用户名: 密码: 验证码:
双折线式卷筒多层缠绕系统力学分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋工程、港口运输、采矿工程以及水工建设等工程领域的快速发展,各种超大扬程、大钢丝绳容绳量的起重设备需求不断增加。实践证明双折线式卷筒多层缠绕系统是解决此类大扬程、大钢丝绳容绳量问题的最有效方法。目前在进行多层缠绕卷筒系统设计时,卷筒的多层缠绕系数是由钢丝绳的缠绕层数确定的。实际上卷筒的多层缠绕系数不仅与钢丝绳的缠绕层数有关,同时与钢丝绳在卷筒上的排列方式以及钢丝绳的弹性特性有着重要的关系。在轻量化设计要求下,准确地分析卷筒的实际应力,是保证卷筒安全、可靠工作的前提。本文通过有限元数值仿真法定量地分析了钢丝绳的弹性特性,运用理论分析和实物试验的方法,研究了双折线式卷筒的多层缠绕系数、卷筒的受力特征以及钢丝绳弹性特性对多层缠绕系数的影响。所做的主要研究工作及创新点如下:
     1、运用空间变换方法建立了不同捻向、不同旋向和不同结构钢丝绳各层钢丝空间曲线的普适参量方程,提出了用Matlab与Pro/E软件建立复杂结构钢丝绳空间几何模型的新方法。应用Abaqus软件建立了复杂结构钢丝绳的有限元分析模型,使用显式动力学法对轴向拉伸与横向压缩载荷作用下钢丝绳应力分布和钢丝绳的弹性特性值进行计算分析。
     2、以现代板壳理论为基础,将双折线式多层缠绕钢丝绳卷筒筒体视为均匀受压的旋转对称壳体,将端板视为受层状分布线载荷作用的旋转对称圆板,建立双折线式卷筒筒体及端板变形的数学方程,通过分析不同边界条件,确定方程中的积分常数。
     3、通过分析多层缠绕时由于外层钢丝绳的缠绕导致内层钢丝绳张力的衰减机理,建立求解各层钢丝绳由于外层钢丝绳缠绕而引起的张力衰减值方程和多层缠绕系数方程。以底层上爬理论为基础,建立多层缠绕钢丝绳各个绳圈对双折线式卷筒端板轴向作用力与各层钢丝绳圈张力之间关系的方程。应用Matlab编制多层缠绕系数和各层钢丝绳张力的求解软件分析多层缠绕系数的影响因素以及多层缠绕工况下各层钢丝绳张力大小。
     4、根据双折线式卷筒多层缠绕系统的工作特征,研发了双折线式钢丝绳卷筒多层缠绕系统实际作业工况的模拟综合试验台。对双折线式卷筒进行应力测试,验证了双折线式卷筒多层缠绕系数的理论计算值与测试值的一致。同时理论分析与试验测试结果也表明,目前双折线式卷筒设计中普遍采用的当钢丝绳缠绕层数大于5时,多层缠绕系数统一选取2.5的设计原则需进行修正。
     本文提出的双折线式卷筒多层缠绕系统的研究方法和取得的研究成果为多层缠绕复杂工况下双折线式卷筒的力学分析和卷筒筒体及端板的科学设计提供了理论支撑和计算分析方法。提出的复杂结构钢丝绳有限元分析方法,为数值模拟分析钢丝绳的损伤机理提供了新的思路。
With the rapid development of the marine engineering, port transportation, mining engineering and construction of hydropower stations, the demand of high-lifting hoisting machinery is increasing. It has been found that parallel grooved multi-layer winding system is the best way to solve the problem of high-lifting. In the present design criterion of multi-layer winding drum, multi-layer winding coefficient is chosen according to the number of wire rope layers. However, the actual wire rope arrangement on the drum and the elastic property of wire rope also play decisive roles in determining the multi-layer winding coefficient value. Analyzing the actual stress of the drum accurately is the precondition of ensuring the drums'safety and reliability for meeting the lightweight design requirements. In this dissertation, theory analysis method, finite element numerical simulation method and experimental investigation method are used to explore multi-layer winding coefficient, the pressure acting on the cylinder body and two end plates of parallel grooved drum, wire rope elastic property and the relation between multi-layer winding coefficient and wire rope elastic property according to the actual "pyramid" arrangement of wire rope on parallel grooved drum. The main content and creative aspects are depicted in the following four parts.
     1. Based on the spacial transform of graphics, the general mathematical geometric models of different wire ropes with defined initial parameters are presented. The geometric model of a kind of complex structure wire rope is set up by using Matlab and Pro/E and Abaqus/Explicit to analyze the stress distribution and the elastic property of the complex structure wire rope under axial tension and lateral compression loads.
     2. The parallel grooved drum's stress is analyzed by its being divided into two parts. One part is rotational symmetric shell; the other is rotational symmetric plate. On the basis of the theory of plates and shells, the deformation differential equations of the cylinder body and end plate of parallel grooved drum are deduced and integration constants of the differential equations are obtained under different boundary conditions.
     3. Through analyzing the mechanism of inner layer wire rope tension attenuation due to the outer layer wire rope winding, the multi-layer winding coefficient equation is established. Matlab is employed to solve the equation and analyze the residual tension of each layer wire rope. The equation of the relation between the tension of each layer wire rope and the pressure exerting on the end plate is also deduced.
     4. The experimental rig which can simulate the real operation condition of parallel grooved multi-layer winding system is designed and manufactured. Strain-electricity method is applied to test the stress of the cylinder body and the end plates of the drum on the rig. It is found that the multi-layer winding coefficient obtained by the stress test is in general agreement with that obtained by theoretical calculation. Theoretical analysis and experimental tests suggest that the traditional design method, which set the multi-layer winding coefficient as2.5when the winding layer is more than5, is inaccurate.
     The results and creative points obtained in this dissertation solved the problems of stress analysis of parallel grooved drums under multi-layer winding and provided a system design theory and calculation methods for designing the accurate thickness with the lightweight design requirements. Finite element analysis method of complex structure wire rope also laid a foundation for studying the mechanism of wire rope damage by numerical simulation analysis method.
引文
[1]吴沂隆.钢丝绳弹性模量的研究[J].福建林业科技,2003,30(1):62-64.
    [2]孙鲁安,王国栋,耿鹏举.国外折线绳槽卷绕技术的发展和应用现状[J].黄河规划设计,2005,2:25-29.
    [3]胡勇,胡志辉,胡吉全.多层卷绕钢丝绳卷筒[c].物流工程三十年技术创新发展之道.上海.2010:348-351.
    [4]沈敏粮.起重机起升卷筒多层缠绕的设计方法[J].起重运输机械,2004,4:17-18.
    [5]郭献.双折线卷筒[J].起重运输机械,2007,1:45-46.
    [6]龚宪生.矿井提升机钢丝绳多层缠绕问题的研究[J].矿山机械,1985,12:7-12.
    [7]顾翠云,孙广德.钢丝绳在起升卷筒上的允许偏斜角[J].起重运输机械,1998,7-10.
    [8]阎丽芬,王礼友.解决高扬程大启闭力启闭机最佳方案[J].水利电力机械,2004水利电力机械,2004,26(4):29-31.
    [9]周继红.大起升高度起重机卷筒的设计方法[J].机械工程与自动化,2011,(3):81-82.
    [10]江华.卷筒绕进绕出钢丝绳与相邻绳的最小间距计算[J].起重运输机械,2011,增刊:24-25.
    [11]Hu Zhihui, Hu Jiquan, Hu yong. Experimental Study on Effect of Pulley Diameter and Lubricant Grease on Multi-layer Winding Wire Rope's Fatigue Endurance[J].Advanced Materials Research,2011,301-303:1618-1623.
    [12]Hu Zhihui, Hu Jiquan. The Fatigue and Degradation Mechanisms of Wire Ropes Bending-over-sheaves[J].Applied Mechanics and Materials,2012,127:344-349.
    [13]廖红卫.钢丝绳的疲劳行为特征与损伤机理研究[D].武汉:武汉理工大学,2006.
    [14]Herbert R. Weischedel. Crane Wire Rope Damage and Nondestructive Inspection Methods [R].NDT Technologies, Inc.2002:1-11.
    [15]Cris Seidenather,邹十践翻译.卷筒设计是进行平滑提升作业的关键[J].建设机械技术与管理,2006,1:49-50.
    [16]C. R. Chaplin. Failure Mechanisms in Wire Ropes[J].Engineering Failure Analysis,1995,2(1): 45-47.
    [17]M. Torkar, B. Arzensek. Failure of Wire Rope[J]. Engineering Failure Analysis,2002,9: 227-233.
    [18]N.W.Bellamy, B.D.A.Phillips. An Inverstigation into Flange Forces in Winch Drums.[J].Proc Instn Mech Engrs.1968-69,183(27):579-589.
    [19]S.Otto,I.Mupende and P. Detiz. Influence of the hoisting drum winding system on the end plates loads [J]. Proceeding of the 7th international design conference,2002,1091-1096.
    [20]薛伟,李东玫.钢丝绳受力弹性伸长的测试[J].林业科技,1996,21(4):54-55.
    [21]吴沂隆.钢丝绳弹性模量的研究[J].福建林业科技,2003,30(3):62-64.
    [22]薛伟,张利顺等.钢丝绳弹性模量研究的现状与发展方向[J].林业科技,1996,21(6):55-57.
    [23]叶觉明,姚志安.钢丝绳吊索结构实际弹性模量测试和长度精度控制[J].金属制品,2010,36(1):70-73.
    [24]I. Mupende, S. Otto. Windentrommeln auf dem Priifstand [J]. TU Clausthal, Dissertation, 2000,25:91-93.
    [25]I. Mupende, S. Otto. Experimentelle Beanspruchungsanalyse an einer Hubwinde [J]. TU Clausthal, Dissertation,2000,25:115-118.
    [26]J. Henschel, I. Mupende. Konstruktion eines prufstandes zur Messung des Querelastizitatsmodul von Drahtseilen[J]. TU Clausthal, Dissertation,1997,22:85-88.
    [27]P. Dietz, A. Lohrengel. Problems related to the design of multilayer drums for synthetic and hybrid ropes. [J]. OIPEEC Conference/3rd International Ropedays,2009,127:1-14.
    [28]G A. Costello Theory of wire rope[M]Berlin:Spring,1990,1-98.
    [29]J. W. Phillips and G. A. Costello. Contact Stresses in twisted wire cables[J] Journal of the Engineering Mechanics Division,1974,100:1096-1099.
    [30]G A. Costello and J. W. Phillips Effective modulus of twisted wire cables[J].Journal of the Engineering Mechanics Division,1976,102:171-181.
    [31]G A. Costello. Stress in multilayered cables[J].Journal of Energy Resources Technology, 1983,105:337-340.
    [32]J. W. Phillips and G. A. Costello. Analysis of wire ropes with internal wire-rope cores[J]. International Journal of Mechanical Sciences,1985,52:510-516.
    [33]W. K. Lee and N. F. Casey. Helix geometry in wire rope[J].Wire Industry,1987,8:461-468.
    [34]W. K. Lee. An insight into wire rope geometry[J].International Journal of Solids and Structures,1991,28(4):471-490.
    [35]C. W. Richard, J. M. Anthony, M. M. William. Model for the structure of round strand wire ropes[J].Report of investigation,1998,1-32.
    [36]N. Anne and L. Michel. A finite element model for simple straight wire rope strands[J]. Computers and Structures,2000,77:345-359.
    [37]W. G. Jiang, M. S. Yao, J. M. Walton. Modeling of rope strand under axial and torsional loads by finite element method[C].Proceedings of the Application of Endurance Prediction for Wire Ropes'97,1997,17-35
    [38]W.G. Jiang, J. L. Henshall. The development and application of the helically symmetric boundary conditions in finite element analysis[J].Communications in Numerical Methods in Engineering,1999,15(6):435-444.
    [39]W. G Jiang. The development of the helically symmetric boundary condition in finite element analysis and its applications to spiral strands [D] Brunel University, UK,1999, 58-103.
    [40]W. G. Jiang, M. S. Yao, J. M. Walton. A concise finite element model for simple straight wire rope strand[J].International Journal of Mechanical Sciences,1999,41:143-161.
    [41]W. G Jiang, J. L. Henshall. A novel finite element model for helical springs[J].Finite Elements in Analysis and Design,2000,35:367-377.
    [42]S. R. Ghoreishi. Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model[J]. International Journal of Mechanical Sciences 2007,49(11):1251-61.
    [43]Y. J. Chiang. Characterizing simple-stranded wire cables under axial loading[J]. Finite Elements in Analysis and Design.1996,24(2):49-66.
    [44]E. Stanova, G. Fedorko. Computer modelling of wire strands and ropes Part Ⅰ:Theory and computer implementation[J]. Advances in Engineering Software,2011,42:305-315.
    [45]E. Stanova, G. Fedorko. Computer modelling of wire strands and ropes part Ⅱ:Finite element-based applications[J]. Advances in Engineering Software,2011,42:322-331.
    [46]李林安,杨文芳等.舰用钢丝绳在挤压力下的有限元分析[J].天津大学学报,2003,36(3):281-284.
    [47]梁清香,李超,孙杰.打结钢丝绳有限元数值模拟方法研究[J].太原科技大学学报,2011,32(3):232-234.
    [48]姜海波,张德坤,马军.接触摩擦因素对钢丝绳有限元结果影响性分析[J].煤炭科学技术,2011,39(11):88-90.
    [49]马军,葛世荣,张德坤.钢丝绳股内钢丝的载荷分布[J].机械工程学报,2009,45(4):259-264.
    [50]马军,葛世荣,张德坤.钢丝绳三维接触模型及丝间应力分布研究[J].中国机械工程,2012,23(7):864-868.
    [51]王桂兰,孙建芳,张海鸥.钢丝绳捻制成形接触问题的有限元分析[J].固体力学学报,2005,26(4):414.-420.
    [52]孙建芳,王桂兰,张海鸥.考虑接触摩擦的金属捻线捻制成形过程计算机模拟[J].系统仿真学报,2005,17(7):1746-1750.
    [53]王桂兰,张海鸥.钢丝绳成形过程共转坐标系弹塑性有限元分析[J].华中科技大学学报,2001,29(8):65-67.
    [54]利歌.卷筒绳槽的选择[J].建筑机械,2001,(1):42-43.
    [55]谭翔,牟心捷,刘建萍.单绳缠络式矿并提升机多层缠绩层间过渡的探讨[J].矿山机械2001,8:32-33.
    [56]罗婉霞,张伟生.双层卷绕卷筒挡圈的设计[J].起重运输机械,1999,11:14-15.
    [57]张益民,邱保柱.提升钢丝绳不正常缠绕原因探析及处理[J].矿山机械,2009,37(17):109-111.
    [58]赵婉婉.带Lebus槽的多层卷绕卷筒[J].机电设备,1990,2:46-48.
    [59]沈震耀.双阶梯卷筒[J].起重运输机械,1990,5:12-14.
    [60]唐连生,程文明.多层螺旋卷绕过渡块设计方法[J].起重运输机械,2011,4:57-58.
    [61]谭翔,牟心捷,刘建萍.单绳缠绕式矿并提升机多层缠绕层间过渡的探讨[J].矿山机械,2001,8:32-33.
    [62]张本初.钢丝绳多层缠绕工作条件的改善问题[J].矿山机械,1982,6:18-24.
    [63]Roland Verreet. New Wire Rope designs for multi layer drums[R].CASAR,2003:8-10.
    [64]陶德馨.对新型多层卷绕装置——LeBus卷筒原理的探讨[C].全国物料搬运学会第二次年会论文,1984,1-10.
    [65]郭维斌.双阶螺旋折线形绳槽卷筒的设计[J].工程机械,2000,12:16-18.
    [66]李霞,杨文薇.钢丝绳在折线卷筒上缠绕过程的三维运动仿真制作[J].矿山机械,2005,33(4):48-49.
    [67]胡水根,利歌.卷筒上钢丝绳爬台的理论尺寸[J].建筑机械,2004,8:81-82.
    [68]童丽丽,董国蓉.卷筒双阶螺旋绳槽的加工工艺[J].起重运输机械,2000,2:34-35.
    [69]张国玲,于化顺,刘宪民,焦守民.球铁表面合金化折线卷筒的研制[J].铸造,2008,57(12):1248-1250.
    [70]蔡灿.折线式卷筒的设计与制造[J].机械设计,2001,4:27-28.
    [71]师明善,纪东莲.Lebu绳槽的仿形——数控工艺原理与设计[J].工程设计,1997,4:45-48.
    [72]王贞观,王万珍.起重机用篱笆式变幅卷筒的铸造[J].内蒙古石油化工,2011,9:104-106.
    [73]周汝忠,金久梅.起重机卷筒特殊绳槽的加工[J].起重运输机械,1998,8:29-30.
    [74]丁邦梅.“篱笆式”卷筒制造工艺设计——镶嵌法[J].起重运输机械,2010,6:75-77.
    [75]邓玉聪,徐长生.UGNX数控编程技术在Lebus卷筒导向垫块加工中的应用[J].武汉理工大学学报(交通科学与工程版),2011,35(1):216-218.
    [76]周贻康.提升机钢丝绳缠紧的探讨[J].矿山机械,2007,35(9):161-162.
    [77]龚宪生,杨雪华,夏荣海.提升机钢绳多层缠绕平稳过渡的研究[J].煤炭学报,2000,25(2):212-216
    [78]任开江,南志伟,谢艳.双折线绳槽卷筒2500t起重船上的应用[J].江苏船舶,2011,28(11):6-8.
    [79]陈铁云,陈伯真.弹性薄壳理论[M].武汉:华中工学院出版社,1983:1-18.
    [80]秦庆华,黄玉盈.薄板非线性问题解答的研究和展望[J].工程力学,1990,7(4):10-18.
    [81]K. Abhary. Maximum Stress in Round Structural Members under General Case of Static loading [J].Computers and Structures,1996,60(5):705-713.
    [82]G A. Kardomatens. Bulking of Thick Cylindrical Shell under External Pressure [J].Journal of Applied Mechanics,1993,60(3):195-201.
    [83]D.F. Windenburg, C. Triling. Collapse by Instability of Thin Cylindrical Shells under External Pressure[J]. Journal of Applied Mechanics,1957,24(1):269-277.
    [84]吴连元,胡刚义.板壳结构弹塑性稳定性的有限元分析[J].应用力学学报,1993,10(1):106-109.
    [85]蒋国仁.港口起重机械[M].大连:大连海事大学出版社,1995:71-72.
    [86]成大先.机械设计手册(第8篇)[M].北京:化学工业出版社,2002:62-63.
    [87]畅启仁.港口起重机[M].上海:上海海运学院,1986:135-124.
    [88]J. M. Singh.Basic Approach Towards Analysing Stresses in a Fabricated Fixed Ended Long Cylindrical Winding Drum [J]. Journal of Mechanical Engineering,1983,64(9):105-110.
    [89]J. M. Singh, A Chattopadhyay, C. R. Crao. Stress Analysis in Short Cylindrical Winding Drum[J].Mining Technology,1984,12:400-403.
    [90]肖汉斌,程贤福,陶德馨等.焊接卷筒稳定性计算方法研究[J].机械强度,2000,22(2):156-158.
    [91]肖汉斌,程贤福,陶德馨.卷筒壁厚设计方法的探讨[J].港口装卸,2000,129(2):1-3.
    [92]肖汉斌,陶德馨,顾必冲.起重机卷筒强度破坏判断准则分析[J].起重运输机械,2003,(12):22-24.
    [93]肖汉斌.起重机卷筒强度和稳定性理论分析与试验研究[D].武汉:武汉理工大学,2003.
    [94]邓乐安,屈小章,郑正国.起重机焊接卷筒力学性能分析及应用[J].建筑机械,2012,1:106-113.
    [95]宋甲宗,吴海帆,冯刚.大型卷筒的解析计算方法[J].起重运输机械,2000,2:10-139.
    [96]邓智泉,崔海涛,彭兆行.基于随机有限元法的卷筒强度可靠性分析[J].东北大学学报,1997,18(2):123-127.
    [97]崔海涛,彭兆行.基于几何法的三峡升船机卷筒强度的可靠性分析[J].计算力学学报,1998,15(3):353-355.
    [98]张晓川,陈定方,肖金生.250t升船机提升卷筒的结构分析[J].交通与计算机,1996,14(2):20-23.
    [99]邹晖华,张增培.大型薄壁焊接卷筒有限元受力计算[J].起重运输机械,2011,4:66-69.
    [100]程贤福,吴国栋.起重机卷筒有限元分析[J].煤矿机械,2006,27(1):62-64.
    [101]雷开毅,陈器.基于ANSYS对提升机卷筒集中应力的分析[J].起重运输机械,2010,1:27-30.
    [102]宗荣珍,张斌,叶洪深.提升绞车卷筒筒壳建模与分析[J].煤矿机械,2009,30(10):71-73.
    [103]铁摩锌柯.板壳理论[M].北京:科学出版社,1977:55-56.
    [104]张质文等.起重机设计手册[M].北京:铁道出版社,1998:224-242.
    [105]B.T.利津.薄壁结构设计[M].北京:国防工业出版社,1983:45-62.
    [106]杨长骙.起重机械[M].北京:机械工业出版社,1992:71-72.
    [107]Everett O. Waters. Rational Design of Hoisting Drums[J].Transactons of ASME,1920,42: 463-485.
    [108]B. M. Torrance. The design of winding drums [J]. The South African Mechanical Engineer, 1965,15:123-141.
    [109]P. Dietz. Ein Verfahren zur Berechnung ein-und mehrlagig bewickelter Seiltrommeln.[D.] Darmstadt:TH Darmstadt,1971.
    [110]I. Mupende, S. Otto. Das Beanspruchungsverhalten mehrlagig bewickelter Seiltrommeln unter nicht-rotationssymmetrischer Belastung [J]. TU Clausthal, Dis-sertation,2003,28: 39-46.
    [111]P. Detiz. Design criteria for multilayer wound winch drums following lightweight design principles [J]. Proceeding of the 8th international design conference,2004,15-20.
    [112]J. Henschel. Dimensionierung von Windentrommeln [J]. TU Clausthal, Dissertation, 2003,24:29-36.
    [113]刘守成.起重机多层卷绕卷筒径向压力的研究[J].大连理工大学学报,1962,3:25-47.
    [114]葛世荣,孙玉蓉.矿井提升机多层缠绕卷筒筒壳强度计算的理论实验研究[J].矿山机械,1986,12:54-60.
    [115]葛世荣,孙玉蓉.提升机多层缠绕系数算法的研究[J].矿山机械,1988,1:14-18.
    [116]葛世荣,孙玉蓉.多层缠绕卷筒壳载荷计算的静不定方法[J].中国矿业大学学报,1987,2:39-48.
    [117]杨家驹.钢丝绳多层缠绕拉力降低系数——缠绕系数[J].辽宁工程技术大学学报,1982,2:46-53.
    [118]白好杰,唐大放,董程林等.矿井提升绞车卷筒的有限元分析[J].矿山机械,2011,39(6):59-62.
    [119]李蕾,齐治国,张义举.应用sap5程序计算卷筒应力及多层缠绕系数[J].建筑机械,1989,12:7-12;
    [120]H. Usabiaga, J.M. Pagalday. Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads[J]. International Journal of Solids and Structures,2008,45:5503-5520.
    [121]余新刚,赵仲前.港口装卸用钢丝绳的设计与使用[J].金属制品,2010,36(4):11-13.
    [122]B.и.保戈留卜斯基.钢丝绳[M].北京:冶金工业出版社,1959:213-226.
    [123]沈志军,何灯等.捻制系数计算式的确认田.金属制品,2011,37(2):12-15.
    [124]王艳戎,潘志勇等.工程机械钢丝绳设计的重要参数计算[J].制造业自动化,2011,33(5):45-47.
    [125]孙家广,胡事民.计算机图形学基础教程[M].北京:清华大学出版社,2005:212-218.
    [126]何玉林.计算机图形学[M].北京:机械工业出版社,2004:126-149.
    [127]潘云鹤,董金祥,陈德人.计算机图形学原理、方法及应用[M].北京:高等教育出版社,2003:60-82.
    [128]庄茁,由小川,廖剑晖.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009:189-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700