用户名: 密码: 验证码:
基于Level Set演化曲面的蛋白质分子场建模与特征分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生命活动的物质基础,蛋白质分子的运动与构象在生命活动中扮演着极为重要的角色,其中蛋白质分子的空间结构与功能的关系更是人们关注的焦点[1,2]。目前,许多来自生物、化学、计算机、数学、物理等领域的科学家正致力于研究和分析蛋白质复杂的空间三维结构,借助于信息科学、生物信息学、计算生物学、计算化学等手段,推演和预测蛋白质结构和功能关系。
     考虑到现有的分子拓扑建模方法缺乏对分子的运动、分子势能场的有力刻画,难以描述生物分子的活性及动态功能,我们将生物大分子描述为包含多种作用力的原子系统,构建原子尺度上描述分子体系能量的势能场(即分子场),并对分子场进行几何、拓扑等方面的特征抽取与特征分析研究。本文介绍了我们在生物大分子的分子场建模与可视化、以及利用Level Set演化曲面探索分子场几何和拓扑等特征的研究工作,主要包括:
     ·从蛋白质分子三维空间结构出发,分别采用分子力学和量子力学理论,构建原子尺度上的蛋白质分子场。力图通过对蛋白质空间分子场的特征抽取来揭示蛋白质分子活性位点和功能区域;我们在空间分子场每个采样点上实施离散一阶、二阶局部微分计算,从而筛选出一系列数据场内的临界点;继而,计算数据场内各种型值的分子势能面,交互地探寻具有一定生物活性的“通道”区域;同时,探索运用多种点、面和体可视化技术,来寻找分子内部的宏观结构。
     ·从蛋白质分子场出发,构建其Level Set演化曲面。我们在已有的Chan-Vese模型基础上设计无需周期初始化的Level Set模型,与传统的Level Set方法相比,此模型在分子场上进行特征提取更加精确和有效;同时在每个迭代过程中,实时计算演化轮廓曲面的一些几何测度,并判断演化曲面是否收敛;进一步地,调整方程中各项参数,分析其对最终结果的影响程度;我们将Level Set曲面演化应用到HIV-1蛋白酶分子场和DPS蛋白质分子场上,探讨其生物学意义。
     ·对不同蛋白质分子场的Level Set曲面进行拓扑特征抽取及多属性比对,进一步揭示蛋白质分子场与分子生物活性之间的关系。一方面,构造体特征函数、抽取Level Set曲面的拓扑特征;另一方面,计算LevelSet曲面上的几何、生物多种属性,并通过比较这一系列属性的相似度,来判断Level Set曲面演化过程中分子场的变化,进而研究分子场能量分布的特点及变化趋势。
     ·基于共形几何理论,继续探索分子场Level Set曲面的几何、拓扑性质。首先,计算分子场Level Set曲面的高斯曲率、平均曲率,得到该曲面局部几何特征分布;然后,根据欧拉示性数公式计算分子场Level Set曲面的亏格数,描述该曲面的拓扑信息;再根据常数曲率度量对曲面进行分类,借鉴Gu等人的计算共形几何理论,对亏格为0、1、>2的三种曲面分别实现共形参数化;最后,计算分子场Level Set曲面所有点的共形因子分布,揭示LevelSet曲面内蕴的几何特性。我们采用蛋白质分子场Level Set曲面的共形因子分析方法对不同分子场进行了比较。
     实验表明,我们基于蛋白质分子场的Level Set演化曲面计算出来的特征与已有生物结论相一致,如DPS蛋白质与铁离子结合的空腔区域,HIV-1蛋白酶内部的水分子排除通道,HIV-1蛋白酶在水溶液中进行SMD模拟时的生物活性变化以及Globin同源蛋白进化过程中的异同等。生物学家认为这些结果可能对今后研究HIV-1蛋白酶的亲水、疏水性有重要的价值,并可作为“蛋白质-蛋白质”相互作用或“蛋白质-配体”相互作用中首要参考的活性位点。具有很好的研究意义。
Protein play a crucial role in life's processes. In recent years, there has been a growing interest in exploiting the relationship between molecular structure and biological activity. Many scientists from different research areas, e.g. biologist, chemist, computational scientist, mathematician or physicist, are trying to make some progresses from the view of either experiments or computational analysis. Now one of the main themes is using well-known protein structure to predict unknown protein molecular activity, based on the knowledge of computational science, biological informatics, computational biology, computational chemistry and so on.
     Existing molecular models are mostly constructed by atom positions and connections between atoms. They don't contain the information of molecular mechanics or molecular force energy, and may limit the study of molecular structure-activity relationships. In this paper, we consider the protein as a whole system composed of different force interactions, which is called "Molecular Field". Then we use Level Set evolutional surfaces to extract and analyze the feature of molecular field, and show the results by several kinds of rendering techniques. Our main contributions include:
     Molecular Field in a quantitative manner is constructed; Then by applying the first order and the second order local differential operators on individual node, a set of critical points which potentially depicts the active region of protein molecule are found; Also this chapter gives some results about computing a sequence of molecular potential energy in the data field and interactively exploring the potential "tunnel" region exhibiting biological sense. In addition, the point-based, surface and volume rendering techniques are exploited to find the macro-structure inside the data field.
     Level Set model in Molecular Field is presented, which is based on Chan-Vese model but doesn't need to re-initialize Level Set function in period; By using the geometrical measure, the convergence of Level Set model is detected; And the influences of each parameters in the whole process are discussed; Finally this chapter shows results and discussion about the Level Set models on HIV-1 protease Molecular Field and DPS protein Molecular Fields.
     Techniques of topological analysis and multi-attribute comparison of Level Set evolutional surfaces are presented. On one side, we propose a volume feature extraction function to detect the topological features imbedded in the Level Set surfaces; On the other side, we compute the geometrical and biological attributes on Level Set surface, and explore multiple attributes on the Level Set surface to study the progression of the Molecular Field.
     Based conformal geometry theory, the further study of geometrical and topological feature on Level Set surface is presented. First, we compute the gaussian curvature and mean curvature of Level Set surface on Molecular Field, to explore the surface local geometrical feature distribution; Also, by using Euler-characteristic formular, the global surface topological feature is described by genus number; Then we classify surfaces by the constant curvature measure, and conformal map the Level Set surfaces on Molecular Field; Finally, we compute the conformal factor distribution on Level Set surface, which indicates the surface intrinsic feature. Then we compare different molecular field using their conformal factors.
     Our approach provides an intuitive way to study molecular structure-activity relationships. Initial results on some typical protein molecules reveals their active region inside, such as the escape route of water molecules hidden in the HIV-1 protease, the internal cavity of the DPS protein for the iron atom's entry or deposition, the molecular activity change of HIV-1 protease in water during SMD process, and the Globin homology protein group similarity during evolution can be successfully found, which are in accordance with biological experiments.
引文
[1]A.R.Leach.Molecular modelling:principles and applications.Pearson Education EMA.Second edition,January 2001.
    [2]C.Gibas and P.Jambeck.Developing bioinformatics computer skills.Science Press,2002.
    [3]Z.Feng G.Gilliland T.N.Bhat H.Weissig I.N.Shindyalov P.E.Bourne H.M.Berman,J.Westbrook.The protein data bank.Nucleic Acids Research,28(1):235-242,2000.
    [4]The DSSP database,http://www.cmbi.kun.nl/gv/dssp.
    [5]卢光莹,华子千.生物大分子晶体学基础.北京大学出版社,2001.
    [6]华庆新.蛋白质分子的溶液三维结构测定—多维核磁共振方法.湖南师大出版社,1995.
    [7]Glaeser RM Taylor K.Electron diffraction of frozen,hydrated protein crystals.Science,186:1036-37,1974.
    [8]http://www.eicn.ucla.edu/EM/about.
    [9]http://www.rosettaproject.org.
    [10]http://www.sbg.bio.ic.ac.uk/3dpssm/html/ffhome.html.
    [11]DeepView-The Swiss-PdbViewer.User Guide.V3.7 http://www.expasy.org/spdbv/.
    [12]J.C.Whisstock.Lesk am:Prediction of protein function from protein sequence and structure.Quarterly Reviews of Biophysics,36:307-340,2003.
    [13]D.L.Wild and M.A.S.Saqi.Structural proteomics:inferring function from protein structure.Current Proteomics,1:59-65,2004.
    [14]C.Zhang and S.H.Kim.Overview of structural genomics:from structure to function.Current Opinion in Chemical Biology,7:28-32,2003.
    [15]辛厚文.分子拓扑学.中国科学技术大学出版社,1992.
    [16]来鲁华.蛋白质的结构预测与分子设计.北京大学出版社,1993.
    [17]H.Edelsbrunne.Biological applications of computational topology.Chapter 63 of Handbook of Discrete and Computational Geometry.CRC Press,2003.
    [18]Xenarios I Yeates TO Eisenberg D,Marcotte EM.Protein function in the post-genomic era.Nature,405(6788):823-6,2000.
    [19] Connolly M. L. Analytical molecular surface calculation. J. Appl. Crystallogr, 16:548 - 558, 1983.
    
    [20] Jiang F. and Kim S. H. 'soft docking': matching of molecular surface cubes. J. Mol. Biol, 219:79-102,1991.
    
    [21] Shoichet B. and Kuntz I. D. Protein docking and complementarity. J. Mol. Biol,221:327-346,1991.
    
    [22] Schlenkric M. Zachmann C. D., Heiden W. and Brickmann J. Topological analysis of complex molecular surfaces. J. Comp. Chem, 13:76 - 84, 1992.
    
    [23] Wolfson H. Fischer D., Norel R. and Nussinov R. Surface motifs by a computer vision technique: searches, detection, and implications for protein-ligand recognition. Proteins, 16:278-292,1993.
    
    [24] Merchant A. Masek B. B. and Matthew B. Molecular skins: a new concept for quantitative shape matching of a protein with its small molecule mimics. Proteins Struct. Funct. Genet., 17:193-202,1993.
    
    [25] M. Baker, Z.Y. Yu, C. Bajaj, and W. Chiu. Automated segmentation of electron density maps. Journal of Structural Biology, 156(3):432-441, 2006.
    
    [26] Z. Yu and C. Bajaj. Computational approaches for automatic structural analysis of large bio-molecular complexes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007.
    
    [27] W. Graham Richards Philippa E. Bowen-Jenkins, David L. Cooper. Ab initio computation of molecular similarity. Journal of Physical Chemistry, 89(6):2195-2197, 1985.
    
    [28] W.Graham Richards Birgit Albrecht, Guy H.Grant. Evaluation of structural similarity based on reduced dimensionality representations of protein structure. Protein Engineering Design and Selection, 17(5):425-432, 2004.
    
    [29] M.V. Kreveld, R.V. Oostrum, C. Bajaj, D. Schikore, and V. Pascucci. Contour trees and small seed set for isosurface traversal. In Proceedings: Thirteen ACM Symposium on Computational Geometry, pages 212-219, 1997.
    
    [30] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete and Computational Geometry, 28(4):511-533, 2001.
    
    [31] F. Cazals, F. Chazal, and T. Lewiner. Molecular shape analysis based upon the morse-smale complex and the connolly function. In ACM Symposium on Computational Geometry, pages 351-360,2003.
    [32] T.F. Chan and L.A. Vese. Active contours without edges. Image Processing, 10:266-277, 2001.
    [33] H. Kubinyi. Comparative molecular field analysis (CoMFA). The Encyclopedia of Computational Chemistry, 1:448-460, 1998.
    [34] Summers M.F. Turner B.G. Structural biology of hiv. Journal of Molecular Biology, 285(1): 1-32, 1999.
    [35] J.A. Sethian. Curvature and the evolution of fronts. Communications in Mathematical Physics, 101:487-499,1985.
    [36] J.A. Sethian. Numerical methods for propagating fronts. Variational Methods for Free Surface Interfaces, Concus P, Finn R(eds), pages 155-164, 1987.
    [37] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79:12-49, 1988.
    [38] H.K. Zhao, S. Osher, B. Merrian, and M. Kang. Implicit and nonparametric shape reconstruction from unorganized data using a variational levelset method. Computer Vision and Image Understnading, 80:295-319, 2000.
    [39] H.K. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level set method. 1st IEEE Workshop on Variational and Levelset Methods, pages 194-202, 2001.
    [40] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface processing via normal maps. Technical Report UUCS-02-03, University of Utah, 2002.
    [41] R. Whitaker, D. Breen, K. Museth, and N. Soni. Segmentation of biological volume datasets using a level-set. Volume Graphics, pages 249-263, 2001.
    [42] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321-331, 1987.
    [43] V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert. Minimal surfaces based object segmentation. Numerische Mathematik, 19(4):394-398, 1997.
    [44] R. Malladi, J.A. Sethian, and B.C. Vemuri. Evolutionary fronts for topology independent shape modeling and recovery. Proceedings of the third European conference on Computer vision, 800:3-13, 1994.
    [45] J. Shah. A common framework for curve evolution, segmentation and anisotropic diffusion. Proceedings of International Conference on Computer Vision and Pattern Recognition, pages 136-142, 1996.
    [46] N.K. Paragios and R. Deriche. A pde-based levelset approach for detection and tracking of moving objects. Computer Vision, pages 1139-1145, 1998.
    [47]A.Lefohn,J.Kniss,C.Hansen,and R.Whitaker.A streaming narrow-band algorithm:Interactive deformation and visualization of levelsets.IEEE Transactions on Visualization and Computer Graphics,10(40):422-433,2004.
    [48]S.J.Osher and R.Fedkiw.Level set methods and dynamic implicit surfaces.Applied Mathematical Science.Springer,page 153,2002.
    [49]R.Whitaker,D.Breen,K.Museth,and N.Soni.Segmentation of biological volume datasets using a levelset framework.Volume Graphics,pages 249-263,2001.
    [50]D.Breen,R.Whitaker,K.Museth,and L.Zhukov.Levelset Segmentation of Biological Volume Datasets.J.Suri(ed.).Handbook of Medical Image Analysis,Volume I Segmentation Part A,Kluwer,New York,2005.
    [51]H.Yamauchi,S.Gumhold,R.Zayer,and H.P.Seidel.Mesh segmentation driven by gaussian curvature.Source Visual Computer,21(8-10 Special Issue SI):659-668,2005.
    [52]Y.Shi and W.C.Karl.Real-time tracking using levelsets.Computer Vision and Pattern Recognition,2:20-25,2005.
    [53]D.Enright,S.Marschner,and R.Fedkiw.Animation and rendering of complex water surfaces.SIGGRAPH,ACM TOG 21:736-744,2002.
    [54]D.Enright,R.Fedkiw,J.Ferziger,and I.Mitchell.A hybrid particle levelset method for improved interface capturing.Journal of Computational Physics,183(1):83-116,2002.
    [55]D.Enright,F.Losasso,and R.Fedkiw.A fast and accurate semi-lagrangian particle levelset method.Computers and Structures,83:479-490,2005.
    [56]Y.Shi,T.G.Goktekin,A.W.Bargteil,and J.F.O'Brien.A method for animating viscoelastic fluids.ACM Transactions on Graphics,23:463-467,2004.
    [57]J.Stam.Flows on surfaces of arbitrary topology.Proceedings of SIGGRAPH,pages 724-731,2003.
    [58]D.Magee,A.Bulpitt,and E.Berry.Combining 3D deformable models and level set methods for the segmentation of abdominal aortic aneurysms.Proceedings of the British Machine Vision Conference,pages 333-341,2001.
    [59]D.Magee,A.Bulpitt,and E.Berry.Level set methods for the 3D segmentation of CT images of abdominal aortic aneurysms.Understanding and Analysis,2001.
    [60]L.Zhukov,K.Museth,D.Breen,R.Whitakery,and A.H.Barr.Level set modeling and segmentation of dt-mri brain data.Journal of Electronic Imaging,12(1):125-133,2003.
    [61]T.Can,C.Chen,and Y.Wang.Efficient molecular surface generation using Level-set methods.Journal of Molecular Graphics and Modeling,25:442-454,2006.
    [62]Q.Zhang C.Bajaj,G.Xu.A fast variational method for the construction of resolution adaptive c2 -smooth molecular surfaces.Computer methods in applied mechanics and engineering,198:1684-1690,2009.
    [63]V.I.Arnold.Geometrical Methods in the Theory of Ordinary Differential Equations.New York:Springer-Verlag,1983.
    [64]C.M.Li,C.Y.Xu,C.F.Gui,and M.D.Fox.Level set evolution without re-initialization a new variational formulation.Computer Vision and Pattern Recognition,1(1):430-436,2005.
    [65]V.Caselles,F.Catte,T.Coll,and F.Dibos.Geometric model for active contours.Numerische Mathematik,66:1-31,1993.
    [66]K.Siddiqi,Y.B.Lauziere,A.Tannenbaum,and S.W.Zucker.Area and length minimizing flows for shape segmentation.Image Processing,IEEE Transactions,7:433-443,1998.
    [67]R.Malladi,J.A.Sethian,and B.C.Vemuri.Shape modeling with front propagation:a level set approach.Transaction on Pattern Analysis and Machine Intelligence,17(2):158-175,1995.
    [68]L.Evans.Partial Differential Equations.Providence:American Mathematical Society,1998.
    [69]T.Michael.Heath.Scientific Computing,An Introductory.Survey..McGraw-Hill.Second edition,2002.
    [70]D.Eberly,L.Lancaster,and A.Alyassin.On gray scale image measurements.Graphics Models and Image Processing,56(6):550-562,1991.
    [71]Vijay Natarajan Valerio Pascucci Herbert Edelsbrunner,John Harer.Morse-smale complexes for piecewise linear 3-manifolds.Proceedings of the nineteenth annual symposium on Computational geometry,2003.
    [72]Valerio Pascucci Bernd Hamann Attila Gyulassy,Vijay Natarajan.Efficient computation of morse-smale complexes for three-dimensional scalar functions.IEEE Transactions on Visualization and Computer Graphics,13(6):1440-1447,2007.
    [73]T.Bremer V.Pascucci V.Natarajan,Y.Wang and B.Hamann.Segmenting molecular surfaces.Computer Aided Geometric Design(CAGD),pages 495-509,2006.
    [74]Daniel R.Schikore.Chandrajit L.Bajaj,Valerio Pascucci.The contour spectrum.ACM SIGGRAPH 97 Visual Proceedings:The art and interdisciplinary programs of SIGGRAPH '97,page 192,1997.
    [75]C.L.;Kwon B.;Dolinsky T.J.;Nielsen J.E.;Baker N.A.Zhang,X.;Bajaj.Application of new multi-resolution methods for the comparison of biomolecular electrostatic properties in the absence of global structural similarity.Multiscale Model Simulations,5:1196-1213,2006.
    [76] Chandrajit Bajaj Bong-Soo Sohn. Time-varying contour topology. IEEE Transactions on Visualization and Computer Graphics, 12(1):14-25, 2006.
    
    [77] X. Zhang. Complementary shape comparison with additional properties. Eurographics/IEEE Proceedings of Volume Graphics, pages 79-86, 2006.
    
    [78] L.C. Evans. Partial Differential Equations. Providence: American Mathematical Society, 1998.
    
    [79] D. Eberly, L. Lancaster, and A. Alyassin. On gray scale image measurements. Graphics Models and Image Processing, 56(6):550-562, 1991.
    
    [80] B.G. Turner and M.F. Summers. Structural biology of hiv. Journal of Molecular Biology, 285(1):1-32, 1999.
    
    [81 ] R.A. Grant, D.J. Filman, S.E. Finkel, R. Kolter, and J.M. Hogle. The crystal structure of dps, a ferritin homolog that binds and protects dna. Nature Structural Biology, 5(4):294-303, 1998.
    
    [82] P. Ceci, A. Ilari, E. Falvo, and E. Chiancone. The dps protein of agrobacterium tumefaciens does not bind to dna but protects it toward oxidative cleavage. Journal of Biological Chemistry, 278(22):20319-20326, 2003.
    
    [83] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, and K. Schulten. Scalable molecular dynamics with namd. Journal of Computational Chemistry, 26:1781-1802, 2005.
    
    [84] A.D. MacKerell, D. Bashford, and M. Bellott et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Computational Chemistry, 102:3586- 3616, 1998.
    
    [85] Shing-Tung Yau Xianfeng David Gu. Computational Conformal Geometry. International Press of Boston, 2008.
    
    [86] Tony F. Chan PaulM. Thompson Xianfeng Gu, YalinWang and Shing-Tung Yau. Genus zero surface conformal mapping and its application to brain surface mapping. In Christopher J. Taylor and J. Alison Noble, 2732:172 - 184, 2003.
    
    [87] Tony F. Chan PaulM. Thompson Xianfeng Gu, YalinWang and Shing-Tung Yau. Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans.Med. Imaging, 23(8):949 - 958, 2004.
    
    [88] Xianfeng Gu Craig Gotsman and Alla Sheffer. Fundamentals of spherical parameterization for 3d meshes. ACM Trans. Graph., 22(3):358 - 363, 2003.
    [89]Xianfeng Gu K.Hayashi T.Chan A.W.Toga P.M.Thompson Yalin Wang,L.Lui and S.-T.Yau.Brain surface conformal parameterization using riemann surface structure.IEEE Trans.Med.Imaging,26(6:853-865,2007.
    [90]Feng Qiu Miao Jin Wei Hong,Xianfeng Gu and Arie E.Kaufman.Conformal virtual colon flattening.In Ralph R.Martin and Shi-Min Hu,editors,Symposium on Solid and Physical Modeling,page 85-93,2006.
    [91]戴俊飞.Ricci流在图形学中的应用.PhD thesis,浙江大学,2007.
    [92]Eck M,DeRose T,Duehanrp T,et.al.Multiresolution analysis of arbitary meshes.Computer Graphies(Proe.SIGGRAPH1995),1995.
    [93]Floater M.S.Parametrlzation and smooth approximation of surface triangulations.ComPuter Aided Geometrie Design,14(3):231-250,1997.
    [94]Levy B,Petitjean S,Ray N,et.al.Least squares conformal maps for automatie texture atlas generation.SIGGRAPH2002,page 362-371,2002.
    [95]Desbrun M,Meyer M,Alliez P.Intrinsie parameterizations of surface meshes.ComPuter Graphics Forum(Proe.Eurographics),21(3):209-218,2002.
    [96]Sheffer A,Levy B,Mogilnitsky M,et.al.Abf++:fast and robust angle based flattening.ACM Transaetionson Graphics,24(2):311-330,2005.
    [97]Kharevyeh L,SPringhom B,Schroder P.Diserete confomal mappings via circle patterns.ACM Transactions on GraPhics(Proe.SIGGRApH),25(2),2006.
    [98]Gu X,Yau S T.Global conformal surface parameterization.Symposium on Geometry Proeessing,page 127-137,2003.
    [99]Jin M,Wang Y,Yau S T,et al.Optimal global conformal surface parameterization.Proeeedings of IEEE Visualization,page 267-274,2004.
    [100]Schroder P Barr A H Meyer M,Desbrun M.Discrete differential-geometry operators for triangulated 2-manifolds.In Visualization and Mathematics,page 52-58.,2002.
    [101]X.Gu and S.-T.Yau.Surface classification using conformal structures.ICCV,1:701-708,2003.
    [102]T.F.Chan P.M.Thompson X.Gu,Y.Wang and S-T.Yau.Genus zero surface conformal mapping and its application to brain surface mapping.IEEE Transaction on Medical Imaging,,23(8):949-958.89,2004.
    [103]X.Gu and S.-T.Yau.Computing conformal structures of surfaces.Communications in Information and Systems,2(2):121-146,2002.
    [104] R. S. Hamilton. Three manifolds with positive ricci curvature. Journal of Differential Geometry., 17:255 -306,1982.
    
    [105] C. Collins and K. Stephenson. A circle packing algorithm. Computational Geometry: Theory and Applications, 25:233 - 256, 2003.
    
    [106] F. Luo M. Jin and X. Gu. Computing surface hyperbolic structure and real projective structure. ACM Symposium on Solid and Physics Modeling, page 105 - 116, 2006.
    
    [107] F. Luo X. Gu M. Jin, J. Kim. Discrete surface ricci flow: Theory and applications. Mathematics of Surfaces XII, 4647:209-232, 2007.
    
    [108] M. Jin F. Luo H. Qin X. Gu, Y. He and S.-T. Yau. Manifold splines with single extraordinary point. ACM Symposium on Solid and Physics Modeling, 2007.
    
    [109] F.Luo M. Jin, J.Kim and X. Gu. Discrete surface ricci flow. IEEE TVCG, 14(5):1030-1043, 2008.
    
    [110] F. Luo M. Jin and X. Gu. Computing general geometric structures on surfaces using ricci flow. Computer Aided Design, 39(8):663-675, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700