基于盲源分离的图像与语音加密新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在社会信息化的进程中,信息已成为社会发展的重要资源,而Internet技术的飞速发展,又使信息的网上传播变得极其迅速和方便。然而,由于Internet具有全球性和开放性,任何人都可以自由地接入,这给信息安全带来了巨大隐患。与此同时,多媒体技术持续迅猛发展,又将图像和语音信息的安全问题提到了新的高度。因此,图像与语音的数据安全已成为一个全球性的研究课题。
     通常,可以采用常规的数据加密方法对图像与语音信息进行加密。为了进一步提高保密强度,增强安全性,需要利用一些新理论与新方法来探索图像与语音加密的新方案。盲源分离(Blind Source Separation,BSS)是统计信号处理的一个活跃分支,它能在各源信号和传输通道参数(混合矩阵)均未知的情况下,仅仅利用源信号的多个观测(混合)信号,去恢复各源信号。盲源分离的特有优势在于对先验知识要求极低,因此很快成为信号处理领域的一个研究热点。大量的研究论文展示了国内外学者在盲源分离理论与应用方面取得的丰硕成果。然而,截至目前,国内外对盲源分离的应用研究大多集中在无线通信、生物医学和地震勘探等诸多领域,极少有文献报道其在数据加密方面的应用。
     本文深入研究了基于盲源分离理论进行图像与语音加密的可行性。在此基础上,借鉴密码学上应用数学难题设计加密算法的思想,利用盲源分离理论的欠定难题及其易于具备一次一密加密方案密钥特性的优势,系统提出了图像和语音的盲源分离加密新方法。理论分析和仿真结果都表明,若密钥信号的随机性好,该方法可近似达到无条件安全的高保密强度。
     本文取得的主要研究成果如下:
     (1) 在深入研究盲源分离理论和密码学的基础上,利用盲源分离理论的欠定难题,全面系统地构建了盲源分离图像加密新方法。为了使该方法真正具备一次一密加密方案随机不重复的优秀密钥特性,同时满足盲源分离要求,本文给出了生成密钥信号的统计独立和非高斯性两个必要条件,阐明了其必要性。为了确保无密钥时盲源分离欠定难题的难解性,应用Cao和Liu提出的L行可分解定理(L-row decomposable theorem),构造了两种形式的欠定加密混合矩阵,证明了其不可分离性。
     (2) 通过应用明文语音的波形信息,基于盲源分离理论有效地建立了语音加密新方法。语音加密时逐帧进行,并且一帧语音需等分成多段进行欠定混合加密,所以盲源分离的不确定性可能导致各解密语音段与各原始语音段之间存在顺序、幅度和相位差异。考虑到盲源分离的不确定性源于源信号先验知识的缺乏,本文通过记录和利用原始语音段的过零率、波形最大值和最小值等部分先验信息,有效消除了盲源分离解密语音的顺
With the developement of information society, information has become the most important and valuable resources to be transmitted conveniently and promptly through Internet. However, the globality and openness of Internet severely threaten the information security. At the same time, image and speech communications become more and more widely used as the multimedia technology is progressing rapidly. Therefore, the security of images and speeches has become a worldwide problem.Usually, regular data encryption methods can be used to encrypt images and speeches. To further enhance their security level, new theories and new methods need to be explored to give new schemes for encrypting images and speeches. Blind source separation (BSS) is one active branch of stochastic signal processing. It can recover source signals from their observed mixtures without knowing the source signals and the mixing coefficients. BSS has received considerable attention in recent years, and has been applied to many fields such as wireless communications, biomedical engineering. However, there have been only a few reports for its application to signal encryption thus far.Motivated by the fact that the security of many cryptosystems relies on the apparent intractability of the computational problem such as the integer factorization problem, this dissertation explores the feasibility of BSS-based signal encryption, and exploits the intractability of the underdetermined BSS problem to present novel encryption methods for encrypting images and speeches. The BSS-based encryption method can have the perfect key characteristics of one-time pads cipher, which is unconditionally secure. If the key signals pseudorandomly generated are completely random, the proposed method is approximately unconditionally secure. Extensive computer simulations and performance analyses demonstrate the efficiency of the BSS-based encryption.The main contributions of this dissertation are as follows:(1) By studying the BSS theory and the cryptography, the underdetermined BSS problem has been totally exploited to establish a novel method for encrypting images with high security. Two necessary conditions for generating the key signals are given based on BSS theory and the key characteristics of one-time pads cipher, and their necessity is shown. Two mixing matrixes for underdetermined encryption are constructed by using the L-row decomposable theorem, and their inseparability is also proved.
    (2) By using some waveform information about the original speech, a novel method for encrypting speeches is proposed based on BSS. The proposed method encrypts the original speech frame by frame, and each frame is divided into multiple segments for underdetermined mixing encryption. Due to the indeterminacy of BSS, the BSS decrypted segments may have permutation and scale ambiguities compared with the original segments. Considering that the BSS indeterminacy is caused by lack of prior information about sources, the numbers of zero-crossings, the maximum and the minimum of each original segmen are recorded and used to eliminate ambiguity of the BSS decrypted speech in permutation and amplitude. As a result, the decrypted speech signal has been recovered with very high quality.(3) Since the computational load of the BSS algorithms usually has nonlinear relation (e.g., square, cubic, etc) with the number of the source signals, a fast method for decrypting images is given by using the knowledge of the key images on the receiving side, and by employing the technique of adaptive noise cancellation to half reduce the number of the source signals for the BSS decryption. Besides, strongly correlated images are well decrypted with the existing ICA algorithms by decorrelation of the encrypted images before BSS.(4) Based on the masking technique, image cryptosystems with dual encryption are established by using BSS to add another encryption level, which includes "specific mixing" and "BSS", besides the existing encryption methods.(5) Several different BSS adaptive algorithms are unified to one form with various nonlinear functions through reasonable derivation and conversion. The stability criterion for choosing nonlinear function in the unified form is described. The combined criterion for choosing the nonlinear function that gives attention to several desired performances such as separation performance, robustness and convergence speed is given.In summary, this dissertation proposes a novel application of BSS to image encryption and speech encryption. The BSS-based encryption methods can be largely used for secure transmission of images and speeches through Internet.
引文
[1] 杨波.现代密码学.北京:清华大学出版社,2003.
    [2] D.E.R. Denning. Cryptograghy and Data Security. Reading, Massachusetts: Addison-Wesley, 1982.
    [3] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, Inc., 1996.
    [4] R. Bose. Information Theory, Coding and Cryptography. McGraw-Hill Companies, Inc., 2002.
    [5] N. Bourbakis and C. Alexopoulos. Picture data encryption using scan patterns. Pattern Recognition, 1992, 25(6): 567-581.
    [6] C. J. Kuo and M. S. Chen. A new signal encryption technique and its attack study. Proc. IEEE Int. Conf. Security Technology, 1991: 149-153.
    [7] L.M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Physical Review Letters, 1990, 64(8): 821-823.
    [8] M. Salleh, S. Ibrahim, and I. F. Isnin. Enhanced chaotic image encryption algorithm based on Baker's map. Proc. Int. Symposium on Circuits and Systems, 2003, 2:508-511.
    [9] J.C. Yen and J. I. Guo. Efficient hierarchical chaotic image encryption algorithm and its VLSI realization. IEE Proc. Vision, Image and Signal Processing, 2000, 147(2): 167-175.
    [10] J. Fridrich. Image eneryption based on chaotic maps. IEEE Int. Conf. Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, 1997, 2:1105-1110.
    [11] H.K. -C. Chang and J. -L. Liu. A linear quadtree compression scheme for image encryption. Signal Processing: Image Communication, 1997, 10(4): 279-290.
    [12] P.P. Dang and P. M. Chau. Image encryption for secure Internet multimedia applications. IEEE Transactions on Consumer Electronics, 2000, 46(3): 395-403.
    [13] C.C. Chang, M. S. Hwang, and T. S. Chen. A new encryption algorithm for image cryptosystems. The Journal of Systems and Software, 2001, 58: 83-91.
    [14] H. Cheng and Xiaobo Li. Partial encryption of compressed images and videos. IEEE Transactions on Signal Processing, 2000, 48(8): 2439-2451.
    [15] R. Norcen, M. Podesser, A. Pommer, H. -P. Schmidt, and A. Uhl. Confidential storage and transmission of medical image data. Computers in Biology and Medicine, 2003, 33(3): 277-292.
    [16] H.J. Beker and F. C. Piper. Secure Speech Communications. London: Academic Press Inc., 1985.
    [17] 中国人民解放军总装备部.通信保密技术.北京:国防工业出版社,2003.
    [18] A. Matsunaga, K. Koga, and M. Ohkawa. An analog speech scrambling system using the FFT technique with high-level security. IEEE Journal on Selected Areas in Communications, 1989, 7(4): 540-547.
    [19] B. Goldburg, S. Sridharan, and E. Dawson. Design and cryptanalysis of transform-based analog speech scramblers. IEEE Journal on Selected Areas in Communications, 1993, 11(5): 735-744.
    [20] F.L. Ma, J. Cheng, and Y. M. Wang. Wavelet transform-based analogue speech scrambling scheme. Electronics Letters, 1996, 32(8): 719-721.
    [21] K. Li, Y. C. Soh, and Z. G. Li. Chaotic cryptosystem with high sensitivity to parameter mismatch. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2003, 50(4): 579-583.
    [22] G. Manjunath and G. V. Anand. Speech encryption using circulant transformations. Proc. IEEE Int. Conf. on Multimedia and Expo, 2002, 1: 553-556.
    [23] 刘琚,何振亚.盲源分离和盲反卷积.电子学报,2002,30(4):570-576.
    [24] 张贤达,保铮.盲信号分离.电子学报,2001,29(12A):1766-1771.
    [25] V.D. Sanchez A. Frontiers of research in BSS/ICA. Neurocomputing, 2002, 49(1-4): 7-23.
    [26] A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, 2001.
    [27] A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley, 2003.
    [28] J. F. Cardoso. Blind signal separation: statistical principles. Proc. IEEE, 1998, 86(10): 2009-2025.
    [29] S. Amari and A. Cichocki. Adaptive blind signal processing—neural network approaches. Proc. IEEE, 1998, 86(10): 2026-2048.
    [30] A. Hyvarinen and E. Oja. Independent component analysis: algorithms and applications. Neural Networks, 2000, 13(4-5): 411-430.
    [31] T. Ristaniemi, K. Raju, J. Karhunen, and E. Oja. Inter-cell interference cancellation in CDMA array systems by independent component analysis. 4th Int. Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), 2003: 739-744.
    [32] V.D. Calhoun, T. Adali, L. K. Hansen, J. Larsen, and J. J. Pekar. ICA of functional MRI data: an overview. 4th Int. Symposium on Independent Component Analysis and Blind Signal Separation(ICA2003), 2003: 281-288.
    [33] M. Kawakatsu. Application of ICA to MEG noise reduction. 4th Int. Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), 2003:535-541.
    [34] J. F. Cardoso, J. Delabrouille, and G. Patanehon. Independent component analysis of the cosmic microwave background. 4th Int. Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), 2003:1111-1116.
    [35] W. Kasprzak and A. Cichocki. Hidden image separation from incomplete image mixtures by independent component analysis. Proc. 13th Int. Conf. Pattern Recognition, 1996, vol.Ⅱ: 394-398.
    [36] Qiu-Hua Lin and Fu-Liang Yin. Blind source separation applied to image cryptosystems with dual encryption. Electronics Letters, 2002, 38(19): 1092-1094.
    [37] Qiu-Hua Lin and Fu-Liang Yin. Image cryptosystems based on blind source separation. Proc. IEEE Int. conf. Neural Networks & Signal Processing, 2003, vol. Ⅱ: 1366-1369.
    [38] Qiu-Hua Lin, Fu-Liang Yin, and Yong-Rui Zheng. Secure image communication using blind source separation. Proceedings of IEEE 6th CAS Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication, 2004, vol. Ⅰ: 261-264.
    [39] Qiu-Hua Lin, Fu-Liang Yin, Tie-Min Mei, and Hua-Lou Liang. A speech encryption algorithm based on blind source separation. Proc. Int. Conf. Communications, Circuits and Systems (ICCCAS'04), 2004, vol. Ⅱ: Signal processing, Circuits and Systems: 1013-1017.
    [40] X. R. Cao and R. W. Liu. General approach to blind source separation. IEEE Transactions on Signal Processing, 1996, 44(3): 562-571.
    [41] P. Comon. Independent component analysis, a new concept?. Signal Processing, 1994, 36(3): 287-314.
    [42] N. Mitianoudis and M. E. Davies. Audio source separation of convolutive mixtures. IEEE Transactions on Speech and Audio Processing, 2003, 11(5): 489-497.
    [43] H. Saruwatari, T. Kawamura, K. Sawai, A. Kaminuma, and M. Sakata. Blind source separation based on fast-convergence algorithm using ICA and beamforming for real convolutive mixture. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '02), 2002,1: 921 - 924.
    [44] R. H. Lambert. Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures. Ph.D. Dissertation, Los Angeles, University of Southern California, 1996.
    [45] R. H. Lambert and A. J. Bell. Blind separation of multiple speakers in a multipath environment. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Munich, Germany, 1997: 423-426.
    [46] N. Thi Hoang-Lan and C. Jutten. Blind source separation for convolutive mixtures. Signal Processing, 1995, (45): 209-229.
    [47] F. Ehlers and H. G. Schuster. Blind separation of convolutive mixtures and an application in automatic speech recognition in a noisy environment. IEEE Transactions on Signal Processing, 1997, 45(10): 2608-2612.
    [48] F. Abrard and Y. Deville. Blind separation of dependent sources using the "time-frequency ratio of mixtures" approach. Proc. 7th Int. Symposium on Signal Processing and Its Applications, 2003, 2: 81-84.
    [49] A. Cichocki, T. Rutkowski, A. K. Barros, and Oh Sang-Hoon. A blind extraction of temporally correlated but statistically dependent acoustic signals. Proc. IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing, 2000,1:455-464.
    [50] A. Cichocki, J. Karhunen, W. Kasprzak, and R. Vigario. Neural networks for blind separation with unknown number of sources. Neurocomputing, 1999,24:55-93.
    [51] L. Tong, R.-w. Liu, V. C. Soon, and Y.-F Huang. Indeterminacy and identifiability of blind identification. IEEE Transactions on Circuits and Systems, 1991,38(5): 499-509.
    [52] L. Tong, Y. Inouye, and R.-w. Liu. Waveform-preserving blind estimation of multiple independent sources. IEEE Transactions on Signal Processing, 1993,41(7): 2461-2470.
    [53] J. Herault and C. Jutten. Space or time adaptive signal processing by neural network models. Neural Networks for Computing: Proc. AIP Conf., J. D. Denker, ed., New York: American Institute for Physics, 1986:207-211.
    [54] P. Comon, C. Jutten and J. Herault. Blind separation of sources, Part II: Problem statement. Signal Processing, 1991,24:11-20.
    [55] C. Jutten and J. Herault. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, 1991, 24:1-10.
    [56] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series in Telecommunications. John Wiley, 1991.
    [57] S. M. Kendall and A. Stuart. The Advanced Theory of Statistics, vol.1, Fourth edition, London, 1977.
    [58] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 1999,10(3): 626-634.
    [59] A.Hyvarinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997,9: 1483-1492.
    [60] A. Hyvarinen. New approximations of differential entropy for independent component analysis and projection pursuit. Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 1998,10:273-279.
    [61] D. G. Luenberger. Optimization by Vector Space Methods. New York: Wiley, 1969.
    [62] J. Karhunen, E. Oja, Liuyue Wang, R. Vigario, and J. Joutsensalo. A class of neural networks for independent component analysis. IEEE Transactions on Neural Networks, 1997, 8 (3): 486-504.
    [63] S. Choi, A. Cichocki, and S. Amari. Fetal electrocardiogram data analysis via flexible independent component analysis. In the 4~(th) Asia-Pacific Conference on Medical & Biological Engineering (APCMBE'99), Seoul, Korea, 1999.
    [64] S. Choi, A. Cichocki, and S. Amari. Flexible independent component analysis. Journal of VLSI Signal Processing, 2000, 26(1/2): 25-38.
    [65] A.K. Nandi and V. Zarzoso. Fourth-order cumulant based blind source separation. IEEE Signal Processing Letters, 1996, 3(12): 312-314.
    [66] B.Widrow and E. Walach. Adaptive Inverse Control. New Jersey: Prentice-Hall PTR, 1996.
    [67] T. W. Lee, A. Ziehe, R. Orglmeister, and T. J. Sejnowski. Combining time-delayed decorrelation and ICA: towards solving the cocktail party problem. Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, 1998,2:1249-1252.
    [68] M. Z. Ikram. Multichannel blind separation of speech signals in a reverberant environment. Ph.D. Dissertation, Georgia Institute of Technology, 2001.
    [69] M.Girolami. A nonlinear model of the binaural cocktail party effect. Neurocomputing, 1998, 22(1-3): 201-215.
    [70] S. Choi, H. Hong, H. Glotin, and F. Berthommier. Multichannel signal separation for cocktail party speech recognition: a dynamic recurrent network. Neurocomputing, 2002, 49(1-4): 299-314.
    [71] S. C. Douglas and Xiaoan Sun. Convolutive blind separation of speech mixtures using the natural gradient. Speech Communication, 2003,39(1-2): 65-78.
    [72] D. W. E. Schobben and P. W. Sommen. A frequency domain blind signal separation method based on decorrelation. IEEE Transactions on Signal Processing, 2002, 50 (8): 1855-1865.
    [73] A. J. Caamano, B.-T. Rafael, J. Ramos, and J. J. Murillo-Fuentes. Hybrid higher-order statistics learning in multiuser detection. IEEE Transactions on Systems, Man and Cybernetics, Part C, 2004, 34(4): 417-424.
    [74] J.G. Proakis and C. L. Nikias. Blind equalization. Proc. SPIE, 1991, 1565: 76-87.
    [75] B. Sklar. Rayleigh fading channels in mobile digital communication systems, part I: Characterization. IEEE Communicationa Magazine, 1997, 35(7): 90-100.
    [76] B. Sklar. Rayleigh fading channels in mobile digital communication systems, part II: Mitigation. IEEE Communicationa Magazine, 1997,35(7): 102-109.
    [77] J. K. Tugnait. Blind estimation of digital communication channel impulse response. IEEE Transactions on Communications, 1994, 42(2-4): 1606-1616.
    [78] J. K. Tugnait. Spatio-temporal signal processing for blind separation of multichannel signals. Proc. SPIE, 1996, 2750: 88-103.
    [79] S. Haykin. Unsupervised Adaptive Filtering, Volume I: Blind Source Separation. New York: Wiley, 2000.
    [80] A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995,7: 1129-1159.
    [81] J. Karhunen, P. Pajunen, and E.Oja. The nonlinear PCA criterion in blind source separation: relations with other approaches. Neurocomputing, 1998, (22): 5-20.
    [82] T. W. Lee, M. Girolami, A. J. Bell, and T. J. Sejnowski. A unifying information-theoretic framework for independent component analysis. Computers & Mathematics with Applications, 2000, (39): 1-21.
    [83] J. F. Cardoso. The three easy routes to independent component analysis;contrasts and geometry. Proceedings of the 3rd International Conference on Independent Component Analysis and Blind Signal Separation, San Diego, California, 2001.
    [84] S. Amari, A. Cichocki, and H. H Yang. A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, 1996, (8): 757-763.
    [85] M. Girolami and C. Fyfe. Negentropy and kurtosis as projection pursuit indices provide generalised ICA algorithms. A. Cichocki and A. Back: NIPS-96 Blind Signal Separation Workshop, Aspen, Colorado, 1996.
    [86] B. A. Pearlmutter and L. C. Parra. A context-sensitive generalization of ICA. Proceedings of the International Conference on Neural Information Processing, HongKong, 1996, 1: 151-157.
    [87] J. Karhunen and J. Joutsensalo. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 1994,7(1): 113-127.
    [88] S. Amari. Natural gradient works efficiently in learning. Neural Computation, 1998, (10): 251-276.
    [89] M. Girolami. Self-organising neural networks for signal separation. Ph.D. Thesis, University of Paisley, 1997.
    [90] J. F. Cardoso and B. H. Laheld. Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 1996, 44(12): 3017-3030.
    [91] R.C. Luo, C. Long-Yeu, and L. Chang-Hua. A novel symmetric cryptography based on the hybrid Haar wavelets encoder and chaotic masking scheme. IEEE Transactions on Industrial Electronics, 2002, 49(4): 933-944.
    [92] K. Murali, Yu Haiyang;V. Varadan, and H. Leung. Secure communication using a chaos based signal encryption scheme. IEEE Transactions on Consumer Electronics, 2001,47(4,): 709 - 714.
    [93] 0. Morgiil and M. Feki. A chaotic masking scheme by using synchronized chaotic systems. Physics Letters A, 1999,251(3): 169-176.
    [94] T. W. Lee, M. Girolami, and T. J. Sejnowski. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 1999,11: 417-441.
    [95] Y. Luo, S. Lambotharan, and J. A. Chambers. A new block based time-frequency approach for underdetermined blind source separation. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), 2004, vol. 5: V-537 - V-540.
    [96] L. Albera, P. Comon, P. Chevalier, and A. Ferreol. Blind identification of underdetermined mixtures based on the hexacovariance. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), 2004, vol. 2:11-29 -11-32.
    [97] P. Sugden and N. Canagarajah. Underdetermined blind separation using learned basis function sets. Electronics Letters, 2003, 39(1): 158-160.
    [98] Yuanqing Li, A. Cichocki, and S. Amari, Sparse component analysis for blind source separation with less sensors than sources. 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, Japan, 2003: 89-94.
    [99] P. Bofill and M. Zibulevsky. Underdetermined blind source separation using sparse representation. Signal Processing, 2001, 81:2253-2362.
    [100] T. W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski. Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letter, 1999, 6(4): 87-90.
    [101] S. Haykin. Adaptive Filter Theory, 3rd Edition. Englewood Cliffs, New Jersey: Prentice-Hall, 1996.
    [102] M. Peyravian, S. M. Matyas, A. Roginsky, and N. Zunic. Generating user-based cryptographic keys and random numbers. Computers and Security, 1999,18(7): 619-626.
    [103] J. Szczepanski, E. Wajnryb, J. M. Amig6, M. V. Sanchez-Vives, and M. Slater. Biometric random number generators. Computers and Security, 2004, 23(1): 77-84.
    [104] A. B. J. Teoh, D. C. L. Ngo, and A. Goh. Personalised cryptographic key generation based on FaceHashing. Computers and Security, 2004,23(7): 606-614.
    [105] A. Goh and D. C. L. Ngo. Computation of cryptographic keys from face biometrics. Lecture Notes in Computer Science, Springer-Verlag, 2003,2828:1-13.
    [106] F. Monrose, M. K. Reiter, Q. Li, and S. Wetzel. Cryptographic key generation from voice. IEEE Symposium Security & Privacy, 2001: 202-213.
    [107] A. Cichocki, S. Amari, and K. Siwek, et al. ICALAB for image processing, version 2.0a, March 20, 2004. (http://www.bsp.brain.riken.jp/ICALAB/).
    [108] T. W. Lee, A. J. Bell, and R. H. Lambert. Blind separation of delayed and convolved sources. Advances in Neural Information Processing Systems, 1996, 9: 758-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700