验与启示[J].能源技术经济,2010,22(7):56-62
    [78]张粒子.我国居民阶梯式递增电价制度的探讨[J].价格理论与实践,2010(2):9-10
    [79]刘树杰,杨娟.关于阶梯电价的研究[J].价格理论与实践,2010(3):12-14
    [80]张粒子,黄海涛,归三荣.我国居民阶梯电价水平制定方法研究[J].价格理论与实践,2010(4):44-45
    [81]王珊珊.居民用电递增制阶梯电价方案的设计[J].电力学报,2010,25(4):292-295
    [82]张粒子,黄海涛,归三荣.我国居民阶梯电价分段电量制定方法研究[J].价格理论与实践,2010(3):27-28
    [83]黄海涛,张粒子,乔慧婷,杜宁.基于变密度聚类的居民阶梯分段电量制定方法[J].电网技术,2010,34(11):111-116
    [84]Chicco, G., Napoli, R.; Postolache, P., Scutariu, M., Toader, C.. Electric energy customer characterisation for developing dedicated market strategies[C]. Power Tech Proceedings,2001 IEEE Porto, Vol.1
    [85]Chicco, G., Napoli, R., Postolache, P., Scutariu, M., Toader, C.. Customer characterization options for improving the tariff offer[J]. IEEE Transactions on Power Systems,2003,18(1): 381-387
    [86]Gianfranco Chicco, Roberto Napoli, etc. Load Pattern-Based Classification of Electricity Customers[J].. IEEE Transactions on Power Systems,2004,19(2):1232-1239
    [87]Batrinu, F., Chicco, G., Napoli, R., Piglione, F., Postolache, P., Scutariu, M., Toader, C.. Efficient iterative refinement clustering for electricity customer classification[C]. Power Tech, 2005 IEEE Russia,2005, Page(s):1-7
    [88]Chicco, G., Napoli, R., Piglione, F., Postolache, P., Scutariu, M., Toader, C.. Emergent electricity customer classification[J]. Generation, Transmission and Distribution, IEE Proceedings-,2005,152 (2) 164-172
    [89]Chicco, G., Napoli, R., Piglione, F.. Comparisons among clustering techniques for electricity customer classification[J]. IEEE Transactions on Power Systems,2006,21 (2):933-940
    [90]Carpaneto, E., Chicco, G.. Probabilistic characterisation of the aggregated residential load patterns[J]. Generation, Transmission & Distribution, IET,2008,2 (3):373-382
    [91]Chicco, G., Ilie, I.-S.. Support Vector Clustering of Electrical Load Pattern Data[J]. IEEE Transactions on Power Systems,2009,24 (3):1619-1628
    [92]Han Jiawei, Kamber Micheline, Pei Jian.数据挖掘:概念与技术(第三版)[M].北京:机械工业出版社,2012.
    [93]Kanungo Tapas, Mount David M, N etanyahu Nathan S, et a.l An efficient k-means clustering algorithm:analysis and implementation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (7):881-892.
    [94]李培强,李欣然等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78
    [95]鞠平,陈谦,熊传平,等.基于日负荷曲线的负荷分类和综合建模[J].电力系统自动化,2006,30(16):6-9
    [96]孙雅明,王晨力,张智晟,刘尚伟.基于蚁群优化算法的电力系统负荷序列的聚类分析[J].中国电机工程学报,2005,25(18):40-45
    [97]张智晟,孙雅明,张世英,赵艳.基于数据挖掘多层次细节分解的负荷序列聚类分析[J].电网技术,2006,30(2):51-56
    [98]李智勇,吴晶莹等.基于自组织映射神经网络的电力用户负荷曲线聚类[J].电力系统自动化,2008,32(15):66-71
    [99]Verdu, S.V., Garcia, M.O., Franco, F.J.G., Encinas,N., Marin, A.G., Molina, A., Lazaro, E.G..Characterization and Identification of Electrical Customers Through the Use of Self-Organizing Maps and Daily Load Parameters[J]. Power Systems Conference and Exposition,2004. IEEE PES, vol.2:899-906
    [100]王相勤.电力营销实时信息系统建设的实践与思考[J].电网技术,2006,30(4):1-5.
    [101]刘运龙,刘继东,殷树刚.山东电力营销技术支持系统的设计与实现[J].中国电力,2008,14(3):75-80.
    [102]Mathieu J L, Gadgil A J, Callaway D S, et al. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility[EB/OL]. [2012-12-10] http://escholarship.org/uc/item/2hh094jx
    [103]Cortes C and Vapnik V. Support-vector Networks[J]. Machine learning,1995,20(3): 273-297.
    [104]潘峰,程浩忠,杨镜非,等.基于支持向量机的电力系统短期负荷预测[J].电网技术,2004,28(21):39-42.
    [105]李瑾,刘金朋,王建军.采用支持向量机和模拟退火算法的中长期负荷预测方法[J].中国电机工程学报,2011,31(16):63-66.
    [106]李元诚,刘克文.面向大规模样本的核心向量回归电力负荷快速预测方法[J].中国电机工程学报,2010,30(28):33-38.
    [107]Anupama Kowli and George Gross. Quantifying the Variable Effects of Systems with Demand Response Resources[C].2010 IREP Symposium- Bulk Power System Dynamics and Control-VIII(IREP), August,2010, Buzios, RJ, Brazil.
    [108]International Energy Agency. A practical guide to demand-side bidding [EB/OL]. [2007-07-21]. http://dsm.iea.org.
    [109]张利.电力市场中的机组组合理论研究.山东大学博士论文,2006,10.
    [110]Chua-Liang Su, Kirschen D S.联营电力市场中需求侧的直接参与[J].电网技术,2007,31(20):7-15.
    [111]Chua-Liang Su and Daniel Kirschen. Quantifying the Effect of Demand Response on Electricity Markets[J]. IEEE Trans on Power Systems,2009,24(3):1199-1207.
    [112]陈希孺.数理统计学教程[M].合肥:中国科学技术大学出版社.2009.
    [113]中国人民大学统计学系数据挖掘中心.统计学与数据挖掘[J].统计与信息论坛,2002,17(1):4-9.
    [114]李海生.支持向量机回归算法与应用研究[D].广州:华南理工大学,2005.
    [115]闫国华,朱永生.支持向量机回归的参数选择方法[J].计算机工程,2009,35(13):218-220.
    [116]李育燕,陈谦,黄文英,等.空调群负荷动态特性分析与建模[J].高电压技术,2007,33(1):66-69.
    [117]宋宏坤,唐国庆,卢毅,等.江苏省夏季空调负荷分析及需求侧管理措施的削峰效果测算[J].电网技术,2006,30(17):88-91.
    [118]Heinemann G T, Nordman D A, Plant E C. The relationship between summer weather and summer loads-a regression analysis[J]. IEEE Transactions on Power Apparatus and Systems,1966,85(11).
    [119]李新炜,王子琦,方鸣,等.基于分区逐时气象信息的全网负荷预测研究[J].电力系统保护与控制,2009,37(3):35-40.
    [120]刘旭,罗滇生,姚建刚,等.基于负荷分解和实时气象因素的短期负荷预测[J].电网技术,2009,33(12):94-100.
    [121]蒋建东,程志豪,朱明嘉.考虑积温效应的短期负荷组合预测方法[J].电力自动化设备,2011,31(10):28-31.
    [122]Bin S K, Kwan H S, Wook P J, Jin K D, et al. Hybrid load forecasting method with analysis of temperature sensitivities[J]. IEEE Transactions on Power Systems,2006,21(21): 869-876.
    [123]宇传华.SPSS与统计分析[M].北京:电子工业出版社,2007:204-222.
    [124]Weather Underground:Weather History 2010.6-2011.10 [EB]. http://www. wunderground.com/history/.
    [125]山东省统计局:山东统计年鉴2011[EB].山东统计信息网,http://www.stats-sd.gov.cn/tjsj/nj2011/indexch.htm.
    [126]Roos J G, Kern C F. Modeling customer demand response to dynamic price signals using artificial intelligence[C].8th International Conference on Metering and Tariffs for Energy Supply, Brighton,1996:213-217.
    [127]谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22.
    [128]闫国华,朱永生.支持向量机回归的参数选择方法[J].计算机工程,2009,35(13):218-220.
    [129]LIBSVM Data:Classification, Regression, and Multi-label. http://www.csie.ntu.edu.tw/ ~cjlin/libsvmtools/datasets/
    [130]孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61
    [131]S. Valero, M. Ortiz, C. Senabre, C. Alvarez, F.J.G Franco and A. Gabaldon. Methods for customer and demand response policies selection in new electricity markets [J]. IET Gener. Transm. Distrib.,2007,1(1):104-110
    [132]齐放,张粒子,魏玢,阙光辉.基于拉姆齐定价理论的销售电价研究[J].《电力需求侧管理》,2010(2):
    [133]阎平凡,张长水.人工神经网络与模拟进化计算[M].清华大学出版社,2000.11,北京
    [134]Juha Vesanto, Johan Himberg, Esa Alhoniemi and Juha Parhankangas. Self-organizing map in Matlab:the SOM Toolbox[C]. Proceedings of the Matlab DSP Conference 1999:35-40, Espoo,Finland,1999.11.16-17
    [135]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京电子工业出版社,2005,北京
    [136]T. Kohonen. The Self-Organizing Map[J]. PROCEEDINGS OF THE IEEE,1990, 78(9):1464-1480.
    [137]庞松岭,穆钢,王修权,金鹏,马俊国.基于负荷规律性分析的支持向量机短期负荷预测方法.东北电力大学学报,2006,26(4):1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700