用户名: 密码: 验证码:
深水库区高墩大跨连续刚构桥地震响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高墩大跨径连续刚构桥在深水库区的桥梁中逐渐得到应用。但是,我国地震灾害频繁,对这种结构的抗震性能研究并不充分。因此对高墩大跨连续刚构桥进行地震响应分析具有重要理论意义和工程实用价值。
     本文以某深水库区高墩大跨径连续刚构桥为工程背景,考虑桩—土相互作用和动水作用,利用大型通用有限元程序ANSYS,对该连续刚构进行了线弹性和弹塑性地震响应分析。
     首对该高墩大跨连续刚构桥在不同水深下的自振特性和线弹性地震响应进行对比,研究水深对结构线弹性地震响应的影响规律;其次以该高墩大跨连续刚构桥为原型,考虑了不同的结构参数和设计参数,分别构造了相应的四跨连续刚构桥数值分析模型进行分析,研究水深、系梁设置道数、系梁位置对结构抗震性能的影响;最后通过模拟塑性铰单元对该大跨径连续刚构桥进行了弹塑性地震响应分析,考虑库区无水和满水两种情况,分别进行顺桥向+2/3竖向组合及横桥向+2/3竖向组合两种工况下结构的弹塑性地震响应分析和评估,讨论了水深对结构弹塑性地震响应的影响。研究表明,设置系梁后结构抗震适用性反而降低。考虑水的影响后结构的高阶自振频率降低,水深的改变对桥梁结构的弹性和弹塑性地震响应影响较大,动水压力对该类桥梁的地震响应不利,因此在进行高墩大跨连续刚构桥地震响应分析时水的作用不容忽略。
     本文研究成果可供同类桥梁抗震设计或研究参考。
In recent years, continuous rigid frame bridges with long span and high piers are gradually applied in deep reservoir areas. However, the earthquake disaster is very frequent in China and the research on their antiseismic behaviour is deficient. So it is important to make an analysis for the seismic response of continuous rigid frame bridges with long span and high piers.
     In this paper, a continuous rigid frame bridge with long span and high piers is taken as the background, considering the influence of the pile-soil interaction and water dynamic effect, and a finite element model of the bridge is established by using the FEM program, ANSYS. Then the seismic response analysis of continuous rigid frame bridge is carried out using linear and nonlinear seismic response analysis method respectively in the paper.
     Firstly, a comparative research on the natural vibration characteristics and linear seismic response of continuous rigid frame bridges with long span and high piers in different depth of water is carried out, and the effect of the depth of water on the linear elastic seismic response of the structure is studied. Secondly, on the basis of this continuous rigid frame bridges with long span and high piers, considering different structural parameters and design parameters, corresponding calculation models of four-spans continuous rigid frame bridges are established in order to find out the influence of each parameter on the seismic behavior of the structure, which include the depth of water, the tie beam's quantity and position. Finally, the elasto-plastic seismic response analysis is conducted by using a model of plastic hinge element. Considering two conditions respectively, when the reservoir areas are waterless or water-filled, the elasto-plastic seismic response analysis and evaluation is conducted including the longitudinal with 2/3 vertical direction and transverse with 2/3 vertical direction, the purpose is to discuss the impact of the depth of water on the elasto-plastic seismic response of the structure. The results indicate that the structure's seismic applicability will be worse if the tie beam is set. The high natural vibration frequency of the structure will lower if considering the influence of water, the change of the depth of water has a significant impact on the seismic response of the structure; hydrodynamic pressure is disadvantageous to the seismic response of this kind of bridge. Therefore, the influence of the water can not be neglected in the analysis of the seismic response of continuous rigid frame bridges with long span and high piers.
     The results of study in this paper can give reference to the earthquake resistant study of the same kind of bridge.
引文
[1]公路桥梁抗震设计细则·(JTG/T B02-01-2008)[S].北京:人民交通出版社,2008
    [2]建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [3]公路工程抗震设计规范(JTJ004—89) [S].北京:人民交通出版社,1989
    [4]公路桥涵地基及基础设计规范(JTG D63—2007) [S].北京:人民交通出版社,2007
    [5]公路桥涵地基与基础设计规范(JTJ024—85) [S].北京:人民交通出版社,1985
    [6]道路桥示方书·同解说,V耐震设计编,平成14年3月,社团法人,日本道路协会
    [7]Eurocode8—Design Provisions for earthquake resistance of structures—Part2:Bridges, European Committee for standardization,ENV1998—2
    [8]Bureau of Indian Standards, Criteria for Earthquake Resistant Design of structure (PartⅢ:Bridges and Retaining Walls), (Draft)2005, IS:1893, NewDelhi.
    [9][美]R.W.克拉夫J.彭津 著 王光远 等 译.结构动力学[M].科学技术出版社.1983
    [10]宋一凡 编著.公路桥梁动力学[M].人民交通出版社.2000
    [11]M.J.N普瑞斯特雷等著,袁万成等译.桥梁抗震设计与加固[M].北京:人民交通出版社,1997
    [12]马保林.高墩大跨连续刚构桥[M].北京:人民交通出版社,2001
    [13][日]西山啟伸 小寺重郎 著.易建国林志兴译.桥梁抗震计算[M]..人民交通出版社.1988
    [14]龚曙光谢桂兰编著.ANSYS操作命令与参数化编程[M]..机械工业出版社.2004
    [15]范立础,胡世德,叶爱军.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001
    [16]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [17]范立础.桥梁抗震[M].上海:同济大学出版社,1996
    [18]宋丹.高墩大跨径连续刚构桥弹塑性地震响应分析方法研究[D].长安大学,2007
    [19]李彤.《地震作用下土—群桩—结构—水相互作用体系的动力反应分析》[D].,同济大学硕士学位论文,1999年
    [20]黄小国.连续刚构桥水平地震反应分析[D].长安大学,2006
    [21]张宁勇.深水桥梁地震反应特性分析[D].同济大学硕士学位论文,2002
    [22]卓卫东.桥梁延性抗震设计研究[D].上海:同济大学,2000
    [23]周勇军.高墩大跨曲线连续刚构桥地震响应的设计参数研究[D].长安大学博士学位论文.2006
    [24]徐艳玲.高墩大跨弯连续刚构桥弹塑性抗震性能评估[D].长安大学,2008
    [25]刘振宇.深水桥梁的地震响应研究[D].西南交通大学博士学位论文.2008
    [26]郑史雄.深水桥墩考虑液固相互作用的地震反应分析[J].桥梁建设,1998,(2):52-54.
    [27]卓卫东,范立础.延性桥墩塑性铰区最低约束箍筋用量[J].土木工程学报,2002,35(5):47-51
    [28]刘庆华,范立础.钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26(3):245-249
    [29]高学奎,朱晞.地震动水压力对深水桥墩的影响[J].北京交通大学学报,2006,30(1):55-58
    [30]张海龙,张鹏,黄鹏.深水桥梁结构的地震反应分析[J].公路交通科技,2007,24(9):83-86
    [31]赖伟,郑铁华,雷勇.Morison方程中动水阻力项对桥梁桩柱地震反应的影响[J].四川建筑科学研究.2007,33(4):163-168
    [32]朱诗颂.丹江口水库二桥考虑水作用时的地震反应分析[J].武汉理工大学学报.2006,28(10):86-88
    [33]刘振宇,李乔,赵灿晖等.深水连续刚构桥地震响应分析[J].地震工程与工程振动.2009,29(4):119-124
    [34]张志荣,张少勇,潘瑾.深水高墩大跨连续刚构桥的地震响应分析[J].交通科技.2009,235(4):32-34
    [35]冀伟,刘世忠.宏基大桥深水高墩大跨连续刚构桥地震响应分析[J].兰州交通大学学报.2009,28(4):45-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700