用户名: 密码: 验证码:
微小型数字化口腔测量关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字化技术在口腔修复医学领域的应用引发了口腔修复的技术革命,简洁、高效、精确的数字化流程替代了繁琐、耗时、粗糙的传统手工方式,不仅提高了修复的精度,而且大大减轻了患者的痛苦。数字化口腔测量是口腔数字化修复得以进行的基础,直接决定着口腔修复的质量。本文结合口腔临床医学实际应用,深入研究了基于机器视觉的数字化口腔三维测量关键技术,包括图像处理技术、摄像机标定技术、相位求解技术、测量重建技术、数据拼接技术和系统软硬件研发技术等,并自主研发了两套高精度口腔专用测量原型系统:小型口外测量系统D3DscannerI和微型口内测量系统D3DscannerII。本文的主要研究内容概括为:
     1、建立了口腔三维测量模型,从标定和重建方面分别进行了分析,设计了口腔测量系统的研发思路和系统软硬件的总体研发框架。
     2、提出了基于整体测量误差分布模型的系统标定解决方案。首先根据CCD成像噪声及清晰度进行了标定前处理,使用基于矩的方法精确提取了标定输入数据,然后,基于径向一致约束,使用最小二乘和分布收敛算法获得系统元器件非线性参数初始标定,建立系统几何结构“捆绑”关系,优化标定结构参数,最后,将系统理论模型与实际物理模型误差作为目标优化函数,基于多平面隐式模型再次优化,实现系统参数的全局优化标定和恢复,其中的全局优化步骤解决了口内微型测量系统的特殊标定需求。
     3、提出了一种用于非连续牙齿曲面形态的相位展开算法。首先对相位质量评估因子从物理模型角度进行定义和扩展,并综合数理统计和图像处理技术提出了一种对相位噪声灵敏的“调制度-Laplace”质量评估因子,然后以绝对相位标识为导向进行相位展开,实现了复杂非连续牙齿曲面形态的稳定相位求解,其中的动态链表修改保证了相位展开的速度。
     4、提出了对非正弦性相位误差有抵抗力的线性正弦相移算法和无绝对相位线图的相移算法。前者综合利用反正切三角函数极值收敛特性和相位求解零点特性,使非正弦性波动误差降低为传统补偿算法的1/9,提高了相位求解精度;后者巧妙的利用三幅和四幅图像的调制度差异,将绝对相位标识图隐含,使相位求解所需的5幅图像减少为4幅,提高相位求解图像采集时间约20%。
     5、提出了面向小型口腔外测量系统的基于双转轴粗拼和ICP精拼的两步优化拼合算法。首先基于平面靶标采用特征值法实现转动轴和摆动轴的初始位姿标定,然后,采用融合点到点距离和点到面距离模型的综合度量函数的迭代收敛算法,通过分层次的迭代终止条件设定,实现小型口腔外测量数据的精确拼合。
     6、提出了用于空间无约束微型口内测量的优化拼合算法。基于测量过程中多源图像和三维点云数据的单应性关系,使用尺度不变性特征检测算子对灰度纹理二维图像和基于相移的二维半深度图像进行特征检测,然后,利用图像特征点匹配实现三维测量点云数据的空间初始定位,最后,采用改进的ICP算法实现口腔测量数据的精确、稳定的优化拼合。
     7、在基础理论和关键算法研究的基础上,研发两款不同类型的口腔修复用三维测量原型样机系统,实现了精确标定、快速测量、全景拼接、精确重建及同步协调等复杂功能模块,并进行了测量系统精度、效率及应用效果等方面验证,实测结果表明,研发的口腔外专用测量系统性能优越,完全满足口腔测量临床应用需要。研发的国内首套口腔内测量系统,基本达到临床使用要求。
The application of digital technology in the medical field of dental restoration has led to atechnical revolution of dental restoration. The replacement of the cumbersome, time-consuming, andrough manual methods by simple, efficient, and accurate digital process, not only improves theaccuracy of the restoration, but also greatly reduces the suffering of patients. Being the basis of dentalrestoration, digital measurement directly determines the quality of restoration. Combined with thedemands of dental clinic, this dissertation thoroughly studied the digital optical dental measurementmethod based on machine vision including imaging processing, camera calibration, phase computing,reconstruction, registration, software&hardware implementation, etc. Two dental measurementprototype systems: D3DscannerI and D3DscannerII are also developed. The dissertation’s maincontributions are as follows:
     1. The dental measurement model is constructed and is analyzed from the perspective of systemcalibration and reconstruction respectively. The overall framework and routing of the development ofdental measurement system is devised.
     2. System calibration solution based on the overall measurement error is developed. First, thecalibration pre-treatment technology based on CCD noises and image definition is used to ensure theaccuracy of the input data. Then the nonlinear parameters of the system is calibrated with leastsquares and the distribute convergence algorithm based on the RAC. Thirdly, considering thegeometry restrain of the system structure, the overall optimization calibration method is established.Finally, the error between the ideal system model and the actual physical model is taken as the targetoptimization function to optimize the system again. The developed three-step calibration method canobtain calibration system parameters with high accuracy, and the third step of the optimization meetsthe special requirement of the calibration of the intraoral micro-measurement system.
     3. A new robust phase unwrapped algorithm for discontinuous teeth shape measurement isdeveloped. First, this paper elaborates and extends the phase quality factor from physical model, anddevelops a new modulation-Laplace quality factor based on mathematical statistics and imageprocessing technology. The phase unwrapping are achieved along the absolute phase quality map,realizing the settlement of the correct phase of complex discontinuous teeth morphology.
     4. The phase shifting algorithm immune to nonsinusoidal phase error and phase-shifting methodwith the absolute phase marker embedded in phase stripes are proposed. The former reduces thenonsinusodial phase error to1/9of the traditional compensation algorithm by compositively utilizing the extremal convergence properties of trigonometric and the zero point of phase computing. Thealgorithm greatly improves the system measurement accuracy. The latter embeds the new designedabsolute phase marker into one of the phase fringe images, and reduces the phase shifting fringesimage from5to4, which avoids the need of additional absolute phase marker map. The methodimproves at least20%efficiency compared with the traditional methods.
     5. The registration solution based on double shaft and ICP is developed for small oral dentalmeasurement system. First, the eigenvalue method is used to achieve the initial parameters of rotationand swing axis, then the iterative convergence algorithm based on the integration of point-to-point andpoint-to-surface distance metric function is used for accurate registration.
     6. The optimization registration algorithm is proposed for miniature intraoral dental measurementsystem. Based on the homography between a multi-source image and3D measurement points, thematching relationships of two-dimensional (2D) texture gray images andtwo-and-a-half-dimensional(2.5D) range image are constructed using the scale-invariant featuretransform algorithms firstly. According to the index of overlapping image and the local3D bordersearch method, multi-view registration data are rapidly and accurately integrated. At last, theimproved ICP algorithm is used to acquire accurate and stable registration.
     7. Two prototype dental measurement systems, namely D3DScannerI and D3DscannerII basedon machine vision is designed and realized with the key algorithms and techniques described above.The system model including accurate system calibration, rapid measurement, multi-view registration,3D reconstruction, cloud polygonization and display algorithm et al. have all been coded,implemented and integrated with VC++for the primary functionality of the system. It has beendemonstrated that the complex teeth shape surface point cloud can be obtained fairly well by theprototype system. Two prototype dental measurement systems developed can meet the requirement ofdental clinic basically.
引文
[1]吕培军.数学和计算机技术在口腔医学中的应用[C].北京:中国科学技术出版社,2001.
    [2] Tinschert J, Natt G, Hassenpflug S, et al. Status of current CAD/CAM technolgy in dentalmedicine[J]. Int J Comput Dent,2004,7(1):25-45.
    [3] F. Duret. Method of making a prosthesis, especially a dental prosthesis. Technical report,United States Paten Nr.4742464,1988.
    [4] W. H. Mormann, M. Brandestini. Die CEREC Computer Reconstruction[J].Quintessenz-verlag,1989.
    [5] W. H. Mormann, A. Mattiola. Computer-generated occlusion of cerec2inlays and onlays[C].In CAD/CAM in aesthetic dentistry. Quintessence Publishing Co, Inc,1996.
    [6] http://www.sirona.com
    [7] Rekow D E. The Minnesota CAD/CAM System DentiCAD. Technical report, U. of Minnesota,1989.
    [8] C.C.Chang, M. Y. Lee, Y. C. Ku. Digital Custom Denture Design with New AbrasiveComputer Tomography and Rapid Prototyping Technologies.[J] Biomedical EngineeringApplications, Basis&Communications,2003,15(3):115-123.
    [9] http://www.3shape.com/x_scanners/html/r_3shape_d200.html.
    [10] http://www.dcs-dental.com/eng/cadcam.html.
    [11] http://www.tdsbiotech.com.
    [12] J. Salvi, J. Batlle, E. Mouaddib. A robust-coded pattern projection for dynamic3d scenemeasurement[J]. Pattern Recognition Letters,1998,(19):1055–1065.
    [13] L. Zhang, B. Curless, S. M. Seitz. Rapid shape acquisition using color structured light andmulti-pass dynamic programming[C]. In Int. Symposium on3D Data ProcessingVisualization and Transmission,2002,Padova, Italy.
    [14] P. Vuylsteke, A. Oosterlinck. Range image acquisition with a single binary-encoded lightpattern[J]. Pattern Analysis and Machine Intelligence,1990,12(2):148-163.
    [15] D. C.Ghigila and M. D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithm, andSoftware algorithm[M]. New York: John Wiley and Sons. Inc.,1998.
    [16]邓劲莲,屠立,王循明.基于三坐标测量机的曲面轮廓反求工程数字化测量方法[J].机电工程,2006,23(6):22-24.
    [17]马颂德,张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1998.
    [18] D. Marr, Vison, W.H.Freeman and Company, San Francisco[M],1982.中译本:姚国正,刘磊,汪云九译.计算机视觉理论.北京:科学出版社,1988.
    [19]吴立德.计算机视觉[M].上海:复旦大学出版社,1993.
    [20] Palmer. S. E. Vision science: photons to phenomenology[M]. The MIT press. Cambridge,Massachusetts.
    [21] H.T. Yau, C.Y. Chen, Robert G. Wilhelm. Registration and integration of multiple laserscanned data for reverse engineering of complex3D models[J]. International Journal ofProduction Research,2000,38(2):269-285.
    [22]张广军.视觉测量[M].北京:科学出版社,2008.
    [23]金观昌.计算机辅助光学测量[M].北京:清华大学出版社,1997.
    [24] O. Faugeras. Three-Dimensional Computer Vision-A Geometric Viewpoint[M]. MIT Press,Cambridge MA,1993.
    [25] Rioux, M., Bechthold, G., Taylor, D., and Duggan, M.(1987). Design of a large depth ofview three-dimensional camera for robot vision[J]. Optical Engineering,26(12):1245-1250.
    [26] Curless, B. and Levoy, M.(1995). Better optical triangulation through spacetime analysis[C].In Fifth International Conference on Computer Vision (ICCV’95), pp.987–994, Cambridge,Massachusetts.
    [27] Goesele, M., Fuchs, C., and Seidel, H.-P.(2003). Accuracy of3D range scanners bymeasurement of the slanted edge modulation transfer function[C]. In Fourth InternationalConference on3-D Digital Imaging and Modeling, Banff.
    [28] J. Batlle, E. M. Mouaddib, J. Salvi. Recent progress in coded structured light as a techniqueto solve the correspondence problem: A survey[J]. Pattern Recognition,1998,31(7):963-982.
    [29] Pages. J., Salvi. J., Garcia. R., et al. Overview of coded light projection techniques forautomatic3D profiling[C]. Proceedings of the2003IEEE International Conference onRobotics and Automation, Taipei, Taiwan,2003.
    [30] P. S. Huang, C. Zhang, F. P. Chiang. High-speed3-d shape measurement based on digitalfringe projection[J]. Opt. Eng.,2003,42(1):163–168.
    [31] J. Guhring. Dense3-D surface acquisition by structured light using off-the-shelfcomponents[J]. Proceedings of SPIE-the International Society for Optical Engineering,2001,4309:220-231.
    [32] J. L. Posdamer and M. D. Altschuler. Surface measurement by space-encoded projected beamsystems[J]. Computer Graphics and Image Processing,1982,18(1):1–17.
    [33] G. Sansoni, M. Carocci, R. Roberto. Calibration and performance evaluation of a3-Dimaging sensor based on the projection of structured light[J]. IEEE Ttrans. Instrum. Meas,2000,49:628-636.
    [34] M.J. Tsai, C.C. Hung. Development of a high-precision surface metrology system usingstructured light projection[J]. Measurement,2005,38:236-247.
    [35] Sai Siva Gorthi, Pramod Rastogi, Fringe projection techniques: whither we are?[J]. Opticsand laser in engineering,2010,48:133-140.
    [36] R.J. Valkenburg and A.M. Mcivor, Accurate3d measurement using a structured lightsystem[J]. Image and Vision Computing,1998,16(2):99-110.
    [37] M. Ito, A. Ishii. A three-level checkerboard pattern projection method for curved surfacemeasurement[J]. Pattern Recognition,1995,28(1):27-40.
    [38] C. Chen, Y. Hung, C. Chiang, et al. Range data acquistion using colors structured lighting andstereo vision[J]. Image and Vison Computing,1997,15:445-456.
    [39] K. L. Boyer, A. C. Kak. Color-encoded structured light for rapid active ranging[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1987,9(1):14–28.
    [40] S. R. Yee, P. M. Griffin. Three-dimensional imaging system[J]. Optical Engineering,1994,6(33):2070–2075.
    [41] Besl, P.(1989). Active optical range imaging sensors[M]. In Sanz, J. L.(ed.), Advances inMachine Vision, chapter1, pp.1–63, Springer-Verlag.
    [42] Zongker, D. E.,Werner, D. M., Curless, B., and Salesin, D. H. Environment matting andcompositing[C]. In ACM SIGGRAPH1999Conference Proceedings, pp.205–214,1999.
    [43] A.V. Oppenheim, J.S. Lim. The importance of phase in signals[C]. Proceedings of the IEEE,1981,69(5):529-541.
    [44] D.J.BONE, Fourier fringe analysis, the two-dimensional phase unwrapping problem[J].Appl.Opt.,1991,30:3627-3632.
    [45] Y. Xu, C. Ai, Simple and effective phase unwrapping technique[C]. Proceedings of the SPIE,Interferometry: Techniques and Analysis II, Bellingham,1993,(2003):254-263.
    [48] Hock Lim, Wei Xu, Xiaojing Huang. Two new practical methods for phase unwrapping[C].Proceedings of the1995International Geoscience and Remote Sensing Symposium, Tokyo,Janpan, IEEE, Piscataway, NJ,1995, PP:196-198.
    [49] M.W Roth. Phase unwrapping for interferometric SAR by the least-error path. Johns HopkinsUniversity Applied Physics Lab Technical Report, Laurel MD,1995.
    [50] B. Pan, K. Qian, L. Huang, et al. Phase error analysis and compensation for nonsinusoidalwaveforms in phase-shifting digital fringe projection profilometry[J]. Opt. Lett.2009,34:2906-2908.
    [51] Schwider. Johannes, Falkenstoerfer. Oliver, Schreiber. Horst, et al. New compensatingfour-phase algorithm for phase-shift interferometry[J]. Optical Engineering,1993,32(8):1883-1885.
    [52] GH. Notni, G. Notni. Digital fringe projection in3d shape measuement-an error analysis[C].Proc. SPIE,2003,5144:372-380.
    [53] Cao YP, Su XY, Xiang LQ, et al. Intensity transfer function of DMD and its application inPMP[J]. Proc SPIE Int Soc Opt Eng,2002,4778:83-88.
    [54] Kai Liu, Yongchang Wang, Daniel L. Lau, et al. Gamma model and its analysis for phasemeasuring profilometry[J], JOSA A,2010,27(3):553-562.
    [55] J. M. Huntley. Noise-immune phase unwrapping algorithm[J]. Applied Optics,1989,28(15):3268-3270.
    [56] S. Lei and S. Zhang. Digital sinusoidal fringe pattern generation: Defocusing binary patternsVS focusing Sinusoidal patterns[J]. Opt. Lett.2009,34:3080-3082.
    [57] J. Salvi, J. Pages, J. Batlle. Pattern codification strategies in structured light systems[J].Pattern Recognition,2004,37(4):827-849.
    [58] M. D. Pritt. Phase unwrapping by means of multigrid techniques for interferometric sar[J].IEEE Trans. Geosci. Remote Sens,1996,34(3):055601-(1-9).
    [59] Z. J. Geng. Rainbow3-D camera: new concept of high-speed3-D vision systems[J]. OpticalEngineering,1996,35(2):376-383.
    [60] R. J. Valkenburg, A. M. McIvor. Accurate3d measurement using range finder[C]. InInternational Conference on Pattern Recognition,1990:309-313.
    [61] G. Sansoni, S.Corini, S. Lazzari, et al.3D imaging based on Gray code light projection:characterization of the measuring algorithm and development of a measuring system forindustrial applications[J]. Applied Optics,1997,36(19):4463-4472.
    [62] D. Bergmann. New approach for automatic surface reconstruction with coded light[C]. InProceedings of Remote Sensing and Reconstruction for Three-Dimensional Objects andScenes,1995,2572:2–9.
    [63] O. Hall-Holt and S. Rusinkiewicz. Stripe boundary codes for real-time structured-light rangescanning of moving objects[C]. In The8th IEEE International Conference on ComputerVision,2001,pp:359–366.
    [64] W. Krattenthaler, K. J. Mayer, H. P. Duwe.3D-surface measurement with coded lightapproach[C]. In Proceedings O¨ esterr. Arbeitsgem. MustererKennung,1993,12:103–114.
    [65] http://www.kavo.com.
    [66] http://www.cynovad.com/html/produits/Pro50/pro50.html.
    [67]游素亚,徐光祐.立体视觉研究的现状与进展[J].中国图像图形学报,1997,2(1):17-24.
    [68] U. R. Dhond, J.K. Aggarwal. Structure from stereo-a review[J]. IEEE Transactions onSystems, Man, and Cybemetics,1989,19(6):1489-1510.
    [69] J.J. Aguilar, F. Torres, M.A. Lope. Stereo vison for3D measurement: accuracy analysis,calibration and industrial applications[J]. Measurement,1996,18:193-200.
    [70]贾云德.机器视觉[M].北京:科学出版,2000.
    [71] Peter Kuhmstedt, Christian Brauer-Burchardt, et al. Intraoral3D scanner[C]. Proc. Of SPIE,2007:6762,67620E:1-9.
    [72]葛华勇.内窥式共焦扫描显微成像的研究,[博士学位论文].上海:上海大学,2005.
    [73] T. Wilson. Differential phase imaging in confocal microscopy[C], SPIE Vol.2083,132-138.
    [74] http://www.3m.com.
    [75] http://cadent.biz.
    [76]张建新,段发阶,叶声华.双目传感器结构优化设计[J].光电工程,1996,23(3):12-17.
    [77] Xianyu Su, Wenjing Chen. Fourier transform profilometry: a review[J]. Optics and Lasers inEngineering,2001,35(5):263-284.
    [78]马扬飚,钟约先,戴小林.大面积形体的三维无接触精确测量的研究[J].机械设计与制造,2006,10:24-26.
    [79] Chen J, Xi Juntong, J iang Tao, et al. Research and development of an accurate3D shapemeasurement system based on fringe p ro ject ion: model analysis and perfo rmanceevaluation[J]. Precision. Engineering,2008,32(3):215-221.
    [80]张辉.基于随机光照的双目立体测量关键技术及其系统研究[博士学位论文].南京,南京航空航天大学,2010.
    [81]谭久彬.超精密测量技术与仪器工程研究中的几个热点问题[J].中国机械工程,2000,11(3):257-262.
    [82] Kuang-Chao Fan, Yetai Fei, Xiaofen Yu. A micro-cmm for non-contact3D measurement inmeso scale[C]. ICMT2004, Hanoi, Vietnam,1-6.
    [83]高勃,王建,王忠义,等.牙冠表面三维光学测量和重建方法[J].光子学报,2000,29(6):554-558.
    [84]吕培军,李忠科,王勇等.非接触式牙颌模型三维激光测量分析系统的研制[J].中华口腔医学杂志.1999,34(6):351-355.
    [85]徐君伍.口腔修复学[M].北京:人民卫生出版社,2000.
    [86]张广军.机器视觉[M].北京:科学出版社,2005.
    [87]郑南宁.计算机视觉与模式识别[M].北京:国防工业出版社,1998.
    [88]章毓晋.图像工程上册-图像处理和分析[M].北京:清华大学出版社,1999.
    [89]高文,陈熙霖.计算机视觉-算法与系统原理[M].北京:清华大学出版社,1999.
    [90] R. A. Jaris. A laser time-of-light range scanner for robot vision[J]. IEEE Transactions onPattern Aanalysis and Machine Intelligence,1983,5:505-512.
    [91] Zhenzhong Wei, Fuqiang Zhou, Guangjun Zhang.3D coordinates measurement based onstructured light sensor[J]. Sensors and Actuators A,2005,120:527-535.
    [92] Ian D. Reid. Projective calibration of a laser-stripe range finder[J]. Image and VisionComputing1996,14:659-666.
    [93] Denis Laurendeau, A computer-vision technique for the acquisition and processing of3-Dprofiles of dental imprints: an application in orthodontics[J]. IEEE Transactions on MedicalImaging.1991,10(3):453-461.
    [94] Li Zhang, Kazem Alem zadeh, A dental vision system for accurate3D tooth modeling[C].Proceedings of the28thIEEE EMBS Annual International Conference, New York City, USA,2006,4799-4802.
    [95] Dietrich Paulus, Matthias Wolf, Sebastian Meller et al. Three-dimensional computer visionfor tooth restoration[J]. Medical Image Analysis,1999,3(1):1-19.
    [96] Chen F, Brown GM, Song M. Overview three-dimensional shape measurement using opticalmethods[J]. Opt Eng,2000,39:10-22.
    [97] O.Hall-Holt, S.Rusinkiewicz. Stripe boundary codes for real-time structured-light rangescanning of moving objects[C]. In The8thIEEE International Conference on Computer Vision,2001:359-366.
    [98] Su XY and Chen W. Reliability-guided phase unwrapping algorithm: a review[J]. Opt. LasersEng.,2004,42(3),245-261.
    [99] M. Takeda,H. Ina,S. Kobayaschi. Fourier-transform method for fringe-pattern analysis forcomputer-based topography and interferometry[J]. J. Opt. Soc. Am,1982,72(1):156-160.
    [100] C. Chen, Y. Hung, C. Chiang, et al. Range data acquistion using colors structured lightingand stereo vision[J]. Image and Vison Computing,1997,15:445-456.
    [101] K.L.Boyer, A.C.Kak. Color-encoded structured light for rapid active ranging[J]. IEEE Trans,Pattern Analysis and Machine Intellligence,1987,9(1):25-29.
    [102] R. M. Goldstein, H.A. Zebker,L. Werner. Satellite radar interferometry: two-dimensionalphase unwrapping[J]. Radio Science,1988,23(4):713--720.
    [103] R. Touzi,A. Lopes,J. Bruniquel, et al. Coherence estimation for SAR imaginery[J]. IEEETrans on Geosci and Remote Sens,1999,37(1):135-149.
    [104] M. Arevallilo Herraez, D. R. Burton, M. J. Lalor, et al. Fast wo-dimensionalphase-unwrapping algorithm based on sorting by relliability following a noncontinuouspath[J]. Appl. Opt.,2002,41,7437-7444.
    [105] J. A. Quiroga, E. Bernabeu. Phase-unwrapping algorithm for noisy phase-map processing[J].Applied Optics,1994,33(29):6725–6731.
    [106] W. Xu, I. Cumming. A region-growing algorithm for InSAR phase unwrapping[C].Proceedings of the1996International Geoscience and Remote Sensing Symposium, Lincoln,NE, Piscataway, NJ,1995, pp:2044-2046,.
    [107] D. C. Ghiglia, L. A. Romero. Minimum lp-norm two dimensional phase unwrapping[J]. J.Opt. Soc. Am. A,1996,13(10):1-15.
    [108] S. Zhang, P.S. Huang. Phase error compensation for a three-dimensional shape measurementsystem based on the phase shifting method[J]. Opt Eng,2007;46(6):063601.
    [109] H. Guo, H. He, M. Chen. Gamma correction for digital fringe projection profilometry[J].Appl. Opt.2004,43:2906-14.
    [110] Huang PS, Hu QY, Chiang FP. Error compensation for a three-dimensional shapemeasurement system[J]. Opt Eng,2003,42(2):482-486.
    [111] S Zhang, ST Yau. Generic nonsinusoidal phase error correction for3D shape measurementusing a digital video projector[J]. Appl. Opt.,2007,46(1):36-43.
    [112] S Zhang, S-T Yau. High-resolution, real-time3-D absolute coordinate measurement basedon a phase-shifting method[J]. Opt. Express,2006;14,2644-2649.
    [113] Hong Guo, Peisen S. Huang. Absolute phase retrieval for3d shape measurement by thefourier transform method[C]. Proc. Of SPIE,2007;6762,676204-1-4.
    [114] Wei-Hung Su. Projected fringe profilometry using the area-encoded algorithm for spatiallyisolated and dynamic objects[J]. Opt. Express,2008,16:2590-2596.
    [115] Xianyu Su, Qican Zhang. Dynamic3-D shape measurement method:a review[J]. Optics andlasers in engineering,2010,48(2):191-204.
    [116] Shaoyan Gai, Feipeng Da, A novel phase-shifting method based on stripe marker[J]. OptLaser Eng,2010,48:205-211.
    [117] Song Zhang. High-resolution, real-time3-D shape measurement[Dotctor thesis]. New York,Stony Brook University,2005.
    [118]王军.航空发动机叶片三维轮廓测量方法研究,[博士学位论文].长春:长春光学精密机械与物理研究所,2004.
    [119]夏良正.数字图像处理[M].南京:东南大学出版社,1999,193-220.
    [120] Nobuyuki Otsu. A threshold selection method from gray-level histograms[J]. IEEETransactions on system,man, and cybernetics,1979,SMC-9(1):62-66.
    [121]牛家骥,郭之盈,刘永政,等.概率统计[M].兰州:兰州大学出版社,1988,95-120.
    [122] T. J. Flynn. Consistent2-D phase unwrapping guided by a quality map[C]. In Proc.1996Int.Geoscience and Remote Sensing Symp., Lincoln, NE, IEEE, Piscataway, New Jersey,1996:2057–2059.
    [123] C. J. Hilditch. Comparison of thinning algorithms on a parallel processor[J]. Image. VisionComput.1983,1(3):115–132.
    [124] R.Cusack, J.M.Huntley, H.T. Godlstein. Improved noise immune phase unwrappingalgorithm[J]. Appl. Opt.1995,34:781-789.
    [125] M. Arevallilo Herraez, D. R. Burton, M. J. Lalor, et al. Fast wo-dimensionalphase-unwrapping algorithm based on sorting by relliability following a noncontinuouspath[J]. Appl. Opt.,2002,41,7437-7444.
    [126] Georg H. Notni, Gunther Notni. Digital fringe projection in3d shape measuement-an erroranalysis[C]. Proceedings of SPIE,2003,5144,372.
    [127] Bashar A Rajoub, David R Burton, Michael J Lalor. A new phase-to-height model formeasuring object shape using collimated projections of structured light[J]. Journal of OpticsA: Pure and Applied Optics,2005,7(6):10881/1464-4258.
    [128] Peirong Jia, Jonathan Kofman, Chad English. Multiple-step triangular-pattern phase shiftingand the influence of number of steps and pitch on measurement accuracy[J]. Applied Optics,2007,46(16):3253-3262.
    [129] M. Ito. Robot vision modelling-camera modelling and camera calibration[J]. Adv. Robotics,1991,5:321-335.
    [130] R.K. Lenz, R.Y. Tsai. Techniques for calibration of the scale factor and image center forhigh accuracy3D machine vision metrology[J]. IEEE Trans. Pattern Anal. Mach. Intell.,1988,10:713–720.
    [131] M. Penna. Camera calibration: a quick and easy way to detection the scale factor[J]. IEEETrans. Pattern Anal. Mach. Intell.,1991,13:1240–1245.
    [132] Y. Liu, T.S. Huang, O.D. Faugeras. Determination of camera location from2-D to3-D lineand point Correspondences[J]. IEEE Trans. Pattern Anal. Mach. Intell.,1990,12:28–37.
    [133] C.C. Wang. Extrinsic calibration of a vision sensor mounted on a robot[J]. IEEE Int. J.Robotics Automat.,1992,8:161–175.
    [134] E.L. Hall, J.B.K. Tio, C.A. McPherson, et al. Measuring curved surfaces for robot vision.Comput[J]. J.,1982,15:42-54.
    [135] J. Batista, H. Araujo, A.T. de Almeida. Iterative multistep explicit camera calibration[J].IEEE Int. J. Robotics Automat.,1999,15:897–916.
    [136] G.-Q. Wei, S. De Ma. Implicit and explicit camera calibration: Theory and experiments[J].IEEE Trans. Pattern Anal. Mach. Intell.,1994,16:469–480.
    [137] O.D. Faugeras, G. Toscani. The calibration problem for stereo[C]. The Proceedings of theIEEE Computer Vision and Pattern Recognition,1986, pp:15–20.
    [138] R.Y. Tsai. A versatile camera calibration technique for high-accuracy3D machine visionmetrology using oH-the shelf TV cameras and lenses[J]. IEEE Int. J. Robot. Automat.,1987,RA-3:323–344.
    [139] L.L. Wang, W. Tsai. Camera calibration by vanishing lines for3-D computer vision[J].IEEE Trans. Pattern Anal. Mach. Intell.,1991,13:370–376.
    [140] J. Weng, P. Cohen, M. Herniou. Camera calibration with distortion models and accuracyevaluation[J]. IEEE Trans. Pattern Anal. Mach. Intell.,1992,14:965–980.
    [141] Z.Y. Zhang. A flexible new technique for camera calibration[J]. IEEE Trans. Pattern Anal.Machine Intell,2000,22:1330-1334.
    [142] Hakan Bacakoglu, Mohamed S. Kame.A Three-Step Camera Calibration Method[J]. IEEETRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,1997,46(5):1165-1173.
    [143] Heikkila. J., Silven. O. A four-step camera calibration procedure with implicit imagecorrection[J]. IEEE Computer Society Conference on Computer Vision and PatternRecognition, San Juan, Puerto Rico,1997,pp:1106-1112.
    [144] G. Sansoni, M. Carocci, R. Roberto. Calibration and performance evaluation of a3-Dimaging sensor based on the projection of structured light[J]. IEEE Ttrans. Instrum.Meas.,2000,49:628-636.
    [145] G.J. Zhang, Z.Z. Wei. A novel calibration approach to structured light3D visioninspection[J]. Opt. laser technol,2002,34:373-380.
    [146] Ricardo Legarda-Sáenz, Thorsten Bothe, Werner P. Jüptner. Accurate procedure for thecalibration of a structured light system[J]. Opt. eng,2004,43:1-8.
    [147] L.C. Chen, C.C. Liao. Calibration of3D surface profilometry using digital fringeprojection[J]. Measurement Science and Technology,2005,16:1554-1556.
    [148] H.Y. Liu, W.H. Su, R. karl, S.Z. Yin. Calibration-based phase-shifting projected fringeprofilometry for accurate absolute3D surface profile measurement[J]. OpticsCommunications,2003,216:65-80.
    [149] M.J. Tsai, C.C. Hung. Development of a high-precision surface metrology system usingstructured light projection[J]. Measurement,2005,38:236-247.
    [150] S. Zhang, P.S. Huang. Novel method for structured light system calibration[J]. Opt. Eng.,2006,45(8):083601-7.
    [151] X.B. Chen, J. Xi, et.al. Accurate calibration for a camera–projector measurement systembased on structured light projection[J]. Optics and Lasers in Engineering,2009,47:310-319.
    [152]张效栋,孙长库.新型方向性平面靶标及拓扑定位算法[J].计算机工程与应用,2008,44(11):104-106.
    [153] Princen, J, Kittler J. A formal definition of the hough transform: properties andrelationships[J]. Mathematical Imaging and Vision,1992,5(1):153-168.
    [154] A.W. Fitzgibbon, M. Pilu, R. B. Fisher. Direct Least Squares Fitting of Ellipses[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1999,21(5):476-480.
    [155] W. Gander, G. Golub, R. Strebel. Least-square fitting of circles and ellipses[J]. BITNumerical Mathematics,1994(43):558-578.
    [156]黄桂平.圆形标志中心子像素定位方法的研究与实现[J].武汉大学学报(信息科学版),2005,30(5):388-391.
    [157] RJ Valkenburg, A. M. Mclvor, P. W. Power. An evaluation of subpixel feature localizationmethods for precision measurement[C]. Proceedings of SPIE: Videometrics III, Boston, MA,USA,1994,v2350, p:229-238.
    [158] Canny, John. A computational approach to edge detection[J]. Pattern Analysis and MachineIntelligence,1986,8(6):679-698.
    [159] Luis A, Agustin S, Javier S. Robust detection and ordering of ellipses on a calibrationpattern[J]. Pattern Recognition and Image Analysis,2005,15(2):492-495.
    [160] Richard Hartley, Andrew Zisserman. Multiple view geometry in computer vision.Cambridge[M], Cambridge University Press,2000.
    [161] J. More. The levenberg-marquardt algorithm, implementation and theory[C]. In G. A.Watson, editor, Numerical Aanalysis, Lecture Notes in Mathematics630, Springer-Verlag,1977.
    [162] A.Lathuilière, Alexandra, and Univ. de Bourgogne. Calibration of an LCD projector withpinhole model in active stereovision applications[C]. Proceedings of SPIE Volume2004,5265:199-204.
    [163]朱孔凤,姜威,王端芳,等.一种新的图像清晰度评价函数[J].红外与激光工程,2005,34(4):464-468.
    [164] Suganda Jutamulia. Autofocusing based on power-spectra analysis[J]. Applied optics,1994,33(26):6210-6212.
    [165] Subbarao M, Tyan Jenn-kwei. Selection the optimal focus measure for autofocusing anddepth-form-focus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):864-870.
    [166] Li Xi, Liu Guosui, Ni Jinlin. Autofocusing of ISAR images based on entropyminimization[J]. IEEE Transactions on Aerospace and Electronic system,1999,35(4):1240-1252.
    [167][沈国鑫]沈国鑫,陈国金,费海波.基于小波变换和神经网络的数字图像清晰度识别算法[J].机电工程,2008,25(4):25-27.
    [168] Widjaja J, Jutamulia S. Wavelet transform-based autofocus camera systems[C]. Proceedingsof IEEE Asia-Pacific Conference on Circuits and Systems.Piscataway:IEEEPress,1998:49-51.
    [169]曹茂永,孙农亮,郁道银.离焦模糊图像清晰度评价函数的研究[J].仪器仪表学报(增刊),2001,22(3):259-260.
    [170] F.Chen, G.W.Brown, M. Song. Overview of three-dimensional shape measurement usingoptical methods[J]. Optical Engineering,2000,39(10).
    [171] Ren Tongqun, Zhu Jigui, Guo Yinbiao, et al. Artificial feature-based multiview registrationmethod for three-dimensional free-form object modeling[J]. Opt. Eng.2010,49(5):053603-7.
    [172]龙玺,钟约先,李仁举,等.结构光三维扫描测量的三维拼接技术[J].清华大学学报(自然科学版),2002,42(4):477-480.
    [173]王兴,韦虎,刘胜兰,等.基于陀螺传感器的多视角自拼接方法.中国,国家发明专利,CN101539405,2009.
    [174]罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106.
    [175]任同群,邾继贵,李艳军,叶声华.形貌测量中立体图像拼接的关键技术.机械工程学报,2008,44(5):137-141.
    [176]谢光辉,孙军华,吴子彦,等.基于单数码相机的三维视觉测量数据拼接方法[J].光学技术,2009,35(1):156-158.
    [177] Besl P J, Mckay N D. A method for registration of3-D shapes[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1992,14(2):239-256.
    [178] Rusinkiewicz, S., Levoy, M. Efficient variants of the ICP algorithm[C].3-D digital imagingand modeling, Proceedings. Third International Conference on, Quebec City, Que., Canada,2001:145–152.
    [179] Zhang Zhengyou. Interative point matching for registration of free-form curves andsurfaces[J]. Int Journal Computer Vision,1994,13(2);119-1521.
    [180] Li Q, Griffiths J G. Iterative closest geometric objects registration[J]. Computers andMathematics with Applications,2000,40(10):1171-1188.
    [181] Chen Y, G. Medioni. Object modeling by registration of multiple range images[C]. In Proc.IEEE Conference on Robotics and Automation, Sacramnto, CA: IEEE,1991:2724-2729.
    [182] C Wang, H Tanahashi, H Hirayu, et al. Comparison of local plane fitting methods for rangedata[C]. CVPR(l):663-669,2001.
    [183] K. Kanatani, Statistical optimization for geometric computation: Theory and Practice[M].Elsevier Science, Amsterdam,1996.
    [184] Y. Kanazawa, K. Kanatani. Reliability of fitting a plane to range data[C]. IEICE Trans. OnInf. Syst., Vol. E78-D,1995,12:1630-1635.
    [185]刘元朋,张定华,桂元坤,等.用带约束的最小二乘法拟合平面圆曲线[J].计算机辅助设计与图形学学报,2004,10(5):1382-1385.
    [186] Gander W, Golub G H, Strebel R. Least-square fitting of circles and ellipses[J]. BIT,1994,34(4):558-578.
    [187] Lukacs G, Martin R R, Marshall A D. Faithful least squares fitting of spheres, cylinders,cones and tori for reliable segmentation[C]. In: Proceedings of the5th European Conferenceon Computer Vision, Freiburg, Germany,1998.671-686.
    [188] A. Huertas, G. Medioni. Detection of intensity changes with subpixel accuracy usinglaplacian-gaussian masks[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1986,8(5):651-664.
    [189] D. Scharstein, R. Szekiski. A taxonomy and evaluation of dense two-frame stereocorrespondence algorithms[J]. International Journal of Comptuer Vision,2002,47(1/2/3):7-42.
    [190] A. Gruen Adaptive least squares correlation: a powerful image matching technique[J].Remote Sensing and cartography,1985,13(3):175-187.
    [191] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. InternationalJournal of Computer Vision,2004,60(2):91-110.
    [192] J.M. Morel, G.Yu. ASIFT: A new framework for fully affine invariant image comparison[J].SIAM Journal on Imaging Sciences,2009,2(2):1-31.
    [193] Lindeberg T. Feature detection with automatic scale selection[J]. International Journal ofComputer Vision.198,30(2):79-116.
    [194] Witkin, A.P. Scale-space filtering[C]. In International Joint Conference on ArtificialIntelligence, Karlsruhe, Germany,1983:1019-1022.
    [195] Mikolajczyk K, Tuytelaars T, Schmid C, et al. A comparison of affine region dtectors[D].International Journal of Computer Vision,2005,65(1/2):43-72.
    [196] Lindeberg T. Feature detection with automatic scale selection[J]. International Journal ofComputer Vision,1998,30(2):79-116.
    [197] Brown. M, Lowe. D.G. Invariant features from interst point groups[C]. In British MachineVison Conference. Cardiff, Wales.2002:656-665.
    [198] Hoover. A., Jean-Baptiste. G., Jiang. X., et al, An experimental comparison of range imagesegmentation algorithms[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1996,18(7):673-689.
    [199] Sonka M, Hlavac V, Boyle R. Image processing, analysis and machine vision[C]. LondonEngland: Chapman&Hall Computing,1993:82-89.
    [200] T.-W. R. Lo, J.Siebert, A. Ayoub. Robust feature extraction for range imags interpretationusing local topology statistics[C]. In Proceedings of MICCAI2006Workshop onCraniofacial Image Analysis for Biology, Clinical Genetics, Diagnostics and Treatment,2006:75-82.
    [201] M.Fishler, R. Bolles. Random sample consensus: a paradigm for model fitting withapplications to image analysis and automated cartography[C]. In Proc. Image UnderstandingWorkshop,1980:71-88.
    [202] D.W.Eggert, A.Lorusso, R.B.Fisher. Estimating3-D rigid body transformations: acomparison of four major algorithms[J].Machine Vision and Applications,1997,9:272-290.
    [203] Chen Y, G. Medioni. Object modeling by registration of multiple range images[C]. In Proc.IEEE Conference on Robotics and Automation, Sacramnto, CA: IEEE,1991:2724-2729.
    [204] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]. Proceedings of the3rd International Conference on3D Digital Imaging and Modeling, Quebec:IEEE ComputerSociety,2001:145-152.
    [205] Li Q, Griffiths J G. Iterative closest geometric objects registration[J]. Computers andMathematics with Applications,2000,40(10):1171-1188.
    [206] Potmesil Michael. Generating mdels for slid ojects by mtching3D srface sgments[C].Proceedings of the International Joint Conference On Artificial Intelligence,Karisruche:IEEE,1983:1089-1093.
    [207] Mitra N. J, Gelfand N, Pottmann H. Registration of point cloud data from a geometricoptimization prspective[C]. Urographics symposium on geometry processing, os Angeles,CA:ACM Press,004:23-32.
    [208] Okatani, I.S., Deguchi, K.. A method for fine registration of multiple view range imagesconsidering the measurement error properties[C]. Proceedings.15th international conferenceon Pattern Recognition, Barcelona, Spain,2000:280-283.
    [209] Friedman J.H, Bentley J.L, R. A. Finkel. An algorithm for finding best matches inlogarithmic expected time[C]. ACM Transaction on Mathematical Software,1977,3(3):209-226.
    [210] M. Soucy, D. Laurendeau. A general surface approach to the integration of a set of rangeviews[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1995,17(4):344-358.
    [211] M. Rutishauser, M. Stricker, M. Trobina. Merging Range Images of Arbitrarily ShapedObjects[C]. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Seattle, Wash.,1994:573-580.
    [212] G. Blais, M.D. Levine. Registering Multiview Range Data to Create3D ComputerGraphics[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1995,17(8):820-824.
    [213] R. Bergevin, D. Laurendeau, D. Poussart. Registering Range Views of Multipart Objects[J].Computer Vision and Image Understanding,1995,61:1-16.
    [214] R. Bergevin, M. Soucy, H. Gagnon, et al. Towards a General Multi-View RegistrationTechnique[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1996,18:540-547.
    [215] H.-Y. Shum, K. Ikeuchi, R. Reddy. Principal Component Analysis With Missing Data and itsApplication to Object Modeling[C]. Proc. IEEE Conf. Computer Vision and PatternRecognition, Seattle, Wash.,1994:560-565.
    [216] G. Turk, M. Levoy. Zippered Polygon Meshes From Range Images[C]. SIGGRAPH94,1994:311-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700