用户名: 密码: 验证码:
反应堆压力容器模拟钢中富Cu相的析出及晶体结构演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高Cu含量的反应堆压力容器(RPV)模拟钢样品经880℃加热0.5 h水淬,或再经过660℃加热10 h调质处理,随后在340℃至500℃进行不同时间的时效处理,测量了维氏硬度,并采用原子探针层析技术(atom probe tomography, APT)研究了富Cu原子团簇的析出过程,采用了高分辨透射电镜(HRTEM)、能谱分析(EDS)和萃取复型方法研究了富Cu相的析出过程和晶体结构演化,获得以下主要研究成果。
     (1)时效前不同的热处理制度对富Cu原子团簇析出的影响
     利用APT对时效样品分析结果显示,RPV模拟钢淬火后经400℃时效100 h的样品中析出了富Cu原子团簇,团簇的数量密度为1.69×1023 /m~3,当时效时间延长至300 h后,团簇的数量密度增加到6.23×1023 /m~3;模拟钢在调质处理后,经400℃时效100 h的样品中并未发现析出富Cu原子团簇,只有经1000 h时效处理后才析出了富Cu原子团簇,团簇的数量密度为6×1022 /m~3,与淬火后直接时效处理的样品相比,团簇的数量密度降低了一个数量级。淬火后马氏体中较高的位错密度,是促使富Cu原子团簇形成的原因。
     (2)Ni,Mn等合金元素对富Cu原子团簇析出的影响
     研究表明,富Cu原子团簇除了容易在界面、位错等高能区形核外,也容易在Ni含量较高的位置处形核,并随着富Cu原子团簇中Cu原子聚集程度的增加,原子团簇中心处Cu含量逐渐增加,Ni含量逐渐减少;在原子团簇与α-Fe基体界面处,Ni和Mn含量逐渐增加,最后形成了富Ni和富Mn包裹富Cu原子团簇的“壳层”结构。模拟钢中0.81 at. %的Ni在400℃加热时虽然可以固溶在α-Fe中,但是由于浓度起伏,仍然可以形成富Ni原子团簇,富Ni原子团簇又是富Cu原子团簇析出时成核的地方,因而增加钢中的Ni含量会促使富Cu原子团簇的析出。这是合金元素Ni会增加RPV钢中子辐照脆化敏感性的本质原因。
     (3)调质处理后样品在370℃时效不同时间析出富Cu相的晶体结构演化
     HRTEM分析显示,调质处理后的RPV模拟钢样品在370℃经1000,3000,4500和6000 h时效处理的4种试样中,用萃取复型的方法分别得到了26,31,52和56个富Cu析出相。统计结果显示,随着时效时间的延长,用萃取复型得到的富Cu析出相平均直径从11 nm增加到20 nm,析出相略有长大,从萃取复型样品上观察到的富Cu析出相的数量也有所增加。大多数的富Cu相都是球形,在时效6000 h的样品中也观察有短棒状的富Cu相。
     调质处理后的RPV模拟钢样品在370℃经不同时间时效处理后析出的富Cu相,虽然它们的Cu含量有较大的差别,晶体结构也不相同,有的是9R结构,有的是fcc结构,但是与富Cu析出相的大小之间并无明显的对应的关系。在fcc结构的富Cu相中,常常可以观察到孪晶的存在。
     (4)调质处理后样品在400℃时效2000 h析出富Cu相的晶体结构和成分变化
     调质处理后样品在400℃时效2000 h后样品中观察到一个大小为20 nm,成分为65.8 at. %Cu和34.2 at.%Fe的富Cu相,通过FFT和IFFT分析该富Cu相的高分辨晶格条纹像表明,富Cu相为单斜9R结构和2H结构的混合相,这是由于9R结构富Cu相(001)晶面间存在层错的缘故,也说明了富Cu相析出过程中晶体结构转变的复杂性。
     9R结构富Cu析出相的(001)面并不垂直于(100)面,两面之间的夹角大约为86.9°;
     2H结构富Cu析出相的(001)面垂直于(100)面,其晶格常数为:a = b = 0.254 nm,c = 0.417 nm,2H富Cu相为六方结构,其轴比c/a = 1.642。
     (5)富Cu析出相fct结构相变的晶体学研究调质处理后样品在400℃时效2000 h后样品中观察到一个大小为27 nm,
     成分为80.5 at. % Cu,19.5 at.% Fe的富Cu相,通过HRTEM,FFT和IFFT分析发现,在富Cu相的结构演化过程中观察到目前尚未报道过的ε’’-Cu相以及一种相变过渡态,通过理论分析得出,这种相变过渡态是ε’-Cu向ε’’-Cu的相变过程中的产物。ε’-Cu相和ε’’-Cu相分别为晶体结构相同(同为fct结构),晶格常数不同的两种过渡相。
     经过理论推导,ε’-Cu的晶格常数为:a = b = 0.410 nm, c = 0.415 nm,轴比c/a =1.01;实验测量得到ε’’-Cu相晶格常数:a = b = 0.441 nm, c = 0.369 nm,轴比c/a = 0.84;即ε’-Cu向ε’’-Cu发生相变时,沿a轴,b轴方向伸长7.6%,c轴方向压缩11.1%;
     基于实验结果,建立了ε’-Cu向ε’’-Cu相变的晶体学模型;认为从ε’-Cu向ε’’-Cu的相变过程可分为两步进行。第一步,以{110}面为切变平面,[11-2]为切变方向的简单切变,平面内原子位置改变,使得ε’-Cu相的[11-2]和[01-1]之间的夹角由29.9°变成ε’’-Cu相晶胞中的32.9°。第二步,进行线性调整使符合实际的晶胞尺寸。通过相变晶体学的演算过程显示,所建立的相变模型与实验结果吻合度较好。
The samples for this study were taken from reactor pressure vessel (RPV) model steel having higher Cu content. The samples were divided into two sets. The first set of samples were heat treatment of 0.5 h at 880℃and quenched into water, and the second set of samples were tempered at 660℃for 10 h followed by air cooling after an initial heat treatment of 0.5 h at 880℃and quenched into water. Two sets of samples were then isothermally aged at 300℃-500℃for different times up to 6000 h. The Vickers microhardness was measured by microhardness tester (HV-10) with a load for 5 kg for 15 s. The precipitation of Cu-rich clusters and crystal structural evolution of Cu-rich precipitates in RPV model steel were investigated by means of atom probe tomography (APT), extraction replica, EDS and HRTEM. The main conclusions are described as follows.
     (1) Effect of the different heat treatments before aging on the precipitation of Cu-rich clusters in RPV model steels.
     The analysis of APT revealed that smaller Cu-rich clusters were observed in RPV model steels aged for 100 h at 400℃after quenching. The number density of Cu-rich clusters was estimated to be 1.69×1023 /m~3. The number density of Cu-rich clusters increased to 6.23×1023 /m~3 after quenching and aging at 400℃for 300 h. After quenching and tempering, there were no Cu-rich clusters precipitated in the samples aged for 100 h at 400℃. Cu-rich clusters were observed in the samples aged for 1000 h at 400℃and the number density was estimated to be 6×1022 /m~3. The number density of clusters is approximately an order of magnitude lower in the samples after quenching and tempering compared with the samples after quenching. Higher dislocation density in the martensite after quenching could promote the precipitation of Cu-rich clusters.
     (2) Effect of Ni and Mn on the precipitation of Cu-rich clusters in RPV model steels.
     Besides at the interfaces and the dislocations, Ni-rich clusters could also act as the nucleation sites for the precipitation of Cu-rich clusters. The Cu content increases and the Ni content decreases at the central cores with increasing Cu atoms congregation, Ni and Mn atoms segregation on the exterior side of the cluster/matrix interface is also evident. Ni-rich clusters would act as the nucleation sites during the precipitation of Cu-rich clusters. Therefore the increase of Ni content in RPV steels could promote the precipitation of Cu-rich clusters. This is the essential reason that the presence of Ni in RPV steel could increase its sensitivity to neutron irradiation embrittlement.
     (3) Crystal structural evolution of Cu-rich nano phase in the samples with aging at 370℃for different aging time after quenching and tempering.
     There are 26, 31, 52 and 56 precipitates on the extraction replicas to be collected for samples aged for 1000, 3000, 4500 and 6000 h at 370℃after quenching and tempering, respectively. It can be seen that the average size of these nano phases was found to the range from 11 to 20 nm, and the number of precipitates is increased by longer aging. Most of these Cu-rich nano phases were found to be roughly spherical, but elongated ribbons have also been observed in the samples aged for 6000 h.
     The different Cu-rich nano phases have different Cu content and crystal structure, for example, some are 9R and some are fcc, but no distinct correlation with the size of Cu-rich nano phase. Twinned structure can often be observed in fcc Cu-rich nano phase.
     (4) Crystal structural evolution and composition of Cu-rich nano phase in the samples with aging at 400℃for different aging time after quenching and tempering
     A Cu-rich nano phase with 20 nm diameter was observed in the sample aged for 2000 h at 400℃by extraction replica analysis and the average composition of the precipitate was 65.8 Cu-34.2 Fe (in at.%). It had been found in the present work that, besides the 9R structure occurring, there exit also 2H variant and stacking faults within a copper precipitate in aged samples (2000 h at 400℃). The IFFT pattern shows that the (001) plane of the 9R structure copper phase is not perpendicular to the (100) plane but rather has a relative orientation of about 86.9°. And the (001) plane of the 2H structure copper phase is perpendicular to the (010) plane. The lattice parameters of the 2H structure are estimated to be a = b = 0.254 nm and c = 0.417 nm. The 2H variant has a hexagonal unit cell with axial ratio c/a = 1.642.
     (5) Crystallographic study of fct Cu-rich nano phases transformation
     A Cu-rich nano phase with 27 nm diameter was observed in the sample aged for 2000 h at 400℃by extraction replica analysis and the average composition of the precipitate was 80.5 Cu-19.5 Fe (in at.%). The results by HRTEM, FFT and IFFT analyses revealed that a type of transition phase and a transition state that have not been reported so far occurred during the crystal structural evolution of Cu-rich nano phase. This transition state is a product duringε’-Cu transition toε’’-Cu phase. Andε’-Cu andε’’-Cu phases are two phases that possess the same crystal structure (fct) and the different lattice parameters.
     Through the theoretical calculation, it can be obtained that the lattice parameters of theε’-Cu nano phase are to be a = b = 0.410 nm and c = 0.415 nm. Theε’-Cu nano phase has an fct unit cell with axial ratio c/a = 1.01. Through the experimental studies, it can be obtained that the lattice parameters of theε’’-Cu nano phase are to be a = b = 0.441 nm and c = 0.369 nm. Theε’’-Cu nano phase has an fct unit cell with axial ratio c/a = 0.84. To obtainε’’-Cu phase, theε’-Cu unit cell is expanded about 7.6% parallel to the a-axes and b-axes, and contracted about 11.1% along the c-axes.
     A crystallographic model of the phase transformation fromε’-Cu toε’’-Cu phase based on the experimentally observed were established. Two steps of the phase transformation fromε’-Cu toε’’-Cu phase was proposed as follows. The first step: the {110} planes is the invariant planes and simple shear movement of atoms on {110} plane along [11-2] direction occurs at the beginning of transformation, and the angle between [11-2] direction and [01-1] direction inε’-Cu is transformed into the angle ofε’’-Cu from 29.9°to 32.9°. In the next step, an inhomogeneous lattice invariant deformation (lineal adjustment) produces a slipped that matches the observed shape. This model agrees well with the experimentally observed orientation relationship.
引文
[1]许连义.中国核电发展的新篇章[J].动力工程,1997,17(5):7-10.
    [2]张源.新能源发电的技术现状与发展[J].中国电力,1996,29(11):77-81.
    [3] L. Debarberis, F. Sevini, B. Acosta, A, Kryukov, Y. Nikolaev, A. D. Amaev, M. Valo. Irradiation embrittlement of model alloys and commercial steels: analysis of similitude behaviors [J]. International Journal of Pressure Vessels and Piping, 2002, 79: 637-642.
    [4] Z. Lu, R. G. Faulkner, P. E. J. Flewitt. The role of irradiation-induced phosphorus segregation in the ductile-to-brittle transiton temperature in ferritic steels [J]. Materials Science and Engineering A, 2006, 437: 306-312.
    [5]杨文斗主编.反应堆材料学[M].北京:原子能出版社,2006.
    [6] J. Kocik, E. Keilova, J. Cizek, I. Prochazka. TEM and PAS study of neutron irradiated VVER-type RPV steels [J]. Journal of Nuclear Materials, 2002, 303: 52-64.
    [7] E. Meslin, M. Lambrecht, M. H. Mayoral, F. Berqner, L. Malerba, P. Pareige, B. Radiguet, A. Barbu, D. G. Briceno, A. Ulbricht, A. Almazouzi. Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses [J]. Journal of Nuclear Materials, 2010, 406: 73-83.
    [8] F. Bergner, M. Lambrecht, A. Ulbricht, A. Almazouzi. Comparative small-angle neutron scattering study of neutron-irradiated Fe, Fe-based alloys and a pressure vessel steel [J]. Journal of Nuclear Materials, 2010, 399: 129-136.
    [9] T. Toyama, Y. Nagai, Z. Tang, M. Hasegawa, et al. Nanostructural evolution in surveillance test specimens of a commercial nuclear reactor pressure vessel studied by three-dimensional atom probe and positron annihilation [J]. Acta Materialia, 2007, 55: 6852-6860.
    [10] D. J. Bacon, Y. N. Osetsky. Modelling dislocation-obstacle interactions in metals exposed to an irradiation environment [J]. Materials Science and Engineering A, 2005, 400-401: 353-361.
    [11] D. Terentyev, P. Grammatikopoulos, D. J. Bacon, Y. N. Osetsky. Simulation of the interaction between an edge dislocation and a <100> interstitial dislocation [J]. Acta Materialia, 2008, 56: 5034-5046.
    [12] S. J. Zinkle, Y. Matsukawa. Observation and analysis of defect cluster production andinteractions with dislocations [J]. Journal of Nuclear Materials, 2004, 329-333: 88-96.
    [13] M. K. Miller, S. S. Brenner. FIM/atom probe study of irradiated pressure vessel steels [J]. Res Mechanica: International Journal of Structural Mechanics and Materials Science, 1984, 10(3): 161-168.
    [14] M. K. Miller, R. E. Stoller, K. F. Russell. Effect of neutron-irradiation on the spinodal decomposition of Fe-32% Cr model alloy [J]. Journal of Nuclear Materials, 1996, 230(3): 219-225.
    [15] M. K. Miller, P. Pareige, M. G. Burke. Understanding pressure vessel steels: an atom probe perspective [J]. Materials Characterization, 2000, 44(1-2): 235-254.
    [16] S. P. Grant, S. L. Earp, S. S. Brenner, M. G. Burke. Phenomenological modeling of radiation embrittlement in light water reactor vessels with atom probe and statistical analysis [C]. Proc. 2nd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1986: 385-392.
    [17] K. Fukuya, K. Ohno, H. Nakata, S. Dumbill, J. M. Hyde. Microstructural evolution in medium copper low alloy steels irradiated in a pressuried water reactor and a material test reactor [J]. Journal of Nuclear materials, 2003, 312: 163-173.
    [18] K. Fujii, K. Fukuya, N. Nakata, K. Hono, Y. Nagai, M. Hasegawa. Hardening and microstructural evolution in A533B steels under high-dose electron irradiation [J]. Journal of Nuclear materials, 2005, 340: 247-258.
    [19] M. K. Miller, K. F. Russell. Embrittlement of RPV steels: An atom probe tomography prespective [J]. Journal of Nuclear Materials, 2007, 371: 145-160.
    [20] M. K. Miller, K. F. Russell, M. A. Sokolov, R. K. Nanstad. Atom probe tomography characterization of radiation-sensitive KS-01 weld [J]. Journal of Nuclear Materials, 2003, 320: 177-183.
    [21] M. K. Miller, K. F. Russell, J. Kocik, E. Keilova. Atom probe tomography of 15Kh2MFA Cr-Mo-V steel surveillance specimens [J]. Micron, 2001, 32: 749-755.
    [22] M. K. Miller, K. F. Russell, J. Kocik, E. Keilova. Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated high fluences [J]. Journal of Nuclear Materials, 2000, 282: 83-88.
    [23] P. Pareige, B. Radiguet, A. Suvorov, M. Kozodaev, E. Krasikov, O. Zabusov, J. P. Massoud.Three-dimensional atom probe study of irradiated, annealed and re-irradiated VVER 440 weld metals [J]. Surface and Interface Analysis, 2004, 36: 581-584.
    [24] P. Pareige, P. Auger, S. Miloudi, J. C. V. Duysen, M. Akamatsu.. Microstructural evolution of the CHOOZ A PWR surveillance program material: Small angle neutron scattering and tomographic atom probe studies [J]. Annales de Physique, 1997, 22: 117-125.
    [25] M. K. Miller, M. G. Hetherington, M. G. Burke. Atom probe field-ion microscopy: A technique for microstructural characterization of irradiated materials on the atomic scale [J]. Metallurgical Transactions, 1989, 20A: 2651-2661.
    [26] M. K. Miller, M. G. Burke. Characterization of irradiated A533B pressure vessel steel weld metal [J]. Journal of Physics: Condensed Matter, 1987, 48-C6: 429-434.
    [27] M. G. Burke, M. K. Miller. Solute clustering and precipitation in pressure vessel steels under low fluence irradiated conditions [J]. Journal of Physics: Condensed Matter, 1988, 49-C6: 283-288.
    [28] M. K. Miller, M. A. Sokolov, R. K. Nanstad, K. F. Russel. APT characterization of high nickel RPV steels [J]. Journal of Nuclear materials, 2006, 351: 187-196.
    [29] J. R. Hawthorne, H. E. Watson, F. L. Loss. Exploratory investigations of cyclic irradiation and annealing efforts of notch ductility of A533B weld deposits [C]. Effects of Radiation on Structural Materials, ASTM STP 683, 1978: 278-294.
    [30] J. R. Hawthorne, H. E. Watson, F. L. Loss. Experimental investigations of multicycle irradiation and annealing efforts of notch ductility of A533B weld deposits [C]. Proc. 10th Conf. on Effects of Radiation in Materials, ASTM STP 725, 1981: 63-75.
    [31] M. K. Miller, S. S. Babu, M. A. Sokolov, R. K. Nanstad, S. K. Iskander. Effect of stress relief temperature and cooling rate on pressure vessel steel welds [J]. Materials Science and Engineering A, 2002, 327: 76-79.
    [32] R. G. Lott, T. R. Mager, R. P. Shogan, S. E. Yanichko. Annealing and reirradiation response of irradiated pressure reactor vessel steels [C]. Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels, An International Review, vol. 2, ASTM STP 909, 1986: 242-259.
    [33] J. R. Hawthorne. Steel impurity element effects on post irradiation properties recovery by annealing [C]. 13th Int. Symp. Influence of Radiation on Materials Properties PartⅡ, ASTM STP 956, 1987: 461-479.
    [34] J. R. Hawthorne, A. L. Hiser. Investigation of irradiation-anneal-reirradiation (IAR) property trends of RPV welds [C]. Proc. 5th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1992: 671-678.
    [35] M. K. Mliier, R. K. Nanstad, M. A. Sokolov, K. F. Russell. The effects of irradiation, annealing and reirradiation on RPV steels [J]. Journal of Nuclear materials, 2006, 351: 216-222.
    [36] P. Pareige, K. F. Russel, R. E. Stoller, M. K. Miller. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: An atom probe study [J]. Journal of Nuclear materials, 1997, 250: 176-183.
    [37] M. K. Miller, K. F. Russel. Atom probe characterization of copper solubility in the Midland weld after neutron irradiation and thermal annealing [J]. Journal of Nuclear materials, 1997, 250: 223-228.
    [38] P. Pareige, P. Auger, S. Welzel, J. C. V. Duysen, S. Miloudi. Annealing of a low copper steel: Hardness, SANS, atom probe, and thermoelectric power investigations [J]. ASTM Special Technical Publication, 2000, 1366: 435-447.
    [39] P. Pareige, B. Radiguet, A. Barbu. Heterogeneous irradiation-induced copper precipitation in ferritic iron-copper model alloys [J]. Journal of Nuclear materials, 2006, 352: 75-79.
    [40] A. V. Barashev, S. I. Golubov, D. J. Bacon, P. E. J. Flewitt, T. A. Lewis. Copper precipitation in Fe-Cu alloys under electron and neutron irradiation [J]. Acta Materialia, 2004, 52: 877-886.
    [41] M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, C. H. de Novion. Experimental study and modeling of copper precipitation under electron irradiation in dilute Fe-Cu binary alloys [J]. Journal of Nuclear materials, 1997, 245: 224-237.
    [42] B. Radiguet, A. Barbu, P. Pareige. Understanding of copper precipitation under electron or ion irradiations in Fe-0.1 wt% Cu ferritic alloy by combination of experiments and modeling [J]. Journal of Nuclear materials, 2007, 360: 104-117.
    [43] K. Nogiwa, N. Nita, H. Matsui. Quantitative analysis of the dependence of hardening on copper precipitate diameter and density in Fe-Cu alloys [J]. Journal of Nuclear materials, 2007, 367-370: 392-398.
    [44] S. S. Brenner, R. Wagner, J. A. Spitznagel. Field-ion microscope detection of ultra-fine defects in neutron-irradiated Fe-0.34 Pct Cu alloy [J]. Metallurgical Transactions, 1978, 9A: 1761-1764.
    [45] S. C. Glade, B. D. Wirth, G. R. Odette, P. A. Kumar. Positron annihilation spectroscopy and small angle neutron scattering characterization of nanostructural features in high-nickel model reactor pressure vessel steels [J]. Journal of Nuclear materials, 2006, 351: 197-208.
    [46] M. K. Miller, B. D. Wirth, G. R. Odette. Precipitation in neutron-irradiated Fe-Cu and Fe-Cu-Mn model alloys: A comparison of APT and SANS data [J]. Materials Science and Engineering A, 2003, 353: 133-139.
    [47] M. Lambrecht, A. Almazouzi. Positron annihilation study of neutron irradiated model alloys and of a reactor pressure vessel steel [J]. Journal of Nuclear materials, 2009, 385: 334-338.
    [48] M. H. Mayoral, D. G. Briceno. Transmission electron microscopy study on neutron irradiated pure and RPV model alloys [J]. Journal of Nuclear materials, 2010, 399: 146-153.
    [49] E. Meslin, B. Radiguet, P. Pareige, A. Barbu. Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography [J]. Journal of Nuclear Materials, 2010, 399: 137-145.
    [50] Y. Kamada, D. G. Park, S. Takahashi, H. Kikuchi, S. Kobayashi, K. Ara, J. H. Hong, I. G. Park. The effect of bcc-Cu Precipitation on magnetism in thermally aged Fe-1 wt.% Cu model alloys [J]. IEEE Transaction on Magnetics, 2007, 43(6): 2701-2703.
    [51] D. G. Park, K. S. Ryu, S. Kobayashi, S. Takahashi, Y. M. Cheong. Change in magnetic properties of a cold rolled and thermally aged Fe-Cu alloy [J]. Journal of Applied Physics, 2010, 107: 09A330.
    [52] B. Minov, L. P. Vandenbossche, M. J. Konstantinovic, L. Dupre. Magnetic after-effect study of the Cu-precipitation in thermally aged Fe-1% Cu alloys [J]. IEEE Transaction on Magnetics, 2010, 46(2): 521-524.
    [53] S. R. Goodman, S. S. Brenner, J. J. R. Low. Fim-atom probe study of the precipitation of copper from iron-1.4 at. PCT copper-1 [J]. Metallurgical Transactions, 1973, 4(10): 2362-2369.
    [54] S. R. Goodman, S. S. Brenner, J. J. R. Low. Fim-atom probe study of the precipitation of copper from iron-1.4 at. PCT copper-2 [J]. Metallurgical Transactions, 1973, 4(10): 2371-2378.
    [55] M. K. Miller, K. F. Russell, P. Pareige, M. J. Starink, R. C. Thomson. Low temperature copper solubilities in Fe-Cu-Ni [J]. Materials Science and Engineering A, 1998, 250: 49-54.
    [56] R. A. Cerezo, S. Hirosawa, I. Rozdilsky, G. D. Smith. Combined atomic-scale modeling and experimental studies of nucleation in the solid state [J]. Philosophical Transactions of the RoyalSociety A, 2003, 361: 463-477.
    [57]周邦新,王均安,刘庆东,刘文庆,王伟,林民东,徐刚,楚大锋. Ni对RPV模拟钢中富Cu原子团簇析出的影响[J].中国材料进展, 2011, 30(5): 1-6.
    [58]朱娟娟,王伟,林民东,刘文庆,王均安,周邦新.用三维原子探针研究压力容器模拟钢中富铜原子团簇的析出[J].上海大学学报(自然科学版), 2008, 14(5): 525-530.
    [59] Y. Kimura, S. Takaki. Phase transformation mechanism of Fe-Cu alloys [J]. ISIJ International, 1997, 37(3): 290-295.
    [60] E. Hornbogen, R. C. Glenn. A metallographic study of precipitation of copper from alpha iron [J]. Transactions of the Metallurgical Society of AIME, 1960, 218(12): 1064-1070.
    [61] S. K. Lahiri, D. Chandra, L. H. Schwartz, M. E. Fine. Modulus and moessbauer studies of precipitation in Fe-1.67 at. PCT Cu [J]. Transactions of the Metallurgical Society of AIME, 1969, 245(9): 1865-1868.
    [62] T. Harry, D. J. Bacon. Computer simulation of the core structure of the <111> screw dislocation inα-iron containing copper precipitates: I. structure in the matrix and a precipitate [J]. Acta Materialia, 2002, 50(1): 195-208.
    [63] T. Harry, D. J. Bacon. Computer simulation of the core structure of the <111> screw dislocation inα-iron containing copper precipitates: II. dislocation–precipitate interaction and the strengthening effect [J]. Acta Materialia, 2002, 50(1): 209-222.
    [64] R. Monzen, M. L. Jenkins, A. P. Sutton. The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation of elastic strains in an Fe-Cu alloy [J]. Philosophical Magazine A, 2000, 80(3): 711-723.
    [65] P. J. Othen, M. L. Jenkins, G. D. W. Smith, W. J. Phythian. Transmission electron microscopy investigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni [J]. Philosophical Magazine Letters, 1991, 64(6): 383-391.
    [66]楚大锋,徐刚,王伟,彭剑超,王均安,周邦新. APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出[J].金属学报, 2011, 47(3): 269-274.
    [67] J. T. Buswell, P. J. E. Bischler, S. T. Fenton, A. E. Ward, W. J. Phythian. Microstructural developments in neutron-irradiated mild steel submerged-arc weld metal [J]. Journal of Nuclear Materials, 1993, 205: 198-205.
    [68] V. Y. Gertsman, K. Tanqri. Grain boundary distributions, texture and orientation correlationsin austenitic stainless steels [J]. Scripta metallurgica et materialia, 1995, 33(7): 1037-1042.
    [69] K. Osamura, H. Okuda, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa, R. Uemor. SANS study of phase decomposition in Fe-Cu alloy with Ni and Mn addition [J]. ISIJ International, 1994, 34(4): 346-354.
    [70] A. Youle, B. Ralph. Study of the precipitation of copper from alpha-iron in the pre-peak to peak hardness range of aging [J]. Metal Science, 1972, 6(9): 149-152.
    [71] K. Ozbaysal, O. T. Inal. Aging-hardening kinetics and microstructure of PH 15-5 stainless steel after laser melting and solution treating [J]. Journal of Materials Science, 1994, 29: 1471-1480.
    [72] S. W. Thompson, G. Krauss. Copper precipitation during continuous cooling and isothermal aging of A710-type steels [J]. Metallurgical and Materials Transactions A, 1996, 27A: 1573-1588.
    [73] R. Varuqhese, P. R. Howell. Application of transmission electron microscopy to the study of a low-carbon steel: HSLA-100 [J]. ASTM Special Technical Publication, 1993, 1165: 199-211.
    [74] A. D. Wilson. Properties and microstructures of copper precipitation aged plate steels [J]. Conf. Proc. of microalloyed HSLA steels, ASM, 1988: 259-275.
    [75] S. Kajiwara. Theoretical analysis of the crystallography of the martensitic transformation of bcc to 9R close-packed structure [J]. Transactions of the Japan Institute of Metals, 1976, 17(7): 435-446.
    [76] S. Kajiwara. Experimental aspects of the crystallography of the martensitic transformation of bcc to 9R close-packed structure [J]. Transactions of the Japan Institute of Metals, 1976, 17(7): 447-456.
    [77] S. Y. Hu, Y. L. Li, K. Watanabe. Calculation of internal stresses around Cu precipitates in the bcc Fe matrix by atomic simulation [J]. Modelling and Simulation in Materials Science and Engineering, 1999, 7(4): 641-655.
    [78]朱伟光,江伯鸿,徐祖耀. Cu-26Zn-4Al形状记忆合金马氏体相变晶体学[J].金属学报,1986, 22(3): A229-A235.
    [79] P. J. Othen, M. L. Jenkins, G. D. W. Smith. High-resolution electron microscopy studies of the structure of Cu precipitations inα-Fe [J]. Philosophical Magazine A, 1994, 70(1): 1-24.
    [80] H. Tas, L. Delaey, A. Deruyttere. Self-accommodating character of the beta copper-aluminum martensite [J]. Metallurgical Transactions, 1973, 4(12): 2833-2840.
    [81] T. Saburi, S. Nenno, S. Kato, K. Takata. Configurations of martensite variants in Cu-Zn-Ga [J]. Journal of the Less-Common Metals, 1976, 50(2): 223-236.
    [82] M. K. Miller, K. F. Russell, G. R. Odette. Clustering and precipitation in neutron irradiated low copper and copper-free steels and model alloys [C]. IVNC and IFES 2006 - Technical Digest - l9th International Vacuum Nanoelectronics Conference and 50th International Field Emission Symposium, 2006: 507-508.
    [83]周邦新.三维原子探针------从探测逐个原子来研究材料的分析仪器[J].自然杂志,2005, 27(3): 125-129.
    [84]周邦新,刘文庆.三维原子探针及其在材料材料研究中的应用[J].材料科学与工艺,2007, 15(3): 405-408.
    [85] M. K. Miller. Atom probe tomography: Analysis at the atomic level. New York: Kluwer academic/plenum publishers, 2000: 25.
    [86]刘庆东,褚于良,王泽民,刘文庆,周邦新. Nb-V微合金钢中渗碳体周围元素分布的三维原子探针表征[J].金属学报,2008, 44(11): 1281-1285.
    [87] M. K. Miller, E. A. Kenik. Atom probe tomography: A technique for nanoscale characterization [J]. Microscopy and Microanalysis, 2004, 10: 336-341.
    [88] K. Fumio, T. Isamu, M. Ryutaro. Observation of precipitates and metallographic grain orientation in steel by a non-aqueous electrolyte-potentiostatic etching method [J]. Nippon Kinzoku Gakkai-si, 1979, 43:1068-1077.
    [89] M. K. Miller, K. F. Russell, M. A. Sokolov, R. K. Nanstad. APT characterization of irradiated high nickel RPV steels [J]. Journal of Nuclear Materials, 2007, 361: 248-261.
    [90] Y. Nagai, M. Hasegawa, Z. Tang, A. Hempel, K. Yubuta, T. Shimamura, Y. Kawazoe, A. Kawai, F. Kano. Positron confinement in ultrafine embedded particles: Quantum-dot-like state in an Fe-Cu alloy [J]. Physical Review B, 2000, 61(10): 6574-6578.
    [91] L. T. Stephenson, M. P. Moody, P. V. Liddicoat, S. P. Ringer. New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data [J]. Microscopy Microanalysis, 2007, 13: 448-463.
    [92] R. A. Karnesky, D. Isheim, D. N. Seidman. Direct measurement of two-dimensional and three-dimensional interprecipitate distance distributions from atom-probe tomographic reconstructions [J]. Applied Physics Letters, 2007, 91: 013111.
    [93] A. Cerezo, P. H. Clifton, S. Lozano-Perez, P. Panayi, G. Sha, G. D. W. Smith. Overview: Recent progress in three-dimensional atom probe instruments and applications [J]. Microscopy and Microanalysis, 2007, 13: 408-417.
    [94] P. Auger, P. Pareige, M. Akamatsu, D. J. C. Van. Microstructural characterization of atom cluster in irradiated pressure vessel steels and model alloys [J]. Journal of Nuclear Materials, 1994, 211: 194-201.
    [95] IAEA-TECDOC-1441. Effects of nickel on irradiation embrittlement of light water reactor pressure vessel steels, IAEA, Vienna, Austria, 2005.
    [96]林民东,朱娟娟,王伟,周邦新,刘文庆,徐刚.核反应堆压力容器模拟钢中富Cu原子团簇的析出与嵌入原子势计算[J].物理学报, 2010, 59(2): 1163-1168.
    [97] C. L. Liu, G. R. Odette, B. Wirth, G. E. Lucas. A lattice Monte Carlo simulation of nanophase compositions and structures in irradiated pressure vessel Fe-Cu-Ni-Mn-Si steels [J]. Materials Science and Engineering A, 1997, 238(1): 202-209.
    [98] T. H. Lee, Y. O. Kim, S. J. Kim. Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel [J]. Philosophical Magazine, 2007, 87(2): 209-224.
    [99] Y. L. Bouar. Atomic study of the coherency loss during the bcc-9R transformation of small copper precipitates in ferritic steels [J]. Acta Materialia, 2001, 49: 2661-2669.
    [100]赵越超. Cu-Zn-Al形状记忆合金马氏体相变及其晶体学的研究[D].武汉大学研究生学位论文,1986.
    [101] R. H. Wang, Y. C. Zhao, J. N. Gui. Electron diffraction identification of structure types of martensite in Cu-Zn-Al alloys [J]. Journal of Electron Microscopy Technique, 1987, 7: 293-300.
    [102] J. Kakinoki, Y. Komura. Diffraction by a one-dimensionally disordered crystal.Ⅰ. The intensity equation [J]. Acta Crystallographica, 1965, 19: 137-147.
    [103] J. Kakinoki. Diffraction by a one-dimensionally disordered crystal.Ⅱ. Close-packed structures [J]. Acta Crystallographica, 1967, 23: 875-885.
    [104] D. L. Liu, H. Hashimoto, T. Ko. Electron microscopy study of martensite in Cu-11.2 wt% Al-3 wt% Ni [J]. Journal of Materials Science, 1997, 32: 1657-1663.
    [105]梶原节夫.材料科学研究中电子显微学的成功应用[J].理化检验-物理分册,2001, 37(1): 7-17.
    [106] J. J. Blackstock, G. J. Ackland. Phase transitions of copper precipitates in Fe-Cu alloys [J]. Philosophical Magazine A, 2001, 81(9): 2127-2148.
    [107] S. L. Perez, M. L. Jenkins, J. M. Titchmarsh. Evidence for deformation-induced transformations of Cu-rich precipitates in an aged Fe-Cu alloy [J]. Philosophical Magazine Letters, 2006, 86(6): 367-374.
    [108] S. Kajiwara. Stacking disorder in martensite with 3R close-packed structure [J]. Journal of Applied Crystallography, 1971, 4: 329-330.
    [109] R. Monzen, M. Iguchi, M. L. Jenkins. Structural changes of 9R copper precipitates in an aged Fe-Cu alloy [J]. Philosophical Magazine Letters, 2000, 80(3): 137-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700