用户名: 密码: 验证码:
碳源对水稻土中铁还原特征和铁还原菌多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物Fe(Ⅲ)还原作用能以Fe(Ⅲ)作为电子受体,将有机或无机的电子供体氧化。自然界的厌氧环境几乎都有异化Fe(Ⅲ)还原现象,并有铁还原微生物存在。关于水稻土微生物铁还原过程的知识在最近十年里持续的增加。然而因为铁还原微生物系统发育学上的多样性和铁还原途径的不确定性,使得人们对铁还原微生物的认识仅限于几类典型的物种,如Geobacter和Shewanella。水稻土水旱轮作的耕作方式作为研究氧化还原过程的一种模式系统一直受到人们的重视,其中铁的氧化还原占有重要地位。但对其淹水厌氧状态下微生物群落的分布演替的知识甚少,缺乏对铁还原过程具有贡献率的细菌的相关报道。所以,研究不同碳源富集下水稻土中Fe(Ⅲ)微生物的优势类型,不仅可深化对水稻田微生物生态的认识,而且对于阐明水稻土微生物Fe(Ⅲ)还原机理及群落演替特征具有重要的意义。
     本文采用厌氧恒温培养方法,在自然和有机质耗竭水稻土中添加无定形氧化铁和不同碳源进行富集驯化,分析铁还原特征;进一步分离筛选出具有高效铁还原能力的菌株,采用16S rDNA-ARDRA分子生物学技术对其多样性进行分析评价;并对典型菌株进行16S rDNA序列测定。直接分离纯化铁还原环境下水稻土中的微生物,通过直接测定其16S rDNA序列,认识其在系统分类学上的归类。比较不同淹水时间及在外加碳源和铁源驯化下微生物群落结构的差异,分析其优势种群的演替特征。提取来源不同植稻区水稻土不同淹水时期的微生物群落,接种于以不同碳源为惟一底物的富铁培养液中,定期测定Fe(II)生成量,pH变化及脱氢酶活性,探索铁还原微生物的活性出现的最大时期及稳定期,以得到铁还原微生物活性恢复最快的时期,为研究不同水稻土微生物铁还原能力差异和影响因素提供基础依据。通过对微生物Fe(Ⅲ)还原过程和脱氢酶活性变化的动力学特征分析,以期阐明脱氢酶活性与微生物Fe(Ⅲ)还原的内在关系,为揭示水稻土中微生物Fe(Ⅲ)还原机理提供必要的理论依据。本论文的主要结果包括以下方面:
     (1)在有机质耗竭水稻土中添加葡萄糖和丙酮酸盐后,其铁还原反应的趋势跟自然水稻土比较接近,而添加乙酸盐的处理则表现出一定差异。表明淹水水稻土中铁还原反应在初期的快速进行是由利用葡萄糖的发酵产H2型铁还原菌所主导的,淹水后期的铁还原反应则是由利用乙酸盐的铁还原菌所控制。H2-依赖型铁还原菌对水稻田中的铁还原过程的贡献大于乙酸依赖性。
     (2)铁还原微生物群落组成与结构是影响水稻土中铁还原过程的重要因素。在接种土壤浸提液的混合培养中,不同淹水时期对Fe(Ⅲ)还原特征值Vmax的影响显著,表现为淹水20 d>30 d>12 d>1 d>5 d,水稻土中微生物群落结构变化是导致Fe(Ⅲ)还原能力不同的主要原因。不同淹水时期得到的铁还原微生物群落对碳源的响应具有显著差异,淹水1~12 d的处理以葡萄糖和丙酮酸盐为优势碳源,淹水12 d和20 d的处理能够高效利用乳酸盐,淹水30 d的处理对乙酸盐的利用能力显著增强。
     (3)柠檬酸铁的生物还原和化学还原具有显著的不同,光照和高温是影响柠檬酸铁化学还原的主要原因,避光和30℃培养条件不会造成柠檬酸铁的化学还原。本试验条件下的接种了微生物的柠檬酸铁还原主要是由微生物引起的。建立了有效筛选铁还原菌株的分离培养方法体系,判定ferrihydrite还原率在50%以上的菌株为高效铁还原菌。在不同碳源富集下,从吉林,四川,湖南,浙江,天津和江西水稻土获得高效铁还原菌株分别为88,54,161,88,33和67个。
     (4)α多样性指数表明在葡萄糖富集下出现较为集中的优势种群,而在小分子有机酸为碳源的处理中则呈现出较为丰富的多样性。在HN水稻土中,基于16S rDNA-ARDRA分析,其优势种属一共分为7类。不同碳源富集下都均有Paenibacillus spp.和Clostridium.spp.出现;Solibacillus和Lysinibacillus是乙酸盐富集下的优势种群,而Bacillus则是丙酮酸盐富集下的优势种属;除了葡萄糖处理,其他碳源富集及对照中都表现出Azotobacter为其优势物种;而Pseudomonas spp.作为优势物种只出现于葡萄糖富集的群落中。
     (5)微生物Fe(Ⅲ)还原过程对脱氢酶活性具有明显的影响,不同处理中脱氢酶活性最大值对应的Fe(II)含量为91.0~344.6 mg·L-1,随着铁还原程度的继续增大,脱氢酶活性随之降低。不同处理中脱氢酶活性与微生物Fe(Ⅲ)还原过程具有相关性,脱氢酶活性峰值出现时间与Fe(OH)3还原TVmax具有显著正相关关系,而与Vmax则表现为明显负相关。脱氢酶活性是影响水稻土中铁还原过程的重要因素,推测微生物代谢有机物产H2是水稻土淹水初期铁快速还原的主要原因。
     (6)自然淹水条件下,水稻土中早期出现的可分离株采用r-策略进行生殖生长,物种多样性相对丰富,可归属于Lysinibacillus,Staphylococcus,Paenibacillus和Azotobacillus的系统发育分支上;演替后期铁还原过程进入平稳阶段且出现相对集中的类群,主要以Bacillus spp.为优势物种代表。在外加碳源和氧化铁富集下,水稻土中可分离株的群落结构发生显著变异。
     通过本文的研究,对不同碳源富集下水稻土中优势铁还原菌的种属以及铁还原环境下的微生物群落的演替有了更为深入的认识,探讨了脱氢酶活性跟微生物铁还原过程之间的联系,为进一步明确我国水稻土淹水培养后铁还原菌群落结构特征及系统分类、探讨不同水稻土中微生物铁还原能力差异提供基础依据,也对水稻土微生物Fe(Ⅲ)还原机理提出了初步的构想。
j
     Microbial Fe(III) reduction are capable of oxidizing organic or inorganic electron donors with ferric iron Fe(III) as electron acceptors. Dissimilatory Fe(III) reducing phenomena exist in almost natural anaerobic environment, as well as iron reducing microorganisms. There has been a continuous increase in the knowledge about microbial iron reduction in paddy soil in the last decade. Nevertheless, people only looked at some typical species of iron reducing microorganisms such as Geobacter and Shewanella, because of the uncertainty on phylogenetic diversity of iron reducing microorganisms and iron reducing ways. Iron redox processes play important roles in paddy rice-upland crop rotation systems. The system attracts plenty of attention as a model of redox research. However, little is known about the dynamic distribution of microbial community under flooded anaerobic condition. Furthermore, the data available in present literature fail to prove the contribution rate of bacteria in iron reduction. Therefore, the study on dominant Fe(III) microflora with different carbon sources in paddy soil not only can deepen the understanding of microbial ecology in paddy soil, but also has great significance for clarifying the mechanism of microbial Fe(III) reduction and the characteristics of community succession in paddy soil.
     In this study, we used anaerobic incubation with a constant temperature, added amorphous iron oxides with different carbon sources enrichment acclimation, analyzed Fe(III) reducing characteristics. Then we used 16S rDNA-ARDRA molecular biology techniques to analyze the diversity of bacterial strains with a high Fe(III) reducing capacity which were isolated and screened from the incubation system. Typical bacterial strains were determined 16S rDNA sequence. Microorganisms in iron reducing environment were isolated and purified directly, then measured 16S rDNA sequence in order to get some information about their categorization in taxonomy. To identify succession on superior dominant population, we compared the differences of microbial community structure with the domestication of amended carbon sources and iron oxides. Microflora extracted from paddy soil of different rice growing region in different flooded time was inoculated with different carbon sources as the only substrate in iron-rich medium. We measured ferrous concentration, pH and dehydrogenase activity regularly, to explore the maximum and stable period of the activity of microbial iron reduction, and get its fastest recovery time. All above can provide the foundation for the research on difference capacity and influencing factors of microbial iron reduction in different paddy soil. We analyzed the dynamic characteristics of microbial Fe(Ⅲ) reduction and dehydrogenase activity, in order to clarify the internal relationship between dehydrogenase activity and microbial Fe(Ⅲ) reduction and provide the necessary theoretical basis for revealing the mechanism of microbial Fe(Ⅲ) reduction in paddy soil.
     The main results obtained are as following:
     (1) The iron reduction tendency in the amended glucose and pyruvate paddy soil with organic matter depleted was similar with that in the natural paddy soil; however, there was a difference in the acetate treatment. These results indicate that iron reducing bacteria used H2 from glucose fermentation resulted in a high-speed iron reduction at earlier stage in flooded paddy soil, while iron reducing bacteria relying on H2 made more contribution to iron reduction in paddy soil than those depending acetate.
     (2) Iron reducing microbial community composition and structure have an important influence on iron reduction in paddy soil. In mixed cultivation with soil extraction, flooding time had a significant impact on Vmax, Fe(Ⅲ) reducing feature value, Vmax decreased in the order 20 d>30 d>12 d>1 d>5 d. The main reason caused different Fe(Ⅲ) reducing ability was the changes of microorganism population structure in paddy soil. There was a significant difference among iron reducing microbial community with carbon sources in different flooding time. Glucose and pyruvate were the superior carbon sources in the flooded 1-12 day treatments; lactate was used efficiently in flooded 12 days and 20 days treatments. There was a significant increase in using acetate in flooded 30-day treatment.
     (3) There was a significant difference between biological reduction and chemical reduction of iron citrate, because of the effect of illumination and high temperature on iron citrate chemical reduction. Iron citrate chemical reduction will not happen at 30℃and without light. In this experiment, what made this happen was microorganism. However, microorganism able to reduce iron citrate may not reduce ferrihydrite. Hence, we called those bacterial strains that could reduce more than 50% of ferrihydrire as iron reducing bacteria. In enrichment of different carbon sources, we obtained efficient iron reducing strains 88 from JL paddy soil, 54 from SC paddy soil, 161 from HN paddy soil, 88 from ZJ paddy soil, 33 from TJ paddy soil and 67 from JX paddy soil.
     (4) Fromαdiversity index, we can see that there was concentrative dominant population under glucose enrichment, while there was rich diversity in short organic acid treatment. The dominant population divided into seven kinds in HN paddy soil, according to the analysis of 16S rDNA-ARDRA. Paenibacillus spp. and Clostridium.spp. appeared in all carbon source treatments. Solibacillus and Lysinibacillus were the dominant population in acetate enrichment treatment, as Bacillus in pyruvate enrichment treatment. Azotobacter was the dominant population in all treatment but glucose treatment. Pseudomonas spp. was the dominant population only in glucose treatment.
     (5) Microbial Fe(Ⅲ) reducing had a significant effect on dehydrogenase activity, ferrous concentration was 91.0~344.6 mg·L-1 corresponding the maximum of dehydrogenase activity in all treatments. Dehydrogenase activity decreased as the level of Fe(Ⅲ) reduction increased. There was a correlation between dehydrogenase activity and level of Fe(Ⅲ) reduction. There was a positive correlation between the time reaching peak value of dehydrogenase activity and TVmax of Fe(OH)3 reduction, while there was a significantly negative correlation between time and Vmax. Dehydrogenase activity was an important influencing factor for iron reduction in paddy soil. We speculate that the main reason for high-speed iron reduction at earlier stage in paddy soil may be the H2 production from organic metabolism of microorganisms.
     (6) Under natural flooding conditions, isolates from paddy soils appeared in the early successional habitats adopted r-strategists to have growth and reproduction. They had a relatively rich in species diversity which could be attributed to Lysinibacillus, Staphylococcus, Paenibacillus and Azotobacillus phylogenetic branch. Iron reduction reached to a stable stage in late succession and there was a relatively concentrated group, which was predominated as Bacillus spp.. Microbial community structure had a significant variation when the mixed organic carbon sources and ferrihydrite were amended.
     Through this study, we got further knowledge of dominant iron reducing bacteria species and microbial community succession under different carbon source enrichment in paddy soil. We discussed the relation between dehydrogenase activity and microbial iron reduction, to provide the foundation for further clarifying the iron-reducing bacteria community structure and phyletic classification in flooded paddy soil incubation, as well as the differences of microbial iron reducing capacity. Furthermore, we put forward the initial ideas of microbial Fe(Ⅲ) reducing mechanism in paddy soil.
引文
Akasaka H, Izawa T, Ueki K, Ueki A. 2003. Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiology Ecology, 43(2): 149-161
    Anderson R T, Rooney-Varga J N, Gaw C V, Lovley D R. 1998. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environmental Science & Technology 32: 1222-1229
    Anderson R T, Vrionis H A, Ortiz-Bernad I, Resch C T. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69: 5884-5891
    Arnold R, DiChristina T, Hoffman M. 1988. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnology and Bioengineering, 32(9): 1081-1196
    Arnold R G, Olson T M, Hoffmann M R. 1986. Kinetics and mechanism of dissimilative Fe(III) reduction by Pseudomonas sp. 200. Biotechnology and Bioengineering, 28: 1657-1671
    Bakken L R. 1997. Culturable and nonculturable bacteria in soil. In: Elsas J D v, Trevors J T, Wellington E M H. Modern Soil Microbiology. New York: Marcel Dekker: 47-61
    Balashova V V, Zavarzin G A. 1980. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology, 48: 635-639
    Benner S G, Hansel C M, Wielinga B W, Barber T M, Fendorf S. 2002. Reductive dissolution and biomineralization of Iron hydroxide under dynamic flow conditions. Environmental Science & Technology 36: 1705-1711
    Blum J S, Buzzelli J, Stolz J F, Oremland R S, Bindi A B. 1998. Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Archives of Microbiology, 171(1): 19-30
    Bond D R, Mester T n, Nesb C L, Izquierdo-Lopez A V, Collart F L, Lovley D R. 2005.
    Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae. Applied and Environmental Microbiology, 71(7): 3858-3865
    Boone D R, Liu Y, Zhao Z-J, Balkwill D L. 1995. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. International Journal of Systematic Bacteriology, 45(3): 441-448
    Borch T, Masue Y, Kukkadapu R K, Fendorf S. 2007. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environmental Science & Technology 41: 166-172
    Bowman J P, Mccammon S A, Brown M V, Nichols D S, Mcmeekin T A. 1997. Diversity and association of psychrophilic bacteria. Applied and Environmental Microbiology, 63(8): 3068-3078
    Burrell P C, Sullivan C O, Song H, Clarke W P, Blackall L L. 2004. Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate boreactor. Applied and Environmental Microbiology, 70(4): 2414-2419
    Butler J E, He Q, Nevin K P, He Z, Zhou J, Lovley D R. 2007. Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics, 8(180):
    Cahyani V R, Murase J, Ikeda A, Taki K, Asakawa S, Kimura M. 2008. Bacterial communities in iron mottles in the plow pan layer in a Japanese rice field: Estimation using PCR-DGGE and sequencing analyses. Soil Science and Plant Nutrition, 54: 711-717
    Carere C R, Kalia V, Sparling R, Cicek N, Levin D B. 2008. Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405. Indian Journal of Microbiology, 48: 252-266
    Cetica P D, Pintos L N, Dalvit G C, Beconi M T. 1999. Effect of lactate dehydrogenase activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates on in vitro maturation. Theriogenology, 51(3): 541-550
    Chen D H, Ronald P C. 1999. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Plant Molecular Biology Reporter, 17: 53-57
    Cheng G, Li X. 2009. Bioreduction of chromium(VI) by Bacillus sp. isolated from soils of iron mineral area. European Journal of Soil Biology, 45(5-6): 483-487
    Chidthaisong A, Conrad R. 2000. Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil. FEMS Microbiology Ecology, 31: 73-86
    Childers S E, Ciufo S, Lovley D R. 2002. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 416: 767-769
    Chin K-J, Hahn D, Hengstmann U, Liesack W, Janssen P H. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Applied and Environmental Microbiology, 65(11): 5042-5049
    Chipperfield J R, Ratledge C. 2000. Salicyclic acid is not a bacterial siderophore: a theoretical study. BioMetals, 13: 165-168
    Christensen H, Hansen M, S?rensen J. 1999. Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Applied and Environment Microbiology, 65: 1753-1761
    Coates J D, Bhupathiraju V K, Achenbach L A, McInerney M J, Lovley D R. 2001. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new strictly anaerobic, dissimilatory Fe(III)-reducers. International Journal of Systematic and Evolutionary Microbiology 51: 581-588
    Coates J D, Councell T, Ellis D J, Lovley D R. 1998. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe, 4: 277-282
    Coates J D, Ellis D J, Gaw C V, Lovley D R. 1999. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. International Journal of Systematic Bacteriology, 49: 1615-1622
    Coates J D, Lonergan D J, Philips E J P, Jenter H, Lovley D R. 1995. Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Archives of Microbiology, 164: 406–413
    Coppi M V, O'Neil R A, Lovley D R. 2004. Identification of an uptake hydrogenase required forhydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. Journal of Bacteriology, 186(10): 3022-3028
    Cornell R M, Schwertmann U. 2003. The iron oxides: structures, properties, reactions, occurrences and uses. Weinheim: Wiley-VCH: 703
    Cummings D E, Frank Caccavo J, Spring S, Rosenzweig R F. 1999. Ferribacterium limneticum, gen. nov., sp. nov., an Fe (Ⅲ)-reducing microorganism isolated from mining impacted freshwater lake sediments. Archives of Microbiology, 171(3): 183-188
    Das A, Frank Caccavo J. 2000. Adhesion of the dissimilatory Fe(III)-reducing bacterium Shewnella alga BrY to crystalline Fe(III) oxides. Current Microbiology, 42: 151-154
    Dassonvillea F, Godon J J, Renault P. 2004. Microbial dynamics in an anaerobic soil slurry amended with glucose, and their dependence on geochemical processes. Soil Biology & Biochemistry, 36: 1417-1430
    Davis K E R, Joseph S J, Janssen P H. 2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied and Environment Microbiology, 71: 826-834
    Devaurs D, Gras R. 2010. Species abundance patterns in an ecosystem simulation studied through Fisher' s logseries. Simulation Modelling Practice and Theory, 18: 100-123
    DiChristina T J, Moore C M, Haller C A. 2002. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene. Journal of Bacteriology, 184(1): 142-151 Ding Y-H R, Hixson K K, Giometti C S, Stanley A, Esteve-Nú?ez A, Khare T, Tollaksen S L, Zhu W, Adkins J N, Lipton M S, Smith R D, Mester T, Lovley D R. 2006. The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim Biophys Acta, 1764: 1198-1206
    Dixit S, Hering J G. 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ Sci Technol, 37: 4182-4189
    Dobbin P S, Carter J P, Garcia-Salamanca San Juan C, von Hobe M, Powell A K, Richardson D J. 1999. Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiology Letters, 176(1): 131-138
    Dobbin P S, Powell A K, McEwan A G, Richardson D J. 1995. The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. Biometals, 8: 163-173
    Dong J, Zhao Y S, Han R, Liu Y Y, Li Z B, Zong F. 2006. Study on redox zones of landfill leachate plume in subsurface environment. Environmental Science, 27(9): 1901-1905
    Elifantz H, Guessan L A N, Mouser P J, Williams K H, Wilkins M J, Risso C, Holmes D E, Long P E, Lovley D R. 2010. Expression of acetate permease-like (apl ) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations. FEMS Microbiology Reviews: 1-9
    Ford R G. 2002. Rates of hydrous ferric oxide crystallization and the infl uence on coprecipitated arsenate. Environ Sci Technol 36: 2459-2463
    Frank Caccavo J, Blakemore R P, Lovley D R. 1992. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the great bay estuary, New hampshire. Applied and Environmental Microbiology, 58(10): 3211-3216
    Frank Caccavo J, Coates J D, Rossello-Mora R A, Ludwig W, Schleifer K H, Lovley D R, McInerney M J. 1996. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. 122Archives of Microbiology, 165: 370-376
    Frenzel P, Bosse U, Janssen P H. 1999. Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biology and Biochemistry, 31: 421-430
    Furtado A L d S, Casper P. 2000. Different methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples. Journal of Microbiological Methods, 41: 249–257
    Gaspard S, Vazquez F, Holliger C. 1998. Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens. Applied and Environmental Microbiology, 64(9): 3188-3194
    Gich F B, Amer E, Figueras J B, Abella C A, Balaguer M D, Poch M. 2000. Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). Int. Microbiol., 3: 103-106
    Gralnick J A, Newman D K. 2007. Extracelllular respiration. Molecular Microbiology, 65(1): 1-11 Gralnick J A, Vali H, Lies D P, Newman D K. 2006. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci U S A, 103: 4669-4674 Hammann R, Ottow J C G. 1974. Reductive dissolution of Fe2O3 by Saccharolytic clostridia and
    Bacillus polymyxa under anaerobic conditions. Journal of Plant Nutrition and Soil Science, 137(2): 108-115
    Hansel C M, Benner S G, Neiss J, Dohnalkova A, Kukkadapu R K, Fendorf S. 2003. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67(16): 2977-2992
    He J, Qu D. 2008. Dissimilatory Fe(III) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids. Journal of Environmental Sciences, 20(9): 1103-1108
    He J Z, L X Z, Zheng Y, Shen J P, Zhang L M. 2010. Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biology and Fertility of Soils, 46(3): 283-291
    He Q, Sanford R A. 2004. Acetate threshold concentrations suggest varying energy requirements during anaerobic respiration by Anaeromyxobacter dehalogenans. Applied and Environmental Microbiology, 70(11): 6940-6943
    Hengstmann U, Chin K-J, Janssen P H, Liesack W. 1999. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil Applied and Environmental Microbiology, 65(11): 5050-5058
    Hofstetter T B, Heijman C G, Haderlein S B, Holliger C, Schwarzenbach R P. 1999. Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environ Sci Technol, 33: 1479-1487
    Holmes D E, Finneran K T, O'Neil R A, Lovley D R. 2002. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Applied and Environmental Microbiology, 68(5): 2300-2306
    Holmes D E, Mester T, O'Neil R A, Perpetua L A, Larrahondo M J. 2008. Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes. Microbiology, 154: 1422-1435
    Hori T, Müller A, Igarashi Y, Conrad R, Friedrich M W. 2010. Identification of iron-reducing
    microorganisms in anoxic rice paddy soil by 13C-acetate probing stable isotope probing of iron-reducing microorganisms. The ISME Journal 4: 267-278
    Humayoun S B, Bano N, Hollibaugh J T. 2003. Depth distribution of microbial diversity in Mono lake, a meromictic soda lake in California. Applied and Environmental Microbiology, 69(2): 1030-1042
    Islam F S, Gault A G, Boothamn C, Polya D A, Charnock J M, Chatterjee A, Lloyd J R. 2004. Role of metalreducing bacteria in arsenic release from Bengal delta sediments. Nature, 430: 68-71
    Ivanov V, Stabnikov V, Zhuang W Q, Tay J H, Tay S T L. 2005. Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria. Journal of Applied Microbiology, 98: 1152-1161
    Jaeckel U, Schnell S. 2000. Suppression of methane emission from rice paddies by ferric iron fertilization. Soil Biology & Biochemistry, 32: 1811-1814
    Jahn M K, Haderlein S B, Meckenstock R U. 2005. Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol, 71: 3355-3358
    Janssen P H, Yates P S, Grinton B E, Taylor P M, Sait M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Acroteobacteria, and Verrucomicrobia. Applied and Environment Microbiology, 68: 2391-2396
    Jeon B-H, Dempsey B A. 2005. Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides. Environmental Science & Technology, 39: 5642-5649
    Jones J G, Gardener S, Simon B M. 1984. Reduction of ferric iron by heterotrophic bacteria in lake sediments. J. Gen. Microbiol., 130: 45-51
    Kappler A, Benz M, Schink B, Brune A. 2004. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology, 47: 85-92 Kappler A, Straub K L. 2005. Geomicrobiological cycling of iron. Reviews in Mineralogy & Geochemistry, 59: 85-108
    Karamanev D G, Nikolov L N, Mamatarkova V. 2002. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Minerals Engineering, 15: 341-346 Kennedy L G, Everett J W. 2001. Microbial degradation of simulated landfill leachate: solid iron/sulfur interactions. Advances in Environmental Research, 5(2): 103-116
    Kerin E J, Gilmour C C. 2006. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12): 7919–7921
    Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 16: 111-120
    Kukkadapu R K, Zachara J M, Fredrichson J K, Kennedy D W, Dohnalkova A C, Mccready D E. 2005. Ferrous hydroxy carbonate is a stable transformation product of biogenic magnetite. American Mineralogist, 90: 510-515
    Kumar S, Tamura K, Jakobsen I B, Nei M. 2001. Mega 2: Molecular evolutionary genetics analysis software. AZ: Arizona State University Press:
    Kusel K, Dorsch T, Acker G, Stackebrandt E. 1999. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Applied and Environmental Microbiology, 65(8): 3633-3640Lüdemann H, Arth I, Liesack W. 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Applied and Environmental Microbiology, 66(2): 754-762
    Lear G, Song B, Gault A G, Polya D A, Lloyd J R. 2007. Molecular analysis of arsenate-reducing bacteria within cambodian sediments following amendment with acetate. Applied and Environmental Microbiology, 73(4): 1041-1048 Lehours A-C, Batisson I, Guedon A, Mailhot G, Fonty G. 2009. Diversity of culturable bacteria, from
    the anaerobic zone of the meromictic lake Pavin, able to perform dissimilatory-iron reduction in different in vitro conditions. Geomicrobiology Journal, 26(3): 212-223
    Lehours A-C, Evans P, Bardot C, Joblin K, Ge′rard F. 2007. Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (lake Pavin, France). Applied and Environmental Microbiology, 73(6): 2016–2019
    Li Y, Low G K C, Scott J A, Amal R. 2009. The role of iron in hexavalent chromium reduction by municipal landfill leachate. Journal of Hazardous Materials, 161(2-3): 657-662
    Liesack W, Schnell S, Revsbech N P. 2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24: 625-645
    Lin B, Braster M, Breukelen B M v, Verseveld H W v, Westerhoff H V, Roeling W F M. 2005.
    Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Applied and Environmental Microbiology, 71(10): 5983-5991
    Lin B, Hyacinthe C, Bonneville S, Braster M, Cappellen P V, R?ling W F M. 2007. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheld estuary, Northwest Europe. Environmental Microbiology, 9(8): 1956-1968
    Ling W F M R, Breukelen B M v, Braster M, Lin B, Verseveld H W v. 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Applied and Environmental Microbiology, 67(10): 4619-4629
    Liu C, Gorby Y A, Zachara J M, Fredrickson J K, Brown C F. 2002. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnology and Bioengineering, 80(6): 637-649
    Liu X Z, Zhang L M, Prosser J I, He J Z. 2009. Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biology & Biochemistry, 41: 687-694
    Lloyd J R. 2003. Microbial reduction of metals and radionuclides FEMS Microbiology Reviews, 27(2-3): 411-425
    Lobry J R, Flandrols J P, Carret G, Pave A. 1992. Monod's bacterial growth model revisited. Bulletin of Mathematical Biology, 54(1): 117-122
    Lonergan D J, Jenter H L, Coates J D, Phillips E J P, Schmidt T M, Lovley D R. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. Journal of Bacteriology, 178(8): 2402-2408
    Lovely D R, Baedecker M J, Lonergan D J, Cozzarelli J M, Phillips E J P, Siegel D J. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 339: 297-300
    Lovley D R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55(2):259-287
    Lovley D R. 1993. Dissimilatory metal reduction. Annual Review of Microbiology, 47: 263-290
    Lovley D R. 1997. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiology Reviews, 20: 305-313
    Lovley D R. 2000. Fe(III) and Mn (IV) Reduction. In: Lovley D R. Environmental Microbe-Metal Interactions. Washington, D. C.: ASM Press:
    Lovley D R. 2006. Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. The Prokaryotes. New York: Springer: 635-658
    Lovley D R, Anderso R T. 2000. Influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 8: 77-88 Lovley D R, Coates J D, Blunt-Harris E L, Phillips E J P, Woodward J C. 1996. Humic substances as
    electron acceptors for microbial respiration. Nature, 382: 445-448
    Lovley D R, Holmes D E, Nevin K P. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. In: Advances in Microbial Physiology. 219-286
    Lovley D R, Lonergan D J. 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Applied and Environmental Microbiology, 56: 1858-1864
    Lovley D R, Phillips E J P. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51(4): 683-689
    Lovley D R, Phillips E J P. 1987. Competition mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Applied and Environmental Microbiology, 53: 2636-2641
    Lovley D R, Phillips E J P. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54(6): 1472-1480
    Lovley D R, Phillips E J P. 1989. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Applied and Environmental Microbiology, 55(12): 3234-3236
    Lovley D R, Phillips E J P. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Applied and Environmental Microbiology, 58(3):
    Lovley D R, Phillips E J P. 1995. Fe(III) and S0 reduction by Pelobacter carbinolicus. Applied and Environmental Microbiology, 61(6): 2132-2138 Lovley D R, Phillips E J P, Lonergan D J. 1989. Hydrogen and formate oxidation coupled to
    dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Applied and Environmental Microbiology, 55(3): 700-706
    Lovley D R, Stolz J F, Gordon L. Nord J, Phillips E J P. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330: 252-254
    Luu Y-S, Ramsay J A. 2003. Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source. World Journal of Microbiology & Biotechnology, 19: 215-225
    Magnuson T S, Hodges-Myerson A L, Lovley D R. 2000. Characterization of a membrane-bound NADH-dependent Fe3+ reductase from the dissimilatory Fe3+ -reducing bacterium Geobacter sulfurreducens. FEMS Microbiology Letters, 185: 205-211
    Magnuson T S, Isoyama N, Hodges-Myerson A L, Davidson G, Maroney M J, Geesey G G, Lovley DR. 2001. Isolation, characterization and gene sequence analysis of a membraneassociated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. Biochemical Journal, 359: 147-152
    Mahadevan R, Bond D R, Butler J E, Esteve-Nunez A, Coppi M V, Palsson B O, Schilling C H, Lovley D R. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Applied and Environmental Microbiology, 72(2): 1558–1568
    Marchesi J R, Sato T, Weightman A J, Martin T A, Fry J C, Hiom S J, Wade W G. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2): 795-799
    Marilley L, Aragno M. 1999. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology, 13: 127-136
    McInerney M J, Beaty P S. 1988. Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can. J. Microbiol., 34: 487-493
    Myers C R, Myers J M. 1993. Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiology Letters, 114(2): 215-222
    Nealson K H, Myers C R. 1992. Microbial reduction of manganese and iron: new approaches to carbon cycling. Applied and Environmental Microbiology, 58(2): 439-443
    Nealson K H, Saffarini D. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annual Review of Microbiology, 48: 311-343 Nevin K P, Lovley D R. 2002a. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Applied and Environmental Microbiology, 68(5): 2294-2299
    Nevin K P, Lovley D R. 2002b. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiology Journal, 19: 141-159
    Newman D K, Kolter R. 2000. A role for excreted quinones in extracellular electron transfer. Nature, 405: 94-97
    Noguera D R, Brusseau G A, Rittmann B E, Stahl D A. 1998. A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechnology and Bioengineering, 59(6): 732-746
    Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W. 2005. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environmental Microbiology, 7(3): 382-395
    Olsen R A, Bakken L R. 1987. Viability of soil bacteria: Optimization of platecounting technique and
    comparison between total counts and plate counts within different size groups. Microb. Ecol., 13: 59-74
    Omoregie E O, Mastalerz V, Lange G d, Straub K L. 2008. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Applied and Environmental Microbiology, 74(10): 3198-3215
    Park H S, Lin S, Voordouw G. 2008. Ferric iron reduction by Desulfovibrio vulgaris hildenborough wild type and energy metabolism mutants. Antonie van Leeuwenhoek, 93: 79-85
    Peng J J, LüZ, Rui J P, Lu Y. 2008. Dynamics of methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Applied and Environmental Microbiology, 74(9): 2894-2901
    Petrie L, North N N, Dollhopf S L, Balkwill D L, Kostka J E. 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated withuranium(VI). Applied and Environmental Microbiology, 69(12): 7467-7479
    Phillips E J P, Lovley D R, Roden E E. 1993. Composition of non-microbially reducible Fe(III) in aquatic sediments. Applied and Environmental Microbiology, 59(8):
    Praveen-Kumar, Tarafdar J C. 2003. 2, 3, 5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biol. Fertil Soils, 38: 186-189 Qian X, Reguera G, Mester T, Lovley D R. 2007. Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. FEMS Microbiology Letters, 277(1): 21-27
    Qu D, Ratering S, Schnell S. 2004. Microbial reduction of weakly crystalline iron(III) oxides and suppression of methanogenesis in paddy soil. Bulletin of Environment Contamination and Toxicology, 72: 1172-1181
    Ratering S, Schnell S. 2000. Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry, 48: 341-365
    Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. 2005. Extracellular electron transfer via microbial nanowires. Nature, 435123: 1098-1101
    Reguera G, Pollina R B, Nicoll J S, Lovley D R. 2006. Possible non-conductive role of Geobacter sulfurreducens pili nanowires in biofilm formation. Journal of Bacteriology, 189(5): 2125-2127
    Roberts J L. 1947. Reduction of ferric hydroxide by strains of Bacillus polymyxa. Soil Sci., 63: 135-140
    Roden E E. 2003. Diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in carbon-limited cultures of wetland sediment microorganisms. Applied and Environmental Microbiology, 69(9): 5702-5706
    Roden E E, Lovley D R. 1993. Dissimilatory Fe(III) reduction by the marine microogganism Desulfuronomas acetoxidans. Applied and Environmental Microbiology, 59(3): 734-742
    Roden E E, Zachara J M. 1996. Microbial reduction of crystalline iron(III) oxides: influence of surface area and potential for cell growth. Environmental Science and Technology, 30: 1618-1628
    Rui J, Peng J, Lu Y. 2009. Succession of bacterial populations during plant residue decomposition in rice field soil. Applied and Environmental Microbiology, 75(14): 4879-4886 Runov E V. 1926. Die Reduktion der Eisenoxyde auf microbiologichem Wege. Vestn. Bakter-Agronomich. Stantsii, 24: 75-82 Satoh A, Watanabe M, Ueki A, Ueki K. 2002. Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. Anaerobe, 8: 233-246 Sawaynma S. 2006. Possibility of anoxic ferric ammonium oxidation. Journal of Bioscience and Bioengineering, 101(1): 70-72
    Scheid D, Stubner S, Conrad R. 2004. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. FEMS Microbiology Ecology, 50(2): 101-110
    Schnell S, Ratering S. 1998. Simultaneous determination of iron(III), iron(II) and manganese(II) in environmental samples by ion chromatography. Environmental Science & Technology 32: 1530-1537
    Scholz F, Schroder U. 2003. Bacterial batteries. Nature Biotechnol, 21(10): 1151-1152
    Scott J H, Nealson K H. 1994. A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. Journal of Bacteriology, 176(11): 3408-3411
    Seeliger S, Cord-Ruwisch R, Shink B. 1998. A periplasmic and extracellular c-type cytochrome of
    Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. Journal of Bacteriology, 180: 3686-3691
    Seifoddini H, Djassemi M. 1991. The production data-based similarity coefficient versus Jaccard's similarity coefficient. Computers & Industrial Engineering, 21(1-4): 263-266
    Shermann D M, Randall S R. 2003. Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta, 67: 4223-4230
    Shrestha P M, Noll M, Liesack W. 2007. Phylogenetic identity, growth-response time and rRNA operon copy number of soil bacteria indicate different stages of community succession. Environmental Microbiology, 9(10): 2464-2474
    Smedley P L, Kinniburgh D G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17: 517-568
    Spatharis S, Tsirtsis G. 2010. Ecological quality scales based on phytoplankton for the implementation of water framework directive in the Eastern Mediterranean. Ecological Indicators, 10: 840-847
    Starkey R L, Halvorson H O. 1927. Studies on the transformations of iron in nature II. Concerning the importance of microorganisms in the solution and precipitation of iron. Soil Sci., 24: 381-402
    Stepniewski W, Stepniewska Z, Glin′ski J, Brzezin′ska M, W?odarczyk T, Przywara G, Varallyay G, Rajkai K. 2000. Dehydrogenase activity of some Hungarian soils as related to their water and aeration status. Int. Agrophysics, 14: 341-354
    Straub K L, Benz M, Schink B. 2001. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34: 181-186
    Straub K L, Schink B. 2004. Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria. Archives of Microbiology, 182(2-3): 175-181
    Stumm W, Morgan J J. 1996. Aquatic chemistry: chemical equilibria and rates in natural waters. New York: John Wiley & Sons:
    Teh Y A, Dubinsky E A, Silver W L, Carlson C M. 2008. Suppression of methanogenesis by dissimilatory Fe(III)-reducing bacteria in tropical rain forest soils: implications for ecosystem methane flux. Global Change Biology, 14(2): 413-422
    Thamdrup B. 2000a. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B. Adv. Microb. Ecol. New York: Kluwer Academic/Plenum: 41-84
    Thamdrup B. 2000b. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B. Advances in Microbial Ecology. New York: Kluwer Academic/Plenum: 41-84
    Thompson A, Chadwick O A, Rancourt D G, Chorover J. 2006. Iron-oxide crystallinity increases during soil redox oscillations. Geochimica et Cosmochimica Acta 70: 1710-1727
    Tian Q, Chen J, Zhang H, Xiao Y. 2006. Study on the modified triphenyl tetrazolium chloride dehydrogenase activity (TTC-DHA) method in determination of bioactivity in the up-flow aerated bio-activated carbon filter. African Journal of Biotechnology, 5(2): 181-188
    Todorova S G, Siegel D I, Costello A M. 2005. Microbial Fe(III) reduction in a minerotrophic wetland-geochemical controls and involvement in organic matter decomposition. Applied Geochemistry, 20: 1120-1130
    Tor J M, Lovley D R. 2001. Anaerobic degradation of aromatic compounds coupled to Fe(III)reduction by Ferroglobus placidus. Environmental Microbiology, 3: 281-287
    Tugel J B, Hines M E, Jones G E. 1986. Microbial iron reduction by enrichment cultures isolated from estuarine sediments. Applied and Environmental Microbiology, 52: 1167-1172
    Turick C E, Tisa L S, Frank Caccavo J. 2002. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Applied and Environmental Microbiology, 68(5): 2436-2444
    Unger I M, Kennedy A C, Muzika R-M. 2009. Flooding effects on soil microbial communities Applied Soil Ecology, 42(1): 1-8
    Van Bodegom P M, Scholten J C M, Stams A J M. 2004. Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol. Ecol., 49: 261-268
    Vandieken V, Mu?mann M, Niemann H, J?rgensen B B. 2006. Desulfuromonas svalbardens sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. International Journal of Systematic and Evolutionary Microbiology, 56: 1133-1139
    Wang A, Liu L, Sun D, Ren N, Lee D-J. 2010a. Isolation of Fe(III)-reducing fermentative bacterium Bacteroides sp. W7 in the anode suspension of a microbial electrolysis cell (MEC). International Journal of Hydrogen Energy, 35: 3178-3182
    Wang A, Sun D, Ren N, Liu C, Liu W, Logan B E, Wu W-M. 2010b. A rapid selection strategy for an anodophilic consortium for microbial fuel cells. Bioresource Technology, 101(14): 5733-5735
    Wang X, Yang J, Chen X, Sun G, Zhu Y. 2009. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. Journal of Soils and Sediments, 9: 568-577
    Waychunas G A, Rea B A, Fuller C C, Davis J A. 1993. Surface chemistry of ferrihydrite: part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta, 57: 2251-2269
    Weber K A, Achenbach L A, Coates J D. 2006a. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature, 4: 752-764
    Weber K A, Urrutia M M, Churchill P F, Kukkadapu R K, Roden E E. 2006b. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environmental Microbiology, 8(1): 100-113
    Weber S, Stubner S, Conrad R. 2001. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Applied and Environmental Microbiology, 67: 1318-1327 Weinbauer M G, Beckmann C, H?fle M G. 1998. Utility of green fluorescent nucleic acid dyes and aluminium oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Applied and Environment Microbiology, 64: 5000-5003
    Xing D, Ren N, Rittmann B E. 2008. Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene. Applied and Environmental Microbiology, 74(4): 1232-1239
    Xing P, Guo L, Tian W, Wu Q L. 2010. Novel Clostridium populations involved in the anaerobic degradation of microcystis blooms. The ISME Journal:
    Yao H, Conrad R. 1999. Thermodynamics of methane production in different rice paddy soils from China,the Philippines and Italy. Soil Biology & Biochemistry, 31(3): 463-473
    Yun S H, Hwang T S, Park D H. 2007. Metabolic characterization of lactic acid bacterium Lactococcus garvieae sk11, capable of reducing ferric iron, nitrate, and fumarate. Journal MicrobiologyBiotechnology, 17(2): 218-25
    Zhao J, Fang Y, Scheibe T D, Lovley D R, Mahadevan R. 2010. Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments. Journal of Contaminant Hydrology, 112: 30-44
    Zhao Y, Ren N, Wang A, Liu Y. 2007. The influence of Fe elements on sulfate reduction process and the response of microbial community. China Environment Science, 27(2): 199-203
    Zheng Y, Zhang L M, Zheng Y M, Di H J, He J Z. 2008. Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. Journal of Soils and Sediments, 8(6): 406-414
    Zhou J, Liu S, Xia B, Zhang C, Palumbo A V, Phelps T J. 2001. Molecular characterization and diversity of thermophilic iron-reducing enrichment cultures from deep subsurface environments. Journal of Applied Microbiology, 90: 96-105
    冯雅丽,李浩然. 2005.利用微生物电池研究微生物在矿物表面电子传递过程.北京科技大学学报, 28(11): 1010-1014
    谷晓岩,李凤英,张燕. 2009.两维图论聚类法在农业区划中的应用—以山东省十七地市为例. 安徽农学通报, 15(3): 62-66
    关松荫等. 1986.土壤酶及其研究法.北京:农业出版社: 376
    关舒元,朱超,王保莉,曲东,王伟民,孙丽蓉. 2008.铁还原菌株P4的碳源利用特征及其系统发育学分析.西北农林科技大学学报(自然科学版), 36(3): 117-123
    林先贵. 2010.土壤微生物研究原理与方法.北京:高等教育出版社:
    林江辉,李辉信,胡锋,赵海燕. 2004.干土效应对土壤生物组成及矿化与硝化作用的影响.土壤学报, 41(6): 924-930
    刘硕,曲东. 2006.苯系物作为唯一碳源对异化铁还原过程的影响西北农林科技大学学报(自然科学版), 34(10): 101-107
    罗罡辉,吴次芳,徐保根. 2004.土地整理优先度评价方法及其应用研究.浙江大学学报:农业与生命科学版, 30(3): 347-352
    曲东. 2000.水稻土中铁的微生物还原及其对甲烷产生的影响. [博士].杨凌:西北农林科技大学
    曲东, Schnell S. 2001.纯培养条件下不同氧化铁的微生物还原能力.微生物学报, 41(6): 745-749
    曲东,张一平, Schnell S, Conrad R. 2003a.水稻土中铁氧化物的厌氧还原及其对微生物过程的影响.土壤学报, 40(6): 858-863
    曲东,张一平, Schnell S, Conrad R. 2003b.添加氧化铁对水稻土中H2、CO2和CH4形成的影响. 应用生态学报, 14(8): 1313-1316
    曲东,谭中欣,王保莉,贺江舟. 2003c.外源物质对水稻土铁还原的影响.西北农林科技大学学报(自然科学版), 31(4): 6-10
    曲东,贺江舟,孙丽蓉. 2005.不同水稻土中氧化铁的微生物还原特征.西北农林科技大学学报(自然科学版), 33(4): 97-101
    孙丽蓉,曲东. 2007.电子穿梭物质对异化Fe(III)还原过程的影响.西北农林科技大学学报(自然科学版), 35(4): 192-198
    孙丽蓉,曲东,卫亚红. 2008.光照对水稻土中氧化铁还原的影响.土壤学报, 45(4): 628-634
    
    汤琳,曾光明,孙伟,魏万之. 2004. Logistic方程在微生物分批培养动力学中的应用.湖南大学学报(自然科学版), 31(3): 23-28万伟,王建龙. 2008. Fe2+浓度对生物产氢动力学的影响.环境科学, 29(9): 2633-2636
    王静,曲东,易维洁. 2009.不同浓度硫酸盐对水稻土中异化铁还原过程的影响.农业环境科学学报, 28(5): 908-913
    易维洁,曲东,王庆. 2010a.碳源和淹水时间对水稻土微生物Fe(III)还原能力的影响.应用生态学报, 21(12): 3133-3140
    易维洁,曲东,朱超,王静. 2009. 3株铁还原细菌利用不同碳源的还原特征分析.西北农林科技大学学报(自然科学版), 37(2): 181-186
    易维洁,曲东,黄婉玉,王庆. 2010b.淹水培养时间对水稻土中Fe(III)异化还原能力的影响.农业环境科学学报, 29(9): 1723-1729
    由焦化,夏淑红,王保莉,曲东. 2011.淹水时间对水稻土中地杆菌科群落结构及丰度的影响. 微生物学报, 51(6):
    郑志,姜绍通,罗水忠,潘丽军,李兴江. 2008.不同通气条件下米根霉发酵产L-乳酸的代谢调控.农业机械学报, 39(8): 79-84
    朱维琴,林咸永,章永松. 2002.铁、锰等金属元素的微生物还原及其在环境生物修复中的意义. 应用生态学报, 13(3): 369-372

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700