用户名: 密码: 验证码:
低速无线个域网中的CHIRP扩频通信技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,随着无线通信技术和网络技术的发展,信息传播无论从速度还是广度上都有了质的飞跃。人们希望可以不受时间和空间的限制,自由流畅地进行信息的传递交流。低速无线个域网正是未来多域异构的无线网络的重要组成部分之一,它不仅可以有效地解决最后1米的无线接入问题,而且能够在个人空间范围内为用户提供丰富业务类型的无线连接,随时随地的为用户提供信息传输、协同和处理。低速无线个域网不但要求传输技术能够适应复杂的室内无线环境,具有较高的抗频率选择性衰落和抗干扰能力,较大的系统容量,还必须具有低功耗和低复杂度的特点。
     Chirp扩频技术具有良好的抗干扰能力和较高的带宽利用率,该技术既不采用伪随机码作为扩频码,也没有跳频图样,而是利用chirp信号的匹配滤波和脉冲压缩特性来进行扩频通信,因此又兼顾了低复杂度和低功耗的特点,非常适合于低速无线个域网的通信要求。因此在低速无线个域网中采用chirp扩频技术作为物理层传输方案以提高系统性能是一项十分重要的研究课题。在这样的背景下,本文对chirp扩频技术应用于低速无线个域网的相关技术进行深入研究,主要研究内容包括以下几方面:
     首先,本文研究了低速无线个域网中chirp扩频传输模型。针对低速无线个域网的网络环境特点以及对传输技术的特别要求,本文首先分析chirp扩频信号的匹配滤波和脉冲压缩特性,并比较了基于BOK的调制方案与混合调制方案在低速无线个域网环境下的性能优劣以及时域交叠问题所带来的影响。分析表明,虽然基于BOK的调制方案直接应用于低速无线个域网通信仍有不完善之处,但是在考虑复杂度,抗干扰特性和系统容量等多种因素之后将其作为一种优选方案,为本文在低速无线个域网中应用chirp扩频技术的研究工作奠定了基础。
     其次,本文研究了基于最优信号组的M进制chirp扩频调制。针对基于BOK的chirp扩频调制方案无法为低速无线个域网提供较高的链路容量的问题,提出一种对数据进行M进制编码并利用多个chirp信号对其进行对应传输的调制方案。针对多chirp信号的互相关性所导致的系统误码率性能下降问题,本文对chirp信号的选取进行了最优化设计。通过分别使用线性chirp信号和组合chirp信号构建最优信号组,在适度增加系统复杂度的前提下,可以为低速无线个域网提供较高的链路容量。
     第三,本文研究了基于匹配信号变换的chirp干扰抑制方法。在2.4GHz的无线频段中,由于存在多种无线传输体制使得相互间的干扰不可避免,而其中对chirp扩频影响最严重的是chirp干扰。针对现有的干扰抑制方法都无法有效抑制这种干扰的问题,本文提出一种结合匹配信号变换在chirp率域上进行处理的方法。该方法不但考虑chirp干扰信号chirp率与有用信号chirp率不同的一般情况,还针对干扰信号chirp率与有用信号chirp率相同的特殊情况提出了针对性解决方案。理论分析和仿真验证都证明了采用基于匹配信号变换的干扰抑制方法可以有效保证系统不受到chirp干扰信号的影响。
     最后,本文研究了chirp扩频多址干扰抑制方法。针对现有的基于chirp扩频的多址系统中抑制多址干扰的方法或复杂度过高或效果不佳等问题,本文提出了一种联合chirp率和信号出现相位构建多址信号基的方法,该方法能够在多址chirp信号相邻很近的情况下,依靠初始相位的不同来保证多址信号间的正交性,从而可以在有限的信号带宽内容纳更多的多址chirp信号。同时,本文还比较了几种典型非线性chirp信号的互相关特性,提出一种利用sin chirp信号构建多址信号基的多址接入方法抑制混合调制方案中的多址干扰,该方法在固定信号带宽和信号持续时间内为不同多址用户分配具有不同周期的sin chirp信号来实现多址接入。两种方法虽然基于不同的调制方案,但是在多址信号基的构建上都能够做到简单易实现,并且对多址干扰都有较好的抑制效果。
The tremendous advancement in wireless communication and networking technologies has raised a significant number of major qualitative breakthroughs in improving the speed and scale of information dissemination, since the beginning of the 21st century. The fundamental goal of a communication system is to convey information smoothly without the constraints in time and space. Low-rate wireless personal area network(LR-WPAN) is an essential component of the future multi-domain heterogeneous wireless network. It can not only resolve the last mile access problem, but also can provide wireless connections to various services in personal operating space, which supports on-demand information transmission, coordination and processing. LR-WPAN requires the signaling techniques to adapt to the complicated indoor wireless environment, with robust performance in frequency selective fading channels, low power consumption, and low complexity. Chirp spread spectrum technique is equipped with good anti-interference ability and high bandwidth efficiency. Furthermore, it utilizes chirp signal matched filter and pulse compression features in spread spectrum communications, instead of using pseudo-random code as spreading code, without the requiremnent of frequency hopping pattern. Therefore, chirp spread spectrum technique is power efficient with low complexity, which makes it a very competitive candidate in LR-WPAN. Chirp spread spectrum in LR-WPAN has attraced a significant number of research attentions in recent years.
     As the background stands, this dissertation conducts an in-depth study on chirp spread spectrum technique for LR-WPAN communication:
     First, the chirp spread spectrum transmission model in LR-WPAN is investigated. According to the characteristics and transmission requirements of LR-WPAN, this work analyzes the properties of chirp signal in matched filtering and pulse compression characteristics. The dissertation also compares the performance of the BOK modulation shceme and the mixed modulation scheme in LR-WPAN, as well as the effects of chirp signal overlapping in time domain. Analysis indicates that although there is much to be desired, BOK modulation scheme is still the best choice for chirp spread spectrum in view of complexity, capacaity and system performance.
     Second, the M-ary chirp modulation scheme is studied based on the optimal chirp signal set. BOK modulation scheme fails to provide high link capacity for LR-WPAN, A new modulation scheme is proposed to improve the link capacity, where data is encoded by M-ray and transmitted by several chirp signals respectively. This work optimizes the design of chirp signal selection in order to improve the system BER performance degradation problem resulting from the cross correlation of multi-signal. The optimal signal set, constructed with liner chirp signal and combined chirp signal, can provide higher link capacity for LR-WPAN without significant increase in system complexity.
     Third, the chirp interference suppression method based on matched signal transform is sutided. Due to the coexistence of various wireless transmission system in 2.4G ISM band, interference is inevitable. Chirp interference has the most severe impact on chirp spread spectrum system, with no efficient and effective solution yet. This dissertation proposes a chirp inteference suppression method based on matched signal transfom. This method not only considers general case where the chirp rate of chirp interference signal is different from the useful one, but also provides solution for the special case where the interference and the useful signals share the same chirp rate. Theory analysis and simulation verification both prove that, by using this method, the system is not interfered by chirp interference.
     Last, this work studies the muti-access interference suppression methods for chirp spread system. A bivariate chirp method is proposed, which makes use of both chirp rate and intinal phase to construct the multi-access signal base. When the chirp rate differences are small, this method ensures the orthogonality of multi-user signals by distinguishing different initinal phases, so that more chirp signals can be contained in limited signal bandwidth. Meanwhile, a novel method is also proposed with non-linear chirp signal to enhance the multiple access capacity of a mixed chirp modulation communication system. This method makes use of the characteristics of sin chirp signal to suppress the multi-access interference. Both methods are easy to realize and have good performance to suppress multi-access interference. Although based on different modulation schemes, both methods have good performance for multi-access interference suppression and are suitable for expanding for mulit-user systems.
引文
[1] Jordan R, Abdallah C T. Wireless Communications and Networking: An Overview[J]. IEEE Antennas and Propagation Magazine, 2002, 44(1): 185-193.
    [2] Gutierrez J A, Naeve M, Callaway E, et al. IEEE 802.15.4:A Developing Standard for Low-power Low-cost Wireless Personal Area Networks[J]. IEEE Network, 2001, 15(5): 12-19.
    [3] Min Jong Kim, Sang Woo Son, Byung Ho Rhee. A New Approach Network Selection with MIH between WLAN and WMAN[C]. International Conference on Computer Sciences and Convergence Information Technology, Seoul: IEEE, 2009: 751.
    [4]喻国勇.解析无线个人域网[J].电信工程技术与标准化,2004,(1):55-62.
    [5]牛志升.国家科技重大专项课题可行性研究报告[R].北京:清华大学, 2009: 24-30.
    [6]洪帆,段素娟.多域多应用环境下的访问控制研究[J].计算机科学, 2006, 33(4): 281-283.
    [7] Castillo-Secilla J M, Aranda P C, Outeiri?o F, et al. Experimental procedure for the characterization and optimization of the power consumption and reliability in ZigBee mesh networks. International Conference on Advances in Mesh Networks [C]. Venice: IEEE Computer Society, 2010 :13-16.
    [8]徐小涛,吴攀,徐静. WPAN标准的最新发展[J].电信工程技术与标准化, 2008, 2: 30-33.
    [9] De Sanctis M, Cianca E, Ruggieri M. Energy efficient transmit power control for HDR WPAN. International Symposium on Personal, Indoor and Mobile Radio Communications [C]. Helsinki: IEEE, 2006 :1-5.
    [10] Khan S A, Khan F A, Shahid A, et al. Zigbee Based Reconfigurable Clustered Home Area Network. International Conference on Sensor Technologies and Applications[C]. Athens: IEEE Computer Society, 2009: 32-37.
    [11] Chiasserini C F, Rao R R. Coexistence mechanisms for interference mitigation in the 2.4-GHz ISM band[J]. IEEE Transactions on Wireless Communications, 2003, 2(5): 964-975.
    [12] Chin-Sean Sum, Funada R, Junyi Wang, et al. Error performance and throughput evaluation of a multi-Gbps millimeter-wave WPAN system in multipath environment in the presence of adjacent and co-channelinterference[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(8): 1433-1443.
    [13] Kamerman A, Erkocevic N. Microwave oven interference on wireless LANs operating in the 2.4 GHz ISM band. The 8th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications[C]. Helsinki: IEEE, 1997: 1221-1227.
    [14]颜艳华,刘军.无线个域网及其相关技术分析[J].现代电信科技, 2008, (11): 1-6.
    [15]欧阳力. RFID与基于ZigBee技术WPAN融合的研究[D].上海:华东师范大学, 2007: 3-4.
    [16] Rashid R A, Yusoff R. Bluetooth Performance Analysis in Personal Area Network (PAN). International RF and Microwave Conference[C]. Putra Jaya: IEEE, 2006: 393-398.
    [17] Woonsik Lee, Minh Nguyen, Verma A, et al. Schedule unifying algorithm extending network lifetime in S-MAC-based wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(9): 1536-1276.
    [18] IEEE std. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs) Replaced by IEEE802.15.1-2005[EB/OL]. 2004[2007-01-11]. http://ieeexplore.IEEE,org/servlet/opac?punumber=4040964
    [19] IEEE std. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications-Amendment: IEEE 802.11 Wireless Network Management[EB/OL]. 2010[2010-09-20]. http://ieeexplore.ieee.org/servlet/opac?punumber=5578918
    [20] Cordeiro C D M, Abhyankar S, Toshiwal R, et al. A novel architecture and coexistence method to provide global access to/from Bluetooth WPANs by IEEE 802.11 WLANs. IEEE International Performance, Computing, and Communications Conference[C]. Phoenix: IEEE, 2003: 23-30.
    [21] Chiasserini C F, Rao R R. Coexistence mechanisms for interference mitigation between IEEE 802.11 WLANs and Bluetooth. International Conference on Computer Communications[C]. NewYork: IEEE, 2002: 590-598.
    [22] Chiasserini C F, Rao R R. A comparison between collaborative and non-collaborative coexistence mechanisms for interference mitigation in ISM bands. Vehicular Technology Conference[C]. Rhodes: IEEE, 2001: 2187-2191.
    [23] Petar Popovski, Hiroyuki Yomo, Ramjee Prasad. Strategies for adaptive frequency hopping in the unlicensed bands[J]. IEEE Wireless Communications, 2006, 13(6): 1536-1284.
    [24] Hsu A C, Wei D S L, Kuo C, et al. Enhanced Adaptive Frequency Hopping for Wireless Personal Area Networks in a Coexistence Environment. Global Telecommunications Conference[C], Washington DC: IEEE, 2007: 668-670.
    [25] Min Li Huang, Sin-Chong Park. A WLAN and ZigBee coexistence mechanism for wearable health monitoring system. International Symposium on Communications and Information Technology[C]. Icheon: IEEE Computer Society, 2009: 555-559.
    [26] IEEE Std. IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks - Specific Requirement Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)[EB/OL]. 2007[2007-09-10]. http://ieeexplore.ieee.org/servlet/opac?punumber=4299494.
    [27]张平,苗杰,胡铮,等.泛在网络研究综述[J].北京邮电大学学报,2010,5:1-6.
    [28] International Telecommunication Union, Internet Reports 2005. The Internet of things[R]. Geneva: ITU, 2005: 3-5.
    [29] Sairam, Gunasekaran N, Redd S R. Bluetooth in wireless communication[J]. IEEE Communications Magazine, 2002, 40(6): 90-94.
    [30] Chaturvedi A, Murthy M B R. WPAN scheme for Bluetooth devices: a review. National Conference on Telecommunication Technology[C]. Shah Alam: IEEE, 2003: 5-8.
    [31] Chunghsin Liu, Shiwei Dai. The Study for the Extension of Bluetooth Ring Network. International Conference on Multimedia and Information Technology:vol 2[C]. Kaifeng: IEEE, 2010: 127-131.
    [32] Feng Chen, Nan Wang, German R, et al. Performance Evaluation of IEEE 802.15.4 LR-WPAN for Industrial Applications. Annual Conference on Wireless on Demand Network Systems and Services[C]. Garmisch Partenkirchen: IEEE, 2008: 89-96.
    [33] Lee Jin-Shyan, Chuang Chun-Chieh, Shen Chung-Chou. Applications of short-range wireless technologies to industrial automation: A zigbee approach. Advanced International Conference on Telecommunications[C]. Venice: IEEE Computer Society. 2009: 15-20.
    [34] Williams S. IrDA: past, present and future[J]. IEEE Personal Communications, 2000, 7(1): 11-20.
    [35] Kawashima R, Cai D. A design of new infrared data broadcasting protocol and educational application. IEEE International Workshop on Wireless and Mobile Technologies in Education[C]. Tokushima: IEEE, 2005: 37-42.
    [36] IEEE std. IEEE 802.15 Working Group for WPANs[EB/OL].2003[2009-10-07]. http://ieee802.org/15/par.html
    [37] Jorgensen Thomas. Low cost RF solutions for home automation[J]. Advancing Microelectronics, 2004, 31(3): 12-15.
    [38] Huo Hongwei, Xu Youzhi, Bilen C C, et al. Coexistence issues of 2.4GHz sensor networks with other RF devices at home. International Conference on Sensor Technologies and Applications[C]. Athens: IEEE, 2009: 200-205.
    [39] R-yohsae U, Promwong S, Sukutamatanti N.Interference signal analysis of IEEE 802.15.1 to RFID communication system at 2.45 GHz. Proceedings of the International Conference on Computer and Communication Engineering[C]. Kuala Lumpur: IEEE, 2008: 1000-1004.
    [40] Ju Songyan, Wang Dong, Du Bo. Research and development of QoS for RFID middleware. International Conference on Computer Modeling and Simulation: vol 2[C]. Sanya: IEEE, 2010: 397-402.
    [41] Se Won Oh, Hyochan Bang, Jae Gak Hwang. Light-weight RFID device interface for controlling RFID tag memory access. International Conference on Advanced Communication Technology: vol.2[C]. Korea: IEEE, 2010: 1516-1521.
    [42] Kirubanand V B, Palaniammal S. Performance Modeling of Client-Server with Wibree Application Using Queueing Petri Nets and Markov Algorithm. International Conference on Information Management and Engineering[C]. Kuala Lumpur: IEEE, 2009: 357-261.
    [43] Nick Hunn. An introduction to Wibree[EB/OL].2006[2010-12-20]. http://www.wibree.com/
    [44] Csernath Geza, Szilagyi Laszlo, Fordos Gergely, et al. A novel ECG telemetry and monitoring system based on Z-Wave communication. Annual International Conference of the IEEE Engineering in Medicine and Biology Society[C]. Vancouver: IEEE, 2008: 2361-2364.
    [45] Chengwen Yuan, Hairui Wang, Junying He. Remote Monitoring System Based on MC9S12NE64 and Z-WAVE Technology. International Conference on E-Product E-Service and E-Entertainment[C]. Henan: IEEE, 2010: 1-4.
    [46] Callaway E, Gorday P, Hester L, et al. Home networking with IEEE 802.15.4: a developing standard for low-rate wireless personal area networks[J]. IEEE Communications Magazine, 2002, 40(8): 70-77.
    [47] Kandukuri S, Bambos N. Multimodal dynamic multiple access in wireless packet networks. International Conference on Computer Communications: vol.1[C]. Anchorage: IEEE, 2001: 199-208.
    [48] Man-Lyun Ha, Jong-Soo Lee, Young-Se Kwon. Chip scale package for SAW filter on the oxidized porous silicon using flip-chip bonding and Cu plated metal wall. Electronic Components and Technology Conference[C]. San Diego: IEEE, 2002: 372-377.
    [49] Georgel V, Verjus F, Grunsven E, et al. A SAW filter integrated on a silicon passive substrate used for system in package[J]. Sensors and Actuators, 2008, 142(1): 185-191.
    [50] Sadeghi M, Ghayour R, Abiri H, et al. Design and Simulation of a SAW Filter and a new approach for bandwidth's tuning. IEEE International Conference on ASIC[C]. Changsha: IEEE, 2009: 642-645.
    [51]田日才.扩频通信[M].北京:清华大学出版社, 2007: 6-11.
    [52] Winkley M. Chirp Signals for Communications. Proceeding of IEEE WESCON Conference:vol.1[C]. Florida: IEEE, 1962: 14-17.
    [53] Hata M. Application of a swept FM carrier pulse to a new digital data transmission system [J]. Electronic Communication Engineers, 1966, 49(11): 2256-2263.
    [54] Gott G. An Inverstigation into the application of chirp signals in HF digital communication systems[D]. Nottingham: University of Nottingham, 1996: 10-15.
    [55] Berni A, Gregg W. On the utility of chirp modulation for digital signaling[J]. IEEE Transactions on Communications, 1973, 21(6): 748-751.
    [56] Bush H, Martin A, Cobb R, et al. Application of chirp SWD for spread spectrum communications. Proceedings of the IEEE Ultrasonics symposium[C]. Monterey: IEEE, 1973: 494-497.
    [57] Tsai Y, Chang J. Feasibility of combating multipath interference by chirp spread spectrum techniques over Rayleigh and Rician fading channels. IEEE International Symposium on Spread Spectrum Techniques & Applications[C]. Oulu: IEEE, 1994: 282-286.
    [58] Huemer M, Pohl A, Gugler A, et al. Design and verfication of a SAW-based chirp spread spectrum system. International Microwave Symposium Digest:vol 1[C]. Baltimore: IEEE, 1998: 189-192
    [59] Pohl A, Ostermayer G, Steindl R, et al. Fine tuning of data rate enhances performance of a chirp spread spectrum system. International Symposium on Spread Spectrum Techniques and Applications: vol.1[C]. Florida: IEEE, 1998: 78-81.
    [60] Gott G, Karia A. Differential phase-shift keying applied to chirp data signals[J]. Proceedings of the IEE, 1974, 121(9): 923-928.
    [61] Gugler W, Springer A, Kupfer H P, et al. Simulation of a SAW-based WLAN using chirpπ/4 DQPSK modulation. Proceedings of Ultrasonics Symposium: vol.1[C]. Sendai: IEEE, 1998: 381-384.
    [62] Gugler W, Springer A, Weigel R. A chirp-based wideband spread spectrum modulation technique for WLAN applications. International Symposium on Spread Spectrum Techniques and Applications: vol.1[C]. Parsippany: IEEE, 2000: 83-87.
    [63] Springer A, Gugler W, Huemer M. A wireless spread-spectrum communication system using SAW chirped delay lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(4): 754-760.
    [64] Springer A, Gugler W, Huemer M. Spread spectrum communications using chirp signals. EUROCOMM 2000. Information Systems for Enhanced Public Safety and Security:vol.1[C]. Munich: IEEE/AFCEA, 2000: 166-170.
    [65] Pinkney J Q, Sesay A B, Nichols S, et al. A robust high speed indoor wireless communications system using chirp spread spectrum. IEEE Canadian Conference on Electrical and Computer Engineerin:vol.1[C]. Edmonton: IEEE, 1999: 84-89.
    [66] Pinkney J Q, Sesay A B, Nichols S, et al. A high-speed DQPSK chirp spread spectrum for wireless application [J]. Electronics Letters, 1998, 34(20): 1910-1911.
    [67] Brocato R, Heller E, Wendt J, et al. UWB communication using SAW correlators. Radio and Wireless Conference:vol.1[C]. Atlanta: IEEE, 2004: 267-270.
    [68] Brocato R, Skinner J, Wouters G, et al. Ultra-wideband SAW correlator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53(9): 1554-1556.
    [69] Nanotron Technologies. nanoNET chirp based wireless networks: white paper[R]. German: Nanotron Technologies GmbH, 2010: 12-15.
    [70]贺鹏飞,吕英华,张洪欣,等.基于Chirp-BOK调制的超宽带无线通信系统研究[J].南京邮电大学学报(自然科学版), 2006, 2(26): 21-25.
    [71] He Pengfei, Lu Yinghua, Zhang Hongxin, et al. Study of Ultra-Wideband Wireless Communication System Based onπ/ 4 -DQPSK Chirp Spread Spectrum. International Conference on Microwave and Millimeter Wave Technology:vol.1[C]. Builin: IEEE, 2006: 1-4.
    [72] He Pengfei, lv Yinghua, Zhang Hongqin, et al. SAW chirp Fourier transform for MB-OFDM UWB receiver[J].The journal of china universities of post and telecommunications, 2006, 13(3): 1-6.
    [73]贺鹏飞.超宽带无线通信关键技术研究[D].北京:北京邮电大学, 2007: 42-50.
    [74] Zhang Peng, Liu Hao. An ultra-wide band system with chirp spread spectrum transmission technique. International Conference on ITS Telecommunications: vol.1[C]. Chengdu: IEEE, 2006: 294-297.
    [75]张鹏.基于chirp的宽带超宽带通信技术研究[D].成都:电子科技大学,2007: 30-53.
    [76]孙嘉. Chirp超宽带通信的调制和时间同步技术研究[D].成都:电子科技大学, 2009: 64-68.
    [77]王明.基于Chirp超宽带通信技术的研究与实现[D].成都:电子科技大学, 2010: 43-51.
    [78]孙嘉,刘皓.一种采用干扰抑制技术的Chirp超宽带同步算法[J].通信技术, 2009, 42(01): 6-8
    [79] Ming Wang, Hao Liu. Ultra-wideband Wireless Communication System Based on QBOK Modulation Algorithm. Proceedings of Conference on Communication Faculity[C]. Nanning: Scientific Research, 2009: 45-48.
    [80] Sang Hun Yoon, Jong Wha Chong, Kyung Kuk Lee. Differentially Coherent Detection of Differentially Bi-Orthogonal Code[J]. IEEE Communications Letters, 2007, 11(10): 796-798.
    [81] Seong Hyun Jang, Sang Hun Yoon, Jong Wha Chong. Robust Packet Detection Algorithm for DBO-CSS. International Conference on Networking:vol.1[C]. Cancun: IEEE, 2008: 145-150.
    [82] Jin-Woo Yun, Sang-Hun Yoon, Jong-Wha Chong. A low complexity packet detection algorithm for CSS in AWGN channel. International Symposium on Communications and Information Technology[C]. Icheon: IEEE, 2009: 1051-1054.
    [83] Yeong Sam Kim, Seong Hyun Jang, Sang Hun Yoon, et al. A New Architecture of Matched Filter for Chirp Spread Spectrum in IEEE 802.15.4a[J]. ETRI Journal, 2010, 2(33): 330-332.
    [84] Yeong Sam Kim, Jong Wha Chong, Shouyin Liu. A New Dual-Band Filtering Method for Chirp Spread Spectrum. International Conference on Wireless Communications, Networking and Mobile Computing:vol.1[C]. Dalian: IEEE, 2008:1-4.
    [85] Seung Han Baik, Sang Hun Yoon, Jong Wha Chong. A new freqeuncy offset estimation algorithm for DBO-CSS in multipath channels. Wireless Telecommunications Symposium:vol.1[C]. Pomona: IEEE, 2008: 102-106
    [86] Liu Feng, Huang Yu, Tao Ran. Chirp-rate resolution of fractional fouriertransform in multi-component LFM signal[J]. Journal of Beijing Institute of Technology (English Edition), 2009, 18(1): 74-78.
    [87] Ma Min, Cai Jingye, Zhang Xihui. An estimation algorithm of chirp based on fractional fourier transform and frequency domain differential. International Conference on Computational Problem-Solving[C]. Lijiang: IEEE, 2010: 218-221.
    [88] Jacob R, Thomas T, Unnikrishnan A. Fractional fourier transform based chirp detector versus some conventional detectors. International Symposium on Ocean Electronics[C]. Cochin: IEEE, 2010: 56-65.
    [89]肇启明,张钦宇,张乃通.多进制chirp-rate键控调制及分数傅立叶变化法解调[J].通信学报, 2010, 31(6): 1-6.
    [90] Cook C E. Linear FM Signal Formats for Beacon and Communication Systems [J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(4): 471-478.
    [91] El-Khamy S E, Shaaban S E, Tabet E. Efficient multiple-access communications using multi-user chirp modulation signals. International Symposium on Spread Spectrum Techniques and Applications Proceedings: vol.3[C]. Mainz: IEEE, 1996: 1209-1213.
    [92] El-Khamy S E, Shaaban S E, Tabet E. A Frequency-hopped multi-user chirp modulation for multipath fading channels. National Radio Science Conference: vol.6[C]. Cairo: IEEE, 1999: 1-8
    [93] El-Khamy S E, Shaaban S E, Tabet E. Performance of Wide Band Multi-User Frequency Hopping Chaotic Chirp Modulation (FH/MCCM) In Multipath Dispersive Media. EUROCON'2005 The International Conference on Computer as a Tool:vol.2[C]. Belgrade: IEEE, 2005: 1803-1806.
    [94] Kocian A, Dahlhaus D. Downlink performance analysis of a CDMA mobile radio system with chirp modulation. Vehicular Technology Conference: vol.1[C]. Houston: IEEE, 1999: 238-242.
    [95] Gupta C, Papandreou-Suppappola A. Wireless CDMA communications using time-varying signals. International Symposium on Signal Processing and its Applications:vol.1[C]. Kuala Lumpur: IEEE, 2001: 242-245.
    [96] Gupta C, Mumtaz T, Zaman M, et al.A Wideband chirp modulation for FH-CDMA wireless system:coherent and non-coherent receiver structures. IEEE International Conference on Communications[C]. Anchorage: IEEE, 2003: 2455-2459.
    [97] Shen H, Machineni S, Gupta C, et al. Time-varying multichirp rate modulation for multiple access systems[J]. IEEE Signal Processing Letters, 2004, 11(5):497-500.
    [98] Peng Zhang, Hao Liu, Jianhao Hu. A novel multiple-acess scheme for chirp UWB. Wireless Communications and Networking Conference:vol.1[C]. Kowloon: IEEE, 2007: 1633-1637.
    [99] Wysocki B J, Tadeusz A, Zerpernick H J. Walsh-chirp sequences for wireless applications[J]. Journal of telecommunications and information technology, 2001, (3): 1-5.
    [100] Ju Y, Barkat B. A new efficient chirp modulation technique for multi-user access communications system. International Conference on Acoustics, Speech, and Signal Processing:vol.4[C]. Montreal: IEEE, 2004: 937-940.
    [101]谷金山. WPAN应用环境下的抗干扰特性及路由优化的研究[D].南京:东南大学, 2005: 31-39.
    [102] Youngpo Lee, Seungsoo Yoo, Sun Yong Kim, et al. Ant-jamming performance analysis of CSS-based communication systems. International technical conference on Circuits/Systems, Computers and Communications:vol.1[C]. Shimonoseki city: ITC, 2008: 101-104.
    [103]王晓炜,李昕,费敏锐. Chirp扩频通信系统抗噪声性能分析[J].通信技术, 2009, 42(3): 36-41.
    [104] Lee Youngpo, Yoon Taeung,Yoo Seungsoo, et al. Performance analysis of a CSS system with M-ary PSK in the presence of jamming signals. IEEE Vehicular Technology Conference[C]. Barcelona: IEEE, 2009: 30-34.
    [105] Machineni S, Hao Shen, Papandreou-Suppappola A. Multi-user schemes using nonlinear time-varying modulation. International Conference on Acoustics, Speech, and Signal Processing:vol.4[C]. IEEE, 2004: 941-944.
    [106]计鹏.非线性调频信号脉压分析与仿真[J].电子元器件应用, 2010, 12(7): 83-86.
    [107] Parsons D. The mobile Radio Propogation Channe[M].New York:John Wiley and Sons, 1992: 102-110.
    [108] Rappaort T S. Wireless Communications principles and practice,second edition[M].北京:电子工业出版社, 2004: 120-124.
    [109] Devaud F, Hayward G, Soraghan J J. The use of chirp overlapping properties for improved target resolution in an ultrasonic ranging system. Proceedings - IEEE Ultrasonics Symposium[C]. Montreal: IEEE, 2004: 2041-2044.
    [110] Zou Yulong, Zheng Baoyu. BER analysis of MPSK space-time code with differential detection over correlated block-fading Rayleigh channel[J]. Journal of China Universities of Posts and Telecommunications, 2008, 15(2): 18-25.
    [111] Chen Kaizhi, Hu Aiqun. MPSK demodulation algorithm based on patternrecognition. IEEE International Conference Neural Networks and Signal Processin[C]. Zhengjiang: IEEE, 2008: 182-186.
    [112] Kyung-Kuk Lee, Jong-Wha Chong, Sang-Hun Yoon, et al. DBO-CSS PHY Presentation for 802.15.4a [EB/OL]. 2005[2007-05--21] http://www.ieee802.org/15/pub/2005/004a.
    [113] Jang Seong-Hyun, Yoon Sang-Hun, Chong Jong-Wha. A new packet detection algorithm for IEEE 802.15.4a DBO-CSS in AWGN channel. IEEE International Symposium on Circuits and Systems[C]. Seattle: IEEE, 2008: 1020-1023.
    [114] Saleh A, Valenzuela T. A Statistical Model for Indoor Multipath Propagation[J]. IEEE Journal on Selected Areas in Communications, 1987, 5(2): 128-137.
    [115] Win M, Scholtz R, Barnes M. Ultra-wide Bandwidth Signal Propagation for Indoor Wireless Communications. IEEE International Conference on Communications:vol.1[C]. Montreal: IEEE, 1997: 56-60.
    [116] Win M, Scholtz R. Energy Capture Vs. Correlator Resources in Ultra-wide Band-width Indoor Wireless Communications Channels. MILCOM 97 Proceedings:vol.3[C]. Monterey: MILCOM, 1997: 1277-1281.
    [117] Hashemi H. Impulse Response Modeling of Indoor Radio Propagation Channels[J]. IEEE Journal on Selected Areas in Communications, 1993, 11(7): 967–978.
    [118] F J. Channel Modeling Sub-committee Report Final[R]. IEEE 802.15.3-SG3a, 2002.
    [119] IEEE802.15.3a. Channel Modeling Sub-committee Report Final[R]. IEEE 802.15.3-SG3a, 2003.
    [120] IEEE 802.15-TG4a. WirelessMediumAccess Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)[R]. IEEE 802.15.3-SG4a, 2007.
    [121] Molisch A F, Kannan Balakrishnan, Chia-Chin Chong, et al. IEEE 802.15.4a channel model - final report[R]. IEEE 802.15.3-SG4a, 2007.
    [122] Rodrigo C, Raimundo S N. Adaptive reduced-rank RLS algorithms based on joint iterative optimization of adaptive filters for space-time interference suppression. IEEE International Conference on Acoustics, Speech and Signal Processing[C]. Las Vegas: IEEE, 2008: 3809-3812.
    [123] Shin Bae-Gyun, Kim Sang Hyo. A modified LMS filter for interference cancellation system. International Conference on Control, Automation and Systems[C]. Gyeonggi-do: IEEE, 2010: 868-871.
    [124]张玉恒,吴启晖,王金龙.基于时频加窗短时傅里叶变换的LFM干扰抑制[J].电子与信息学报, 2007, 29(6): 1361-1364.
    [125]齐林,陶然,周思永,等. DSSS系统中基于分数阶傅立叶变换的扫频干扰抑制算法[J].电子学报, 2004, 32(5): 799-802.
    [126]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 2001: 25-40.
    [127] Shen H, Papandreou Suppappola A A. Jaming Inteference suppression and multiuser detection for DSSS system in time-frequency selective channels. IEEE Workshop on Signal Processing Advances in Wireless Communications [C]. Rome: IEEE, 2003: 447-451.
    [128] Shen H, Papandreou Suppappola A. Multitype interference suppression in multiuser fast fading DSSS wireless channels. Conference Record of the Asilomar Conference on Signals, Systems and Computers:vol 2[C]. Pacific Groove: IEEE, 2002: 1914-1918.
    [129] Wigner E P. On the Quantum Correction for Thermodynamic Equilibrium[J]. Physics Review, 1932, 40: 749-759.
    [130] Ville J. Theory and Applications of the Notion of Complex Signal[J]. Cables and Transmissions, 1948, (2A): 61-74.
    [131]丁康,陈健林,苏向荣.平稳和非平稳振动信号的若干处理方法及发展[J].振动工程学报. 2003, 16(l): l-10.
    [132] Chandra Sekhar S, Sreenivas T V. Effect of interpolation on PWVD computation and instantaneous frequency estimation[J]. Signal Processing, 2004, 84(1): 107-116.
    [133] Velez E F, AbsherR G. Smoothed Wigner-Ville parametric modeling for the analysis of nonstationary signals. Proceedings-IEEE International Symposium on Circuits and Systems[C]. Portland: IEEE, 1992: 507-510.
    [134] Szmajda M, Górecki K, Mroczka J. Gabor transform, Gabor-Wigner transform and SPWVD as a time-frequency analysis of power quality. International Conference on Harmonics and Quality of Power[C]. Bergamo: IEEE, 2010: 321-325.
    [135] Chetwani S, Papandreou Suppappola A. Time-varying interference suppression in communication systems using time-frequency signal treansforms. Conference Record of Asilomar Conference on Signals, Systems and Computers[C]. Pacific Grove: IEEE, 2000: 460-464.
    [136] Papandreou Suppappola A, Murray R L, Iem B G, et al. Group delay shift covariant quadratic time-frequency representations[J]. IEEE Transactions onSignal Processing, 2001, 49(11): 2549-2564.
    [137] Wang Anyi, Lin Lan. Research on home base station synchronization method in TD-SCDMA system. International Colloquium on Computing, Communication, Control, and Management: vol.2[C]. Sanya: IEEE, 2009: 231-233.
    [138] Bouteraa Y, Ghommam J, Derbel N. Mutual and external synchronization control of multi-robot systems. International Multi-Conference on Systems, Signals and Devices[C]. Amman: IEEE, 2010: 1010-1016.
    [139] Pan Yichun, Peng Shirui, Yang Kefeng, et al. Optimization design of NLFM signal and its pulse compression simulation.IEEE International Radar Conference[C]. Arlington: IEEE, 2005: 383-386.
    [140] Wang Chao, Yao Jianping. Nonlinearly chirped microwave pulse generation using a spatially discrete chirped fiber Bragg grating. International Topical Meeting on Microwave Photonics[C]. Valencia: IEEE, 2009: 1-4.
    [141] Shen Hanbin, Zhang Weihua, Kwak K S. DS-PAM UWB System Using Non-linear Chirp Waveform [J]. ETRI Journal, 2007, 29(3): 322-328.
    [142] Shen Hanbin, Zhang Weihua, Kwak K S. Modified Chirp Waveforms in Cognitive UWB System. IEEE International Conference on Communications [C]. Beijing: IEEE, 2008: 504-507.
    [143] Li Xiaotong, Bai Zhiquan, Kwak K S. NBI suppression UWB system based on novel nonlinear chirp pulses.International Symposium on Communications and Information Technology[C]. Icheon: IEEE, 2009: 1167-1170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700