用户名: 密码: 验证码:
多点地震动作用下海底悬跨管道非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋油气资源的开发,海底管道成为海洋油气集输的最重要方式,在海上油气田的生产、精炼、储存及到用户的全过程中发挥着重要作用,成为海上油气田的生命线。海底管道的安全性成为海洋油气开发的关键问题。我国渤海海域为地震多发区,地震荷载和工作荷载的组合成为该地区管道设计的控制条件。此外,由于地球介质构造的复杂性(各向异性,不均匀性),一次地震时在各空间点上的地震动在幅值、相位角、频率等方面存在差异,这种差异直接影响管道的地震反应。因此,研究海底管道在多点地震动输入下的计算模型和破坏机理具有重大理论意义和实用价值。
     提出了一种一定程度上符合实际地震动传播特点的多点地震动合成方法。在前人方法的基础上进行改进,通过修正随机相位角,使生成的多点地震动满足地震动传播机制,给出了未知和已知相位差谱统计规律两种情况下非平稳多点地震动的合成方法,进一步提出了基于实际地震纪录的空间相关多点地震动合成方法。采用本文方法进行了基于美国Northridge地震和我国集集地震的多点地震动模拟研究,结果表明本文方法能较好符合实际地震动传播的一些特性,可用于大尺度结构的多点输入分析。
     建立了海底悬跨管道多点输入非线性分析模型,该模型考虑了管材和土体的非线性本构模型,以及几何非线性特性。据此推导了多点输入运动方程,并进行了海底悬跨管道三维多点输入地震时程反应分析。结果表明,在进行海底悬跨管道多点输入地震响应分析时,对于管道和土体应采用非线性本构模型;当管道的悬空段较长时,必须考虑几何非线性特征。在此基础上,比较了海底悬跨管道在不同地震输入模型(多点输入、行波输入、一致输入)作用下的地震响应。同时进一步分析了模型计算长度、悬跨长度、管道外径、钢管壁厚、混凝土配重层厚度以及海床坡度等因素对海底悬跨管道多点输入非线性反应的影响。分析结果显示地震动的空间变化特性能显著增大海底管道的地震反应,其他因素也在不同程度上对海底管道多点输入地震反应产生影响。
     采用一种能考虑内压作用的管单元对海底悬跨管道在复杂荷载作用下的响应进行了有限元分析。分析中同样考虑了管道和土体的非线性特征及结构的几何非线性效应,同时考虑了多点地震动、内压和工作温度等荷载的作用。首验证了利用管单元考虑内压作用的有效性,并进一步研究了内压、温度及两者之间的耦合作用对海底悬跨管道多点输入地震响应的影响。
     利用水下振动台进行了海底悬跨管道动力模型试验,研究了地震动输入方向对管道所受动水作用力的影响。基于模型试验工况,建立管-水耦合系统的三维有限元模型进行数值分析,数值结果与试验结果符合得较好。结合海底悬跨管道动力模型试验,在传统的Morison模型和Wake模型的基础上分别提出了能够考虑不同地震动输入方向的动水作用力模型。与试验对比的结果表明,采用地震时Morison模型和地震时Wake模型能够较好地模拟海底管道在地震作用下所受到的动水作用力。最后比较了不同动水作用力模型对海底悬跨管道多点输入地震响应的影响。
With the marine exploration and production of oil and gas submarine pipelines as the most important way to collect and transport offshore hydrate play an important role in the producing, refining, and storing of oil and gas and are regarded as the lifelines of offshore oil and gas fields. The security and integrity of submarine pipelines become the issue of marine resource development. The Bohai Sea is a seismically active region in China. The combination of seismic load and working loads is the critical case in the design of the submarine pipelines in the area. Moreover, due to the anisotropy and inhomogeneity of geologic structure the seismic ground motions can vary significantly in magnitude, phase angle and frequency along pipelines routes. The distinction of ground motions in different stations is a key factor that affects the seismic response of the submarine pipelines. It is of great significance to study the dynamic response and failure mechanism of submarine pipelines subjected to spatially varying earthquake ground motions and other loads.
     An improved method for simulating multiple-station ground motions was presented. The method proposed by modifying the random phase angle can synthesize multi-station earthquake ground motions satisfying seismic propagation mechanism. The synthetic methods for non-stationary multi-station earthquake ground motions are introduced under the conditions of known phase-difference spectrum and unknown phase-difference spectrum respectively. Further a method for synthesizing the time histories of multi-station ground motions on the base of actual earthquake records is derived. The proposed method is applied to simulate the multi-station ground motions recorded from the Northridge earthquake and the ChiChi earthquake. The results indicate that the multi-station ground motions synthesized by the proposed method accord with propagating characteristics of the real earthquake wave. Therefore, the method can be used for multi-support excitation analysis of large scale structures.
     A three-dimensional (3D) finite element model of buried submarine pipelines with free span subjected to spatially variable ground motions was established. The model took account of nonlinear constitutional relationships of pipe steel and soil, and geometry nonlinearity. The motion equations of the pipeline were derived and nonlinear multi-support input time-history analysis was performed. The results show that nonlinear material models related to soil and pipe should be introduced in the multi-support input seismic analysis of submarine pipelines. The large displacement should be considered in nonlinear seismic analysis for long-span submarine pipelines. Furthermore, seismic response of submarine pipelines was compared with different input method such as the multi-station input, traveling wave input and identical input. Some factors including pipe length, free span length, outside diameter of the pipe, wall thickness of the pipe, concrete coating thickness, and seabed slope were studied in the sensitivity analysis. The numerical results display that the spatial variation of ground motions can significantly increase the seismic response of submarine pipelines. Meanwhile, the other factors also influence on the response of the submarine pipelines under multiple-station earthquake ground motions to some extents.
     FE analysis of submarine pipelines with free span under complex loads was performed with the aid of a pipe element considering internal pressure effect. The nonlinear material models of the pipe and the soil as well as the large displacement effect were also considered. The spatially varying earthquake ground motions, the internal pressure and the thermal loading were imposed on FE model. Firstly, validation of the pipe element was carried out. Then, the effects of internal pressure, thermal loading and the interaction between pressure and temperature on the multi-support input response of the submarine pipelines were studied.
     Model tests of free spanning submarine pipeline were performed on an underwater shaking table in the Sate Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology. Hydrodynamic forces imposed on the span of submarine pipeline due to different direction excitations are studied in detail. The pipe-water interaction was simulated using a 3D FE model and the numerical results were compared with the experimental results.
     Based on Morison equation and Wake model two improved hydrodynamic force models considering the effects of seismic exciting directions were derived. Finite element method on the base of improved Morison equation and improved Wake model were employed to analyze the dynamic response of free spanning submarine pipelines subjected to earthquakes. FE models were established to simulate the above experimental conditions. The numerical results considering sine wave inputs and simulated El Centro earthquake inputs were obtained. Then a conclusion can be drawn that the improved hydrodynamic force models could satisfactorily predict the hydrodynamic force on the free span of submarine pipelines due to earthquakes. Finally, the effects of different hydrodynamic force models on the seismic response of submarine pipeline with free span subjected to spatially varying earthquake ground motions were studied.
引文
[1]周延东,刘日柱.我国海底管道的发展状况与前景.中国海上油气(工程),1998,10(4):1-5.
    [2]李宁.我国海洋石油油气储运回顾与展望.油气储运,2003,(9):30-32.
    [3]许文兵.平湖油气田海底输油管线临时修复方法.中国海洋平台,2003,18(2):37-40.
    [4]彭艳菊,吕悦军,唐荣余等.探讨渤海及周边地区海洋平台抗震设防水准.地震学报,2005.27(6):647-655.
    [5]吕悦军,唐荣余,彭艳菊.渤海油田工程地震研究.北京:地震出版社,2003.
    [6]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状,同济大学学报(自然科学版),2001,29(10):1214-1219.
    [7]Zerva A,Zervas V.Spatial variation of seismic ground motions:An overview.Applied Mechanics Reviews,2002,55(3):271-297.
    [8]Knani K.Semi-empirical formula for the seismic characteristics of the ground.Bulletin of earthquake research institute,University of Tokyo,Japan.1957,35:309-325.
    [9]Tajimi H.A statistical method of determining the maximum response of a building structure during an earthquake.Proceeding of 2nd World Conference on Earthquake Engineering.Tokyo and Kyoto,Japan.
    [10]Clough R W,Penzien J.Dynamics of Structures(2nd edition),New York:McGraw-Hill,1993.
    [11]胡聿贤和周锡元.弹性体系在平稳和平稳化地面运动下的反应.中国科学院土木建筑研究所地震工程研究报告集第一集,北京:科学出版社,1962.
    [12]王君杰,江近仁.关于地震动平稳自功率谱模型的注记.世界地震工程,1997,3(2):37-40.
    [13]Harichandran R S,Vanmarcke E H.Stochastic variation of earthquake ground motion in space and time.Journal of Engineering Mechanics,1986,112(2):154-175.
    [14]Feng Q M,Hu Y X.Spatial correlation of earthquake motion and its effect on structural response.Proc US-PRC Bilateral Workshop on Earthquake Engineering,1982,1:A-5-1-A-5-14.
    [15]Loh C H.Analysis of spatial variation of seismic waves and ground movements from SMART-1array data.Earthquake Engineering and Structural Dynamics,1985,13(5):561-581.
    [16]Loh C H,Yeh Y T.Spatial variation and stochastic modeling of seismic differential ground movement.Earthquake Engineering and Structural Dynamic,1988,16(5):583-596.
    [17]Hao H,Oliveira C S,Penzien J.Multiple-station ground motion processing and simulation based on SMART-1 array data.Nuclear Engineering and Design,1989,111:293-310.
    [18]Loh C H,Lin S G.Directionality and simulation in spatial variation of seismic waves.Engineering Structure,1990,12(2):134-143.
    [19]Abrahamson N A,Schneider J F,Stepp J C.Empirical spatial coherency functions for application to soil-structure interaction analysis.Earthquake Spectra,1991,7:1-28.
    [20]王君杰.多点多维地震动随机模型及结构的反应谱分析方法:(博士学位论文).哈尔滨:国家地震局工程力学研究所,1992.
    [21]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型.地震学报,1996,18(1):55-62.
    [22]Zerva A.Seismic ground motion simulations from a class of spatial variability models.Earthquake Engineering and Structural Dynamics,1992,21(4):351-361.
    [23]Zerva A.On the spatial variation of seismic ground motions and its effects on lifelines.Engineering Structure,1994,16(7):534-546.
    [24]Abrahamon N A.Generation of spatially incoherent strong motion time histories.Proceedings of 10th World Conference on Earthquake Engineering,Madrid,Spain,1992:845-850.
    [25]Ramadan O,Novak M.Simulation of spatially incoherent random ground motions.Journal of Engineering Mechanics,1993,119(5):997-1016.
    [26]Ramadan O,Novak M.Simulation of multidimensional anisotropic ground motions.Journal of Engineering Mechanics,1994,120(8):1773-1785.
    [27]Spanos P D,Zeldin B A.Efficient iterative ARMA approximation of multivariate random processes for structural dynamics applications.Earthquake Engineering and Structural Dynamics,1996,25(5):497-507.
    [28]Li Y,Kareem A.Simulation of multivariate nonstationary random processes by FFT.Journal of Engineering Mechanics,1991,117(5):1037-1058.
    [29]Li Y,Kareem A..Simulation of multivariate nonstationary random processes:Hybrid DFT and digital filtering approach.Journal of Engineering Mechanics,1997,123(12):1302-1310.
    [30]Jin S,Lutes L D,Sarkani S.Efficient simulation of multi dimensional random fields.Journal of Engineering Mechanics,1997,123(10):1082-1089.
    [31]Vanmarcke E H,Heredia-Zavoni E,Fenton G A.Conditional simulation of spatially correlated earthquake ground motion.Journal of Engineering Mechanics,1993,119(11):2333-2352.
    [32]Abrahamson N A.Spatial interpolation of array ground motions for engineering analysis.Proceedings of 9th World Conference on Earthquake Engineering,Tokyo,Japan,1988.
    [33]Mollestad E,Bergan P G.Nonlinear dynamic analysis of submerged pipelines.Computer Methods in Applied Mechanics and Engineering,1981,34(1-3):881-892.
    [34]Foda M,Chang Y H,Law A W K.Wave-induced breakout of half-buried marine pipes.Journal of Waterway,Port,Coastal and Ocean Engineering,1990,116(2):267-286.
    [35]张悉德,张玮.浸入水中输运流体管道振动微分方程的建立.青岛化工学院学报,1994,15(1):72-74.
    [36]申仲翰,赵强.内流对海底管线涡致振动与疲劳寿命的影响.海洋工程,1995,13(3):1-8.
    [37]李玉成,陈兵,Marchal J L J.波浪作用下海底管线的物理模型实验研究.海洋通报,1996,15(5):68-73.
    [38]Law A W K,Foda M A.Initiation of breakout of half-buried submarine pipe from sea bed due to wave action.Applied Ocean Research,1996,18(2-3):129-135.
    [39]Ose B A,Bai Y,Nystrom P R,Damsleth P A.Finite-element model for in-situ behavior of offshore pipelines on uneven seabed and its application to on-bottom stability.Proceedings of the International Offshore and Polar Engineering Conference,1999,2:132-140.
    [40]Babu P R,Ahmad S.Non-linear dynamic response of ocean mining pipe.Proceedings of the ISOPE Ocean Mining Symposium,1999,21-29.
    [41]马良.海底管道在水流作用时诱发的振动效应.中国海洋平台,2000,15(2):30-34.
    [42]高福平,顾小芸,浦群.海底管道失稳过程的模型试验研究.岩土工程学报,2000,22(3):304-308.
    [43]Gorman D G,Reese J M,Zhang Y L.Vibration of a flexible pipe conveying viscous pulsating fluid flow.Journal of Sound and Vibration,2000,230(2):379-392.
    [44]余建星,罗延生,方华灿.海底管线管跨段涡激振动反应的实验研究.地震工程与工程振动,2001,21(4):93-97.
    [45]Yazdchi M,Crisfield M A.Non-linear dynamic behaviour of flexible marine pipes and risers.International Journal for Numerical Methods in Engineering,2002,54(9):1265-1308.
    [46]Gao F P,Gu X Y,Jeng D S et al.An experimental study for wave-induced instability of pipelines:The breakout of pipelines.Applied Ocean Research,2002,24(2):83-90.
    [47]Gao F,Gu X,Jeng D.Physical modeling of untrenched submarine pipeline instability.Ocean Engineering,2003,30(10):1283-1304.
    [48]余建星,王磊,蒋啸天等.基于非线性理论的海底管跨涡激共振可靠性研究.天津大学学报,2005,24(6):609-613.
    [49]Gao F P,Jeng D S,Wu Y.Improved analysis method for wave-induced pipeline stability on sandy seabed.Journal of Transportation Engineering,2006,132(7):590-596.
    [50]Nath B,Soh C H.Transverse seismic response analysis of offshore pipelines in proximity to the sea-bed.International Journal for Numerical Methods in Engineering,1978,6(6):569-583.
    [51]Haldar A K,Reddy D V,Arockiasamy M et al.Finite element nonlinear seismic response analysis of submarine pipe-soil interaction.Microstructural Science,1980,2:867-877.
    [52]Romagnoli R,Varvelli R.Integrated seismic response analysis of offshore pipeline-sea floor systems.Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium,Houston,TX,USA,1988:139-145.
    [53]马良.海底管道抗震设计初探.中国海洋平台,1999,14(4):26-29.
    [54]Duan M L,Sun Z C,Gao Z J et al.Ultimate stress analysis for subsea pipeline design against earthquakes.Proceedings of the International Offshore and Polar Engineering Conference,Toulon,France,2004:77-81.
    [55]Griesser L,Wieland M,Walder R et al.Earthquake detection and safety system for oil pipelines.Pipeline and Gas Journal,2004,231(12):44-46.
    [56]岳志勇,余轩凌,孙政策等.引入惯性力影响的海底埋设管线的抗震设计方法.应用力学学报,2004,21(2):110-114.
    [57]Nath B,Soh C H.Seismic response analysis of offshore pipelines in contact with the sea-bed.International Journal for Numerical Methods in Engineering,1978,13(1):181-196.
    [58]Bruschi R,Gudmestad O T,Blaker F et al.Seismic assessment for offshore pipelines.Journal of Infrastructure Systems,1996,2(3):145-151.
    [59]Figarov N G,Kamyshev A M.Seismic stability of offshore pipelines.Proceedings of the International Offshore and Polar Engineering Conference,Los Angeles,USA,1996:477-481.
    [60]Kalliontzis C.Numerical simulation of submarine pipelines in dynamic contact with a moving seabed.Earthquake Engineering and Structural Dynamics,1998,27(5):465-486.
    [61]Kershenbaum N Y,Mebarkia S A,Choi H S.Behavior of marine pipelines under seismic faults.Ocean Engineering,2000,27(5):473-487.
    [62]Datta T K,Mashaly E A.Seismic response of buried submarine pipelines.Journal of Energy Resources Technology,Transactions of the ASME,1988,110(4):208-18.
    [63]Datta T K,Mashaly E A.Transverse response of offshore pipelines to random ground motion.Earthquake Engineering and Structural Dynamics,1990,19(2):217-228.
    [64]Zhou J,Li X,Ma D X.Seismic response and vibration control for free spanning submarine pipelines.Proceedings of the International Offshore and Polar Engineering Conference,Stavanger,2001:180-184.
    [65]周晶,李昕,马恒春等.地震时海底悬跨管道动力特性试验研究.水利学报,2003,(1):12-16.
    [66]Li X,Liu Y K,Zhou J et al.Experimental study on tree spanning submarine pipeline under dynamic excitation.China Ocean Engineering,2002,16(4):537-548.
    [67]王金英,赵冬岩.渤海海底管道工程的现状和问题.中国海上油气(工程),1992,4(1):1-6.
    [68]Guttomsen T R,Aas P M.Buckling of buried pipelines under transportation of heated oil and gas.Proceedings of the First(1990)European Offshore Mechanics Symposium,Trondheim,Norw,1990:375-380.
    [69]顾永宁,李小平.海底油气管道热膨胀有限元分析法.中国海洋平台,1994(增刊):515-518.
    [70]于永南,帅健,吕英民.海底埋设双层管道的温度应力及变形的计算.力学与实践,1996,18(5):27-29.
    [71]Palmer-Jones R,Turner T E.Pipeline buckling,corrosion and low cycle fatigue.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,Lisbon,Portugal,1998:8.
    [72]Bokaian A.Thermal expansion of pipe-in-pipe systems.Marine Structures,2004,17(6):475-500.
    [73]邢静忠,柳春图,徐永君.埋设:悬跨海底管道的屈曲分析.工程力学,2006,23(2):173-176.
    [74]Shalaby M A,Younan M Y A.Limit loads for pipe elbows subjected to in-plane opening moments and internal pressure.Journal of Pressure Vessel Technology,Transactions of the ASME,1999,121(1):17-23.
    [75]Hobbs R E.Pipeline buckling caused by axial loads.Journal of Constructional Steel Research,1981,1(2):2-10.
    [76]Taylor N,Tran V.Prop-imperfection subsea pipeline buckling.Marine Structures,1993,6(4):325-358.
    [77]Fyrileiv O,Aamlid O,Venas A.Analysis of expansion curves for subsea pipelines.Proceedings of the International Offshore and Polar Engineering Conference,Los Angeles,CA,USA,1996:66-73.
    [78]Frederiksen P S,Andersen J B,Jonsson P H.Controlled lateral buckling of submarine pipelines in snaked configuration.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,Lisbon,Portugal,1998:10.
    [79]Sriskandarajah T,Ragupathy P,Wilkins R.Dynamic versus static lateral buckling of subsea pipelines.Proceedings of the International Offshore and Polar Engineering Conference,Stavanger,2001:185-191.
    [80]Heitzer M.Plastic limit loads of defective pipes under combined internal pressure and axial tension.International Journal of Mechanical Sciences,2002,44(6):1219-1224.
    [81]Ostby E,Jayadevan K R,Thaulow C.Fracture response of pipelines subject to large plastic deformation under bending.International Journal of Pressure Vessels and Piping,2005,82(3):201-215.
    [82]Robertson A,Li H,Mackenzie D.Plastic collapse of pipe bends under combined internal pressure and in-plane bending.International Journal of Pressure Vessels and Piping,2005,82(5):407-416.
    [83]Elsufjev S A.Ultimate state of a thin-walled pipe subjected to deformation by a longitudional force,torque and internal pressure.Problemy Prochnosti,1992,(7):59-63.
    [84]Bruschi R,Monti P,Bolzoni G et al.Finite element method as numerical laboratory for analysing pipeline response under internal pressure,axial load,bending moment.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,Copenhagen,Den,1995:389-401.
    [85]署恒木.含周向裂纹管道在非对称弯矩组合载荷作用下塑性极限载荷分析.石油大学学报(自然科学版),2001,25(2):91-94.
    [86]娄敏,郭海燕,杨新华等.海底输液管道内流、轴向力和压强对允许悬空长度的影响.中国海洋大学学报(自然科学版),2006,36(2):341-344.
    [87]Yahiaoui K,Moreton D N,Moffat D G.Response and damping of fabricated branch pipe junctions subjected to internal pressure and simulated seismic bending.Journal of Pressure Vessel Technology,Transactions of the ASME,1995,117(2):156-161.
    [88]Kershenbaum N Y.Seismic vulnerability of the subsea pipeline.Offshore Technology Conference,Annual Proceedings,Houston,TX,USA,1998:359-370.
    [89]潘学光.海底管道悬空成因及防治.中国船检,2005,(10):87-88
    [90]Morison J R,Johnson J W,O'Brien M P.The forces exerted by surface waves on piles.Petroleum Transactions,American Institute of Mining Engineering,1950,189:149-157.
    [91]Sarpkaya T,Isaacson M.Mechanics of wave forces on offshore structures.London:Van Nostrand Reinhold Company,1981.
    [92]Lambrakos K F,Chao J C,Beckmann H et al.Wake model of hydrodynamic forces on pipelines.Ocean Engineering(Pergamon),1987,14(2):117-36.
    [93]Soedigdo I R.Wake Ⅱ model for hydrodynamic forces on marine pipelines:(Ph.D,thesis).Texas:Texas A&M University,1997.
    [94]Laya E J,Connor J J,Shyam S S.Hydrodynamic forces on flexible offshore structures.Journal of Engineering Mechanics,1984,110(3):433-448.
    [95]Anaturk A R,Tromans P S,van Hazendonk H C et al.Drag force on cylinders oscillating at small amplitude:a new model.Journal of Offshore Mechanics and Arctic Engineering,1992,114(2):91-103.
    [96]Terro M J,Abdel-Rohman M.Wave induced forces in offshore structures using linear and nonlinear forms of Morison's equation.Journal of Vibration and Control,2007,13(2):139-157.
    [97]Venkataramana K,Kawano K,Yoshihara S et al.Time-domain dynamic analysis of offshore structures under combined wave and earthquake loadings.Proceedings of the International Offshore and Polar Engineering Conference,Montreal,Canada,1998:404-411.
    [98]Townsend M,Haritos N.Dynamically responding vertical cylinders in the Morison regime-the influence of structural damping.International Journal of Offshore and Polar Engineering,1997,7(3):197-204.
    [99]Neill I A R,Hinwood J B.Wave and wave-current loading on a bottom-mounted circular cylinder.International Journal of Offshore and Polar Engineering,1998,8(2):5-129.
    [100]Chevalier C,Lambert E,Belorgey M.Wave forces on a horizontal cylinder in the coastal zone.Proceedings of the International Offshore and Polar Engineering Conference,Seattle,USA,2000:524-531.
    [101]Shafieefar M,Massie W W.In-line force from combined wave and current flow on oscillating cylinders.International Journal of Offshore and Polar Engineering,2001,11(2):93-98.
    [102]Datta T K,Mashaly E A.Transverse response of offshore pipelines to random ground motion.Earthquake Engineering and Structural Dynamics,1990,19(2):217-228.
    [103]Kalliontzis C.Numerical simulation of submarine pipelines in dynamic contact with a moving seabed.Earthquake Engineering and Structural Dynamics,1998,27(5):465-486.
    [104]李昕,刘亚坤,周晶等.海底悬跨管道动力反应的试验研究和数值模拟.工程力学,2003,20(2):21-25.
    [105]高学奎,朱晞.地震动水压力对深水桥墩的影响.北京交通大学学报,2006,30(1):54-58.
    [106]冯玉涛,戎进章,曹芳等.动水及桩-土-结构相互作用对跨江大桥稳定性的地震影响分析.岩石力学与工程学报,2006,25(supp.1):3713-2718.
    [107]朱诗颂.丹江口水库二桥考虑水作用时的地震反应分析.武汉理工大学学报,2006,28(10):86-88.
    [108]屈铁军,王前信.空间相关的多点地震动合成(Ⅰ)基本公式.地震工程与工程振动,1998,18(1):8-15.
    [109]屈铁军,王前信.空间相关的多点地震动合成(Ⅱ)合成实例.地震工程与工程振动,1998,18(2):25-32.
    [110]刘文华.大跨复杂结构在多点地震动激励作用下的非线性反应分析:(博士学位论文).北京:北京交通大学,2007.
    [111]倪永军,朱唏.考虑时间-空间变化的人工随机场模拟.地震学报,2002,24(4):407-412.
    [112]夏友柏,王年桥,张尚根.一种合成多点地震动时程的方法.世界地震工程,2002,18(1):119-122.
    [113]刘明,叶继红,李爱群.空间相关多点地震动合成的简化方法.工程抗震,2003,(1):30-36.
    [114]屈铁军.地面运动的空间变化特征研究及地下管线地震反应分析:(博士学位论文).哈尔滨:国家地震局工程力学研究所,1995.
    [115]田景元,刘汉龙,陈国兴等.土石坝二维多点输入地震反应分析.岩土力学,2004,25(1):99-104.
    [116]Berndt J D,Clifford J.Using dynamic time warping to find pattems in time series.Proceeding of the KDD Workshop,Seattle,WA,USA,1994:359-370.
    [117]Berndt J D,Clifford J.Finding patterns in time series:a dynamic programming approach,Advances in Knowledge Discovery and Data Mining.AAAI/MIT Press,1996.
    [118]Saragoni G R,Hart G C.Simulation of artificial earthquakes.Earthquake Engineering and Structure Dynamics,1974,2(3):249-267.
    [119]Ohsaki Y.On the significance of phase content in earthquake ground motions.Earthquake Engineering and Structure Dynamics,1979,7(5):427-439.
    [120]Nigam N C.Phase Properties of a Class of Random Process.Earthquake Engineering and Structure Dynamics,1982,10:711-717.
    [121]赵凤新,胡幸贤.地震动非平稳性与幅值谱和相位差谱的关系.地震工程与工程振动,1996,14(2):1-5.
    [122]金星,廖振鹏.强地震动相位特征的统计规律性.地震学报,1994,16(1):106-110.
    [123]Thrainsson H and Kremidjian A S.Simulation of digital earthquake accelerograms using the inverse discrete Fourier transform.Earthquake Engineering and Structural Dynamics,2002,31(?):2023-2048.
    [124]赵凤新,胡聿贤,李小军.地震动相位差谱的统计规律.自然灾害学报,1995,4(增刊):49-56.
    [125]赵凤新,胡聿贤.地震动反应谱与相位差谱的关系.地震学报,1996,18(3):287-291.
    [126]程纬,刘光栋,易伟建.地震动相位谱与相位差谱分布特征的研究.湖南大学学报(自然科学版),1999,26(2):82-91.
    [127]杨庆山,姜海鹏,陈英俊.基于相位差谱的时—频非平稳人造地震动的生成.地震工程与工程振动,2001,21(3):10-16.
    [128]杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟合.地震工程与工程振动,2002,22(1):32-38.
    [129]Der Kiureghian A,Neuenhofer A.Response spectrum method for multi-support seismic excitations.Earthquake Engineering and Structural Dynamics,1992,21(8):713-740.
    [130]Monti G,Nuti C,Pintio E.Nonlinear response of bridges under multisupport excitation.Journal of Structural Engineering,1996,122(5):476-484.
    [131]Trujillo D M,Carter A L.A new approach to the integration of accelerometer data.Earthquake Engineering and Structural Dynamics,1982,10(4):529-535.
    [132]Wilson E L.Three dimensional static and dynamic analysis of structures:a physical approach with emphasis on earthquake engineering.Berkley,California:Computers and Structures,Inc.,2002.
    [133]陈惠发.土木工程材料的本构方程(第二卷 塑性与建模).武汉:华中科技大学出版社,2001.
    [134]ALA(American Lifelines Alliance).Guidelines for the Design of Buried Steel Pipe,G.A.Antaki and J.D.Hart,Co-Chairmen,July,www.americanlifelinesalliance.org,2001.
    [135]王勖成,邵敏.有限单元法的基本原理和数值方法(第二版).北京:清华大学出版社,1997.
    [136]Kinfer J F,Vieth P H.New method corrects criterion for evaluation corroded pipe.Oil and Gas Journal,1990,6:56-59.
    [137]Choi J B,Goo B K.Development of limit load solutions for corroded gas pipelines.International Journal of Pressure Vessels and Piping,2003,80:121-128.
    [138]Zhu X K,Leis B N.Influence of yield-to-tensile strength ratio on failure assessment of corroded pipelines.Journal of Pressure Vessel Technology,2005,127:436-442.
    [139]Netto T A,Ferraz U S,Estefen S F.The effect of corrosion defects on the burst pressure of pipelines.Journal of Constructional Steel Research,2005,61:1185-1204.
    [140]蔡文军,陈国明等.腐蚀管线剩余强度非线性分析.石油学报(自然学科版),1999,23(1):66-68.
    [141]韩良浩,柳曾典.内压作用下局部减薄管道的极限荷载分析.压力容器,1998,(4):1-4.
    [142]Kanninen M F,Broek D,Hahn G T et al.Toward an elastic fracture mechanics predictive capability for reactor piping.Nuclear Engineer Design,1978,48:117-134.
    [143]韩良浩,柳曾典.弯曲荷载作用下局部减薄管道的极限荷载分析.压力容器,1998(6):1-4.
    [144]Han L H,He S Y.Limit moment of local wall thinning in pipe under bending.International Journal of Pressure Vessels and Piping.1999,76:539-542.
    [145]林冠发,李金波等.含缺陷管件的抗弯曲特性.钢铁,2005,40(12):41-45.
    [146]Zheng M,Luo J H.Modified expression for estimation the limit bending moment of local corroded pipeline.International Journal of Pressure Vessels and Piping.2004,81:725-729.
    [147]Miyazaki K,Kanno S,Ishiwata M,et al.Fracture and general yield for carbon steel pipes with local wall thinning.Nuclear Engineering and Design,2002,211:61-68.
    [148]Ahn S H,Nam K W,et al.Comparison of experimental and finite element analytical resultss for the strength and the deformation of pipes with local wall thinning subjected to bending moment.Nuclear Engineering and Design,2006,236:140-155.
    [149]Kim J W,Park C Y.Effect of length of thinning area on the failure behavior of carbon steel pipe containing a defect of wall thinning.Nuclear Engineering and Design,2003,220:274-284.
    [150]沈士明,郑夷翔.含局部减薄缺陷管道的极限荷载与安全评定.石油机械,1999,32(6):17-20.
    [151]Bai Y,Hauch S R.Collapse capacity of corroded pipes under combined pressure,longitudinal force and bending.International Journal of Offshore and Polar Engineering,2001,11(1):55-63.
    [152]Chouchaoui,B A,Pick R J.Behaviour of circumferentially aligned corrosion pits.International Journal of Pressure Vessels and Piping,1994,57:197-200.
    [153]Roy S,Grigory S C,Smith M,et al.Numerical simulations of full-scale corroded pipe tests with combined loading.Journal of Pressure Vessel Technology,1997,119(4):457-466.
    [154]Shim D J,Choi J B,Kim Y J.Failure strength assessment of pipes with local wall thinning under combined loading based on finite element analyses.Journal of Pressure Vessel Technology,2004,126:179-183.
    [155]董事尔,何东升,张鹏等.双点腐蚀管道的弹塑性有限元分析.机械,2005,32(9):20-22.
    [156]Bathe K J.Finite element procedures.Englewood Cliffs,New Jersey:Prentice Hall,1996.
    [157]ADINA Theory and Modeling Guide,ADINA R&D,Inc.,2004.
    [158]Bouwkamp J G,Stephen R M.Large diameter pipe under combined loading.Transportation Engineering Journal,1973,99:521-536.
    [159]McAllister EW.雷遭经验法则手册.北京:石油工业出版社,2002.
    [160]林皋,朱彤,林蓓.结构动力模型试验的相似技巧.大连理工大学学报,2000,40(1):1-8.
    [161]李宏男,李东升,赵伯东.光纤健康监测方法在土木工程中的研究与应用进展.地震工程与工程振动,2002,22(6):76-83.
    [162]Olson L G,Bathe K J.Analysis of fluid-structure interactions.A direct symmetric coupled formulation based on the fluid velocity potential.Journal of Computers and Structures,1985,21(1):21-32.
    [163]王勖成.有限单元法.北京:清华大学出版社,2003.
    [164]海底管道系统规范(SY/T 4804-92).天津:中国石油工业标准化技术委员会,海洋石油工程专业标准化技术委员会,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700