用户名: 密码: 验证码:
发展三维粒子图像测速技术在桩土相互作用研究中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家的大规模建设发展,大量高层建筑、桥梁和港口不断涌现,桩基础所承受的风荷载、潮汐荷载、地震荷载等侧向荷载,已经引起中外学者高度重视。准确分析桩基及桩周土体的应力和变形,对研究桩土相互作用有重要意义。本研究利用粒子图像测速技术(PIV)无干扰、全场、动态测量砂土颗粒的二维位移矢量场。随着PIV技术的发展,三维粒子图像测速技术(Stereo-PIV)已经逐步应用到多个学科的试验室研究中,本试验主要通过自行设计试验设备和基于网络免费进行二次开发,研究砂土表面三维位移和桩土相互作用关系。本文具体工作和主要结论为:
     (1)针对目前桩土相互作用研究的局限性及其复杂性,采用一种无干扰、全场、动态测量技术,即粒子图像测速技术(PIV)对桩土相互作用进行研究,并对PIV技术原理进行了详细论述,分析了PIV技术的研究重点。本研究积极跟踪侧向应力桩的国内外研究方向,综述侧向应力桩的研究现状,确定结合PIV技术研究桩周围砂土的位移运动特点,分析桩对砂土的影响规律。
     (2)为了满足桩土相互作用试验的特殊性,即位移、力和图像的一一对应关系,运用LabVIEW图形化编程语言开发了位移、力和图像采集系统。该系统可以将物理位移和力转换为可以存储的数据信息,同时通过时间标记,使位移、力和图像数据有很好的统一性。
     (3)基于PIV技术原理,研究二维位移计算软件PIVview2C,该软件具有较强的二维分析能力,可以进行图像划分尺寸设置、相关方法选择、颗粒位移结果显示等,是测量砂土表面二维位移的较好软件。
     (4)采用CMOS相机平行砂土表面拍摄砂土位移图片,分析砂土在圆形桩和方形桩作用下的运动特点,桩头位移和拉力关系,砂土的二维平面位移矢量U和V,剪应变场与砂土剪切破坏面的关系,以及不同变形阶段砂土位移特点等。
     (5)采用两台CMOS相机分别从平行砂表面拍摄砂土表面位移和平行砂剖面拍摄砂土的竖向位移,获得砂土内部的运动数据。分析在进行有侧限条件方形桩作用下,砂土颗粒剖面垂直位移和平面水平位移的特点。
     (6)详细研究了图像坐标系、相机坐标系和空间坐标系的关系,改编可视化开放实验室的相机标定工具箱。该工具箱可以准确地获得相机的内置参数和外置参数。通过发展相机标定工具箱软件和三维共线方程解析法,自行编写MATLAB程序,重组三维空间坐标。该方法基于两个免费软件,自行开发简单易行,相对其他Stereo-PIV方法易于实现,与其他商业软件相比成本低,适合科研人员在进行三维颗粒流应用过程中自行编写。
     (7)采用两台CMOS相机进行无干扰拍摄在圆形桩侧向拉力作用下砂土表面颗粒三维位移场。分析不同变形阶段,桩头的位移和拉力之间的关系,砂土表面颗粒的水平位移U和垂直位移W的运动特点,砂土颗粒运动的角度,剪应变场与砂土破坏关系等。进行圆形桩对桩周砂土的影响范围进行预测,并与现场试验结果比对,证明采用模型试验结果的合理性。
With Chinese large-scale construction development, there are a large number of high-rise buildings, bridges and ports., Chinese and foreign scholars has paid more and more attention to pile foundation which are under wind load, tidal load, seismic load, and other lateral load. It is important for the research of pile-soil interaction effect to correctly analyze the stress and deformation of soil mass around pile foundation. Particle image velocimetry (PIV) was used in this research to measure the displacement field of soil particles. The PIV technique is an undisturbing, full field, and dynamic measurement technique.
     With the PIV technique development, the stereo particle image velocimetry (Stereo-PIV) has gradually applied in some disciplines in laboratory study. This experimental equipments were designed by the author. The developed Stereo-PIV program was made by author, that based on MATLAB camera calibration toolbox and PIVview2C software, which are free obtained from internet. The three dimensional displacement fields of soil surface were measured by the Stereo-PIV program. The concrete work and the main conclusions are as follows:
     (1) Present understanding of pile-soil interaction is not efficient enough to capture the deformation mechanism when pile under laterally loaded because of the complicated behaviour. A new measurement method, Particle Image Velocimetry (PIV) is used to measure the soil deformation around a laterally loaded pile. The principle of the PIV technique was presented and then laterally loaded pile research at home and abroad was reviewed. The study was focused on the PIV technique to measure the soil displacement and analyze pile-soil interaction.
     (2) In order to meet the special requirement of laterally loaded pile tests, that need to capture the displacement, force, and images simultaneously, a data acquisition system was developed based on LabVIEW software. The physical displacement and force can be converted to the data stored in computer. Using the time mark, the displacement, force and image data were obtained at the same time.
     (3) The PIVview2C software was introduced, that was based on the PIV principle. This software can choose window size, correlation method, vector plotting parameters, and so on, which is excellent software to measure two dimensional displacements.
     (4) Setting one CMOS camera parallel the soil surface, a series of images of soil movement was captured by the camera. The pictures before and after move were analyzed using PIVview2C. The pile-soil interaction was analyzed, including the pile displacement and lateral load, the soil two dimensional displacement, the shear strain field, and the difference of soil movement at different lateral load.
     (5) Setting two CMOS cameras separately parallel the soil surface and the soil profile, the planar displacement and vertical displacement were simultaneously captured. Under confined condition, the pile-soil interaction was analyzed.
     (6) The relationship of image coordinate system, camera coordinate system, and world coordinate system was studied. The recomposed MATLAB camera calibration toolbox can obtain intrinsic and extrinsic parameters of both right and left cameras. The Stereo-PIV program was made by author, based on the MATLAB camera calibration toolbox, PIVview2C software, and three dimensional collinearity equations. This developed program can be easily adjusted to meet user needs at a much lower cost, as compared with commercially available systems. Another reason is this method is easy to realize relative to other Stereo-PIV method.
     (7) Setting two CMOS cameras at different place and angle, the paired images of soil surface movement were simultaneously captured. At different lateral load the pile-soil interaction was analyzed, which mainly included the pile displacement and lateral load, the soil horizontal and vertical displacement fields, soil particles movement angle, the shear strain field, and the difference of soil movement at different lateral load. The influence area of the soil surface by the circular pile was predicted. The prediction was also verified by comparison with field test data.
引文
[1]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社.2002.
    [2]Blum H. Wirtschaftliche Dalbenformen und deren Berechnung [J]. Bautechnik,1932, 10(1):50-55.
    [3]Pyke R., Beikae M. The New Solution for the Resistance of Single Piles to Lateral Loading [C]. Laterally Loaded Deep Foundations:Analysis and Performance, ASTM STP 835,1984,3-20.
    [4]Horvarth John S. Simplified elastic continuum applied to the laterally loaded pile problem [C]. Laterally Loaded Deep Foundations:Analysis and Performance, ASTM, Baltimore,1984,112-121.
    [5]Brinch Hansen J. The Ultimate resistance of rigid piles against transversal forces [J]. The Danish Geotechnical Institute,1961, Bulletin(12):5-9.
    [6]Ashour M. N., Norris G., Pilling P. Lateral loading of a pile in layered soil using the strain wedge model [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998,124(3):303-315.
    [7]Norris G., Siddharthan R., Zafir Z., Madhu R. Liquefaction and residual strength of sands from drained triaxial tests [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(3):220-228.
    [8]Reese L., Cox W. R., Koop F. D. Analysis of Laterally Loaded Piles in Sand [C]. Offshore Technology Conference,1974,6:473-480.
    [9]Reese L C. Laterally loaded piles:program documentation [J]. Journal of the Geotechnical Engineering Division-Asce,1978,104(12):1518-1520.
    [10]吴恒立.计算推力桩的综合刚度原理与双参数法[M].北京:人民交通出版社.2000.
    [11]周洪波,杨敏,杨桦.水平受荷桩的耦合算法[J].岩土工程学报,2005,27(4):432-436.
    [12]赵明华,邹新军,罗松南,邹银生.横向受荷桩桩侧土体位移应力分布弹性解[J].岩土工程学报,2004,26(6):767-771.
    [13]王成,邓安福,李晓红.水平荷载短桩桩土共同作用全过程分析[J].岩土力学,2004,25(supp.2):296-300.
    [14]王成,邓安福.水平荷载桩桩土共同作用全过程分析[J].岩土工程学报,2001,23(4):476-480.
    [15]Franke R. Scattered data interpolation:test of some methods [J]. Mathematics of Computations,1982,33(157):181-200.
    [16]刘春波.流场可视化及DPIV图像处理[D].秦皇岛:燕山大学.2004.
    [17]Dadi M. Stanislas M., Rodriguez O., Dyment A. A study by holographic velocimetry of the behaviour of free particles in a flow [J]. Exp Fluids,1991,10(1):285-294.
    [18]Raffel M., Willert, C., Wereley, S., et al. Particle Image Velocimetry:A partical Guide [M]. New York:Springer.2007.
    [19]White D.J., Bolton M.D. Soil deformation around a displacement pile in sand [C]. International Conference on Physical Modeling in Geotechnics/ICPMG 02,, Lisse, Netherlands.2002,1:649-654.
    [20]陈钊,郭永彩,张代钧,许丹宇.互相关DPIV技术及其在氧化沟模型中的应用[J].光电工程,2006,33(12):127-131.
    [21]Adrian R J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow:speckle velocimetry vs. particle image velocimetry [J]. Applied Optics,1984,23(11):1690-1691.
    [22]Nguyen T. D., Wells J. C., Nguyen C. V. Wall shear stress measurement of near-wall flow over inclined and curved boundaries by stereo interfacial particle image velocimetry [J]. International Journal of Heat and Fluid Flow,2010,31(3):442-449.
    [23]Ortega J.M., Bristol R.L., Savas O.. Wake alleviation properties of triangular flapped wings [J]. AIAA Journal,2002,40(4):709-721.
    [24]Gill D., Lehane B. An optical technique for investigating soil displacement patterns [J]. Geotech Test J,2001,24(3):324-329.
    [25]Guler M., Edil T. B., Bosscher P. J. Measurement of particle movement in granular soils using image analysis [J]. Journal of Computing in Civil Engineering,1999,13(2): 116-122.
    [26]Liu J, Yuan B, Mai V, Dimaano R. Optical measurement of sand deformation around a laterally loaded pile [J]. Journal of Testing and Evalution,2011,39(5):754-759.
    [27]Ahmed Mahmoud, Iskander Magued. Analysis of tunneling-induced ground movements using transparent soil models [J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(5):525-535.
    [28]Adrian R. J. Twenty years of particle image velocimetry [J]. Experiments in Fluids, 2005,39(2):159-169.
    [29]Tomlinson Michael, Woodward John. Pile Design and Construction Practice (Fifth Edition) [M]. London:Taylor & Francis.2008.
    [30]Poulos H G. Behavior of laterally loaded piles. I:Single piles [J]. Journal of the Soil Mechanics and Foundations Division 1971,97(5):711-731.
    [31]Poulos H. G.. Behavior of laterally loaded piles. II:Pile groups. [J]. Journal of the Soil Mechanics and Foundations Division 1971,97(5):733-751.
    [32]Masoud Hajialilue-Bonab, Habin Azarnya-Shahgoli, Yones Sojoudi. Soil deformation pattern around laterally loaded piles [J]. International Journal of Physical Modelling in Geotechnics,2011,11(3):116-125.
    [33]Glesser M. Lateral Load Test on Vertical Fixed-Head and Free-Head Piles [C]. Symposium on Lateral Pile Load Tests, philadephla,1953,ASTM, SPT154:75-101.
    [34]Norris G. M. Theoretically Based BEF Laterally Loaded Pile Analysis [C]. Third International Conference on Numerical Methods in Offshore Piling, Nantes, France,1986,361-386.
    [35]McClelland B., Focht J.A. Soil modulus for laterally loaded piles [J]. Transaction of American Society of Civil Engineers,1958,123(2954):1049-1063.
    [36]Terzaghi K. Evaluation of coefficient of subgrade reaction [J]. Geotechnic,1955,5(4): 297-326.
    [37]Parker Jr. F., Reese L.C. Lateral Pile-Soil Interaction Curves for Sand [C]. Proceedings of the International Symposium on the Engineering Properties of Sea-Floor Soils and their Geophysical Identification, Seattle, Washington,1971,297-326.
    [38]Reese L. C. Ultimate resistance against a rigid cylinder moving laterally in a cohesionless soil [J]. Society of Petroleum Engineers,1962,355-359.
    [39]Iskander Magued. Modelling with Transparent Soils:Visualizing Soil Structure Interaction and Multi Phase Flow, Non-Intrusively [M]. New York:Springer.2010.
    [40]Drescher A., De Jong D. Photoelastic verification of a mechanical model for the flow of granular material [J]. Journal of Mechanics and Physics of Solids,1972,20(5): 337-351.
    [41]Allersma H.. Photoelastic Stress Analysis and Strains in Simple Shear [C]. IUTAM Symposium on Deformation and Failure of Granular Materials, Balkema,1982,345-353.
    [42]Butterfield R., Andrawes K. The Visualization of Planer Displacement Field. [C]. Proceedings Roscoe Memorial Symposium:Stress Strain Behavior of Soils, Cambridge University,1971,467-475.
    [43]Bhatia S., Soliman, A. Frequency distribution of void ratio of granular materials determined by an image analyzer [J]. Soil and Foudation,1990,30(1):1-16.
    [44]Luerkens D.. Theory and Application of Morphological Analysis:Fine Particles and Surfaces [M]. Boca Raton:CRC Press.1991.
    [45]Moore C., Donaldson, C. Quatifying soil microstructure using fractals [J]. Geotechnique,1995,45(1):105-116.
    [46]Yudhbir Rahim, A. Image Applied to Geotechnical Engineering [C]. Conference on Digital Image Processing:Techniques and Applications in Civil Engineering, ASCE, Hawaii,1993,291-298.
    [47]Blair S., Berge P., Berryman J. Estimates of Permeability of Porous Materials Using Image Analysis of Cross Sections [C]. Conference on Digital Image Processing: Techniques and Applications in Civil Engineering, ASCE,1993,109-116.
    [48]Berge P., Berryman J., Blair S., Pena C. Scaler Properties of Transversely Isotropic Tuff from Images of Orthogonal Cross Sections [C].2nd International Conference on Digital Image Processing:Techniques and Applications in Civil Engineering, ASCE,1997,185-196.
    [49]Liu J, Iskander M. Modelling capacity of transparent soil [J]. Canadian Geotechnical Journal,2010,47(4):451-460.
    [50]Pickering C.J.D., Halliwell N.A. Laser speckle photography and particle image velocimetry:photographic film noise [J]. Applied Optics,1984,23(17):2961-2969.
    [51]Keane Richard D., Adrian Ronald J. Theory of cross-correlation analysis of PIV images [J]. Applied Scientific Research 1992,49(3):191-215.
    [52]Barnett C M, Bengough A G, McKenzie B M. Quantitative image analysis of earthworm-mediated soil displacement [J]. Biology and Fertility of Soils,2009,45(8): 821-828.
    [53]Bengough A G, Hans J, Bransby M F, Valentine T A. PIV as a method for quantifying root cell growth and particle displacement in confocal images [J]. Microscopy Research and Technique,2010,73(1):27-36.
    [54]Elsayed O A, Kwon K, Asrar W, Omar A A. Induced rolling moment for NACA4412 plain and flapped wing [J]. Aircraft Engineering and Aerospace Technology,2010, 82(1):23-31.
    [55]Gudehus G., Nubel K. Evolution of shear bands in sand. [J]. Geotechnique,2004,54(3): 187-201.
    [56]Liu J, lskander M. Adaptive cross correlation for imaging displacements in soils [J]. Journal of Computing in Civil Engineering,2004,18(1):46-57.
    [57]许联锋,陈刚,李建中,邵建斌.粒子图像测速技术研究进展[J].力学进展,2003,33(4):533-540.
    [58]高潮,曹英,郭永彩.PIV血流场显示测速技术[J].光电工程,2004,31(8):37-40.
    [59]徐宣国,季全凯,陈次昌.狭窄管流场中的PIV测试研究[J].西华大学学报(自然科学版),2005,24(1):13-14.
    [60]李广年,李磊,谢永和.PIV技术在旋转流场测试中的应用[J].中国造船,2011,52(1):145-150.
    [61]严杰,谢莉.风沙流中沙粒旋转对PIV测量结果的影响[J].中国沙漠,2011,31(3):607-612.
    [62]刘君,刘福海,孔宪京,李永胜.PIV技术在大型振动台模型试验中的应用[J].岩土工程学报,2010,32(3):368-373.
    [63]McNeill S. R., Paquette M. Initial Studies of Stereo Vision for Use in 3-D Deformation Measurements, Unpublished internal report [R]. Univ. South Carolina.1988.
    [64]Luo P. F., Chao Y. J., Sutton M. A. Application of stereo vision to 3-D deformation analysis in fracture mechanics [J]. Optical Engineering Volume 1994,33(3):981-990.
    [65]Soloff S. M., Adrian R. J., Liu Z. C.. Distortion compensation for generalized stereoscopic particle image velocimetry [J]. Measurement Science and Technology, 1997,8(12):1441-1454.
    [66]Zhang Zhengyou. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations [C]. Proceedings of the Seventh IEEE International Conference on Computer Vision 1999,1:666-673.
    [67]Taylor R N, Grant R J, Robson S, Kuwano J. An Image Analysis System for Determining Plane and 3-D Displacements in Soil Models [C]. Proceedings of Centrifuge, Balkema, Rotterdam,1998,73-78.
    [68]Nguyen C. V., Wells J. C. Direct measurement of fluid velocity gradients at a wall by PIV image processing with stereo reconstruction [J]. Journal of Visualization,2006, 9(2):199-208.
    [69]Willert C. Stereoscopic digital particle image velocimetry for applications in wind tunnel flows [J]. Measurement Science and Technology,1997,8(12):1465-1479.
    [70]Tiwari Vikrant, Sutton Michael A, McNeill S R, Xu Shaowen, Deng Xiaomin, Fourney William L, Bretall Damien. Application of 3D image correlation for full-field transient plate deformation measurements during blast loading [J]. International Journal of Impact Engineering,2009,36(6):862-874.
    [71]Pick S., Lehmann F. O. Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings [J]. Experiments in Fluids, 2009,47(6):1009-1023.
    [72]Stamhuis E J. Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows [J]. Aquatic Ecology,2006,40(4):463-479.
    [73]Gregorio Fabrizio De. Aerodynamic performance degradation induced by ice accretion: PIV technique assessment in icing wind tunnel [J]. Topics in Applied Physics,2008, 112(1):395-417.
    [74]Ragni D, Ashok A, Oudheusden B W van, Scarano F. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry [J]. Measurement Science and Technology,2009,20(7):1-15.
    [75]Brachman R. W. I., McLeod H. A., Moore I. D., Take W. A. Three-dimensional ground displacements from static pipe bursting in stiff clay [J]. Canadian Geotechnical Journal, 2010,47(4):439-450.
    [76]White D.J., Take W.A., Bolton M.D.. Measuring Soil Deformation in Geotechnical Models Using Digital Images and PIV Analysis [C].10th International Conference on Computer Methods and Advances in Geomechanics, Tucson, Arizona,2001,997-1002.
    [77]Xu Jinming, Cheng Changhong, Lu Haiping. Strain field investigation of limestone specimen under uniaxial compression loads using particle image velocimetry [J]. Journal of Central South University of Technology,2011,18(5):1619-1625.
    [78]周健,元宾,曾庆有.被动侧向受荷桩模型试验及颗粒流数值模拟研究[J].岩土工程学报,2007,29(10):1449-1454.
    [79]PIVTEC. PIVview user manual [EB/OL]. [2012-3-23]. www.pivtec.com/.
    [80]Meinhart C, Wereley S, Saniago J A PIV algorithm for estimating time-averaged velocity fields [J]. Journal Fluids Engineering ASME,2000,122(2):285-289.
    [81]GIACHETTI A. Matching techniques to compute image motion [J]. Image and Vision Computing,2000,18(3):247-260.
    [82]周健,王家全,曾远,张姣.土坡稳定分析的颗粒流模拟[J].岩土力学,2009,30(1):86-90.
    [83]Travis J, Kring J. LabVIEW for Everyone: Graphical Programming Made Easy and Fun [M]. Upper Saddle River:NJ Prentice Hall.2006.
    [84]W.Johnson G, Jennings R. LabVIEW Graphical Programming: practical applications in instrumentation and control [M]. New York: MacGraw-Hill.2001.
    [85]The Canadian 5 Cent Coin-The Canadian Nickel [EB/OL]. [2012]. http://www.squidoo.com/canadian-5-cent-coin-canadian-nickel.
    [86]Song Z., Hu Y., O'Loughlin C, Randolph M. Loss of anchor embedment during plate keying in clay [J]. Journal of Geotechnical & Geoenvironmental Engineering,2009, 135(10):1475-1485.
    [87]邱绪光.实用相似理论[M].北京:北京航空航天大学出版社.1998.
    [88]左启东.模型试验的理论和方法[M].北京:水利电力出版社.1984.
    [89]陈洪江.工程地质与地基基础[M].武汉:武汉理工大学出版社.2011.
    [90]倪宏革,时向东.工程地质[M].北京:北京大学出版社.2009.
    [91]许兆义,王连俊.工程地质基础[M]:中国铁道出版社.2008.
    [92]国标GBJ145-90.土的分类标准[S].北京:中国计划出版社.1991.
    [93]Das B. M. Fundamentals of Geotechnical Engineering [M]. Toronto, ON:Thompson Books.2005.
    [94]Das B. M. Principles of foundation engineering [M]. Toronto, ON:Thompson Books. 2004.
    [95]Sadek S., Iskander, M. G., Liu J. Geotechnical properties of transparent silica [J]. Canadian Geotechnical Journal,2002,39(1):111-124.
    [96]Ashour M, Norris G, Pilling P. Strain wedge model capability of analyzing the behavior of laterally loaded isolated piles, drilled shafts and pile groups [J]. Journal of Bridge Engineering,2002,7(4):245-254.
    [97]Broms Bengt B. Lateral resistance of piles in cohesive soils [J]. Journal of the Soil Mechanics and Foundations Division 1964,90(SM2):26-63.
    [98]Broms Bengt B. Lateral resistance of piles in cohesiveless soils [J]. Journal of the Soil Mechanics and Foundations Division 1964,90(SM3):123-156.
    [99]Roscoe K. H., Arthur J. R. F., James R. G. Determination of strains in soils by X-ray method [J]. Civil Engineering,1963,58(5):1009-1012.
    [100]Yamamoto K., Kusuda K. Failure mechanism and bearing capacities of reinforced foundations [J]. Geotextiles and Geomembranes,2001,19(3):127-162.
    [101]胡国元,何平安,王宝龙,郧建平.视觉测量中的相机标定问题[J].光学与光电技术,2004,2(3):9-13.
    [102]Zhang Z. Y. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [103]M.Ito. Robot vision modeling-camera modeling and camera calibration [J]. Advanced Robotics,1991,5(3):321-335.
    [104]Q.Wei G., Ma. S.De. Implicit and explicit camera calibration.Theory and experiment. [J]. IEEE TransPattern AnalMachlntell,1994,16(16):469-480.
    [105]Chen Shuyuan, Tsai Wenhsiang. A systematic approach to analytic determination of camera parameters by line features [J]. Pattern Recognition,1990,23(8):859-877.
    [106]Hong Z.Q., Yang J.Y. An algorithm for camera calibration using a three-dimensional reference point. [J]. Pattern Recognition,1993,26(11):1655-1660.
    [107]Willert. C.E. Assessment of cmaera models for use in planar velocimetry calibration [J]. Experiments in Fluids,2006,41(1):135-143.
    [108]Tsai R. Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses [J]. IEEE Journal of Robotics and Automatuon,1987,3(4):323-344.
    [109]Bouguet J Y. Camera calibration toolbox for MATLAB [EB/OL]. [2012-3-23]. www.vision.caltech.edu/bougueti/calib doc/.
    [110]Moler Cleve. The Origins of MATLAB [EB/OL]. [2004]. http://www.mathworks.cn/company/newsletters/news notes/clevescorner/dec04.html?s_cid=wiki matlab 3.
    [111]Rehm J. E., Clemens N. T. An improved method for enhancing the resolution of conventional double-exposure single-frame particle image velocimetry [J]. Experiments in Fluids,1999,26(6):497-504.
    [112]Sinha S.K. Improving the accuracy and resolution of particle image or laser speckle velocimetry [J]. Expriments in Fluids,1988,6(1):67-68
    [113]Prasad A.K., Adrian R.J. Stereoscopic particle image velocimetry applied to liquid flows [J]. Expriments in Fluids,1993,15(1):49-60.
    [114]王勇,焦健,曾琪明,刘严萍.基于不同地形的GPS对流层延迟插值方法研究[J].大地测量与地球动力学,2010,30(3):132-136.
    [115]袁炳祥,谌文武,梁收运,韩文峰,李金城.线路与断裂走向交角对青藏铁路路基影响[J].西南交通大学学报,2010,45(3):336-340.
    [116]Yasrebi Jafar, Saffari Mahboub, Fathi Hamed, Karimian Najafali, Moazallahi Masome, Gazni Reza. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters [J]. Research Journal of Biological Sciences,2009,4(1):93-102.
    [117]Reese L.C., Van Impe W.L. Single Piles and Pile Groups under Lateral Loading [M]. Rotterdam:A.A.Balkema.2001.
    [118]Sadek Samer, Iskander Magued, Liu Jinyuan. Accuracy of digital image correlation for measuring deformations in transparent media [J]. Journal of Computing in Civil Engineering,2003,17(2):88-96.
    [119]Iskander M., Lai J., Oswald C, Mannheimer R. Development of a transparent material to model the geotechnical properties of soils [J]. Geotech Test J,1994,17(4):425-433.
    [120]Iskander M, Liu J. Spatial deformation measurement using transparent soil [J]. Geotechnical Testing Journal,2010,33(4):1-8.
    [121]Mannheimer R.J., Oswald C.. Development of transparent porous media with permeabilities and porosities comparable to soils, aquifers, and petroleum reservoirs [J]. Ground Water,1993,31(5):781-788.
    [122]Welker A., Bowders J., Gilbert R. Applied research using transparent material with hydraulic properties similar to soil [J]. Geotechnical Testing Journal,1999,22(3): 266-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700