用户名: 密码: 验证码:
多种政策对我国物质流和价值流变化的综合作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实施可持续发展,各国利用多种政策手段来调控社会经济系统的行为,目前相对孤立的政策手段分析无法反映其综合性特点。本研究建立了一套分析多种政策手段综合作用的方法,能够反映多种政策手段共同实施对物质流和价值流的综合作用,识别政策手段的优先顺序及较优政策手段组合。
     以我国为案例,本研究分析了我国典型政策手段对物质流和价值流的综合作用。所考虑的典型政策手段包括:征收环境税、资源税改革、产业投资结构调整、污染物减排工程投资、技术政策、废物综合利用和能源结构调整。在这7类典型政策手段的共同作用下,我国未来的国内生产总值将稳步增长,增长速度会逐渐放缓。我国的物质流规模将持续增加,经济增长与物质流呈现相对解耦趋势。依据模型测算结果,本研究还分析了我国的一系列物质调控目标。同时,本研究还分析了这7类典型政策手段对物质流和价值流的贡献作用,研究结果说明了对多种政策手段进行综合分析的必要性。
     从经济增长的角度来看,决策者要优先关注技术政策、废物综合利用、产业投资结构调整和污染物减排工程投资,尤其要重点关注产业投资结构调整和污染物减排工程投资。从物质流减量化角度看,决策者要优先关注技术政策、能源结构调整、产业投资结构调整、资源税和环境税这5类政策手段,尤其要重点关注技术政策和环境税。其中,技术政策、产业投资结构调整和资源税是比较理想的3类政策手段。在实际的政策手段实施过程中,技术政策和产业投资结构调整政策的组合实施是一个较优的组合,它们可以同时实现经济增长和物质减量化的双重效果。在税收中性原则的前提下,我国在中长期可以适当扩大环境税的征收范围,适当提高环境税的税率。而且,我国应该继续探索产业投资结构调整的方向,并应该提高废物综合利用活动和可再生能源生产活动的技术水平。
     在我国今后的可持续物质管理以及政策手段实施和优化过程中,决策者不仅要重点关注生产角度识别的关键部门及其对应的产品,更要关注最终需求角度识别的潜在驱动经济增长和物质流变化的关键部门及其对应的产品。
In order to achieve sustainable development, many countries are implementingvarious policies to adjust the behaviours of socio-economic systems. Current isolatedpolicy analysis cannot reflect integrated impacts of various policies. This studyproposed a methodology for analyzing integrated impacts of various policies. Thismethodology could model integrated impacts of various policies on physical andmonetary flows of socio-economic systems. It could also identify the priority of variouspolicies and their optimal combination.
     Taking China as an example, this study analyzed integrated impacts of7categoriesof typical policies on economic growth and material flows. The policies consideredcomprised environmental taxation, resource tax reform, adjusted sectoral investment,pollutant reduction investment, technical policies, recyclable resource utilization, andenergy consumption structure adjustment. Under the integrated impacts of7categoriesof typical policies, China would achieve sustaining economic growth with graduallyreduced growth rate. The volume of material flows would gradually increase, and therewould appear a relative decoupling trend between material flows and economic growth.According to results, this study also analyzed China’s material reduction targets and thecontribution of7categories of typical policies to material flows and economic growth.These results indicated the necessity of analyzing integrated impacts of various policies.
     From the viewpoint of economic growth, China should focus on technical policies,recyclable resource utilization, adjusted sectoral investment, and pollutant reductioninvestment. Special attention should be paid to adjusted sectoral investment andpollutant reduction investment. From the viewpoint of the dematerialization, Chianshould focus on technical policies, energy consumption structure adjustment, adjustedsectoral investment, resource tax reform, and environmental taxation. Special attentionshould be paid to technical policies and environmental taxation. In particular, technicalpolicies, adjusted sectoral investment, and resource tax reform were3categories ofperferred policies. During the implementation of policies, the combination of technicalpolicies and adjusted sectoral investment was preferred, as this kind of combinationcould achieve both economic growth and the dematerialization. Under the neutral taxation principle, China should properly extend the scope of environmental tax andincrease the rate of environmental tax during the medium and long term. In addition,China should continue to adjust sectoral investment and improve technical levels ofrecyclable resource utilization activities and renewable energy production activities.
     During China’s sustainable materials management and the implementation andoptimization of policies, not only key sectors and their products identified fromproduction perspective but also that identified from final demand perspective should beconcerned, as key sectors and their products identified from final demand perspectiveare underlying drivers of economic growth and material flows.
引文
[1] Eurostat. Economy-wide Material Flow Accounts and Derived Indicators: A MethodologicalGuide [M]. Luxembourg: Office for Official Publications of the European Communities,2001.
    [2] SERI. The online portal for material flow data (www.materialflows.net)[M]. Vienna,Austria; Sustainable Europe Research Institute.2012.
    [3] BP. BP Statistical Review of World Energy June2012[M]. London, UK: BP,2012.
    [4]中华人民共和国国家统计局.中国统计年鉴2011[M].北京:中国统计出版社,2011.
    [5]中华人民共和国国家统计局.中国能源统计年鉴2011[M].北京:中国统计出版社,2011.
    [6] Guan D, Liu Z, Geng Y, et al. The gigatonne gap in China's carbon dioxide inventories [J].Nature Climate Change,2012,2(9):672-675.
    [7]汪宁.中国经济系统物质代谢现状与趋势分析[D].北京;清华大学,2009.
    [8] WCED.(World Commission on Environment and Development). Our Common Future [M].1987.
    [9] Pearce D W, Markandya A, Barbier E. Blueprint for a Green Economy [M]. London, GreatBritain: Earthscan,1989.
    [10] Eurostat. Economy Wide Material Flow Accounts: Compilation Guidelines for reporting tothe2009Eurostat questionnaire [M]. Eurostat,2009.
    [11] Eurostat. Economy-wide Material Flow Accounts (EW-MFA): Compilation Guide2012[M].Eurostat,2012.
    [12] STI.(State for Trade and Industry). ENERGY WHITE PAPER: Our energy future-creatinga low carbon economy [M]. London: The Stationery Office,2003.
    [13]中华人民共和国国务院.国务院关于印发中国21世纪初可持续发展行动纲要的通知[M]//国务院.北京;国务院办公厅.2003.
    [14]中华人民共和国中央人民政府.中华人民共和国国民经济和社会发展第十一个五年规划纲要[M].北京;中华人民共和国中央人民政府.2006.
    [15]中华人民共和国中央人民政府.中华人民共和国国民经济和社会发展第十二个五年规划纲要[M].北京;中华人民共和国中央人民政府.2011.
    [16] Behrens A. Environmental Policy Instruments for Dematerialisation of the European Union[M]. Vienna, Austria: Sustainable Europe Research Institute,2004.
    [17]冯慧娟,鲁明中.德国废弃物回收体系的运行模式[J].城市问题,2010,2):86-90.
    [18] Leontief W. Quantitative input-output relations in the economic system [J]. Review ofEconomic Statistics,1936,18:105-125.
    [19] Leontief W, Ford D. Environmental repercussions and the economic structure: Aninput-output approach [J]. Review of Economics and Statistics,1970,52(3):262-271.
    [20] Leontief W, Ford D. Air pollution and the economic structure: Empirical results ofinput-output computations [M]. Input-output techniques. Amsterdam, Netherlands;North-Holland Publishing Company.1971.
    [21] Miller R E, Blair P D. Input-Output Analysis: Foundations and Extensions (2nd Edition)[M].Cambridge University Press,2009.
    [22] Leontief W. Quantitative input-output relations in the economic system [J]. Review ofEconomic Statistics,1936,18:105-125.
    [23] ISO. Environmental management—Life cycle assessment—Principles and framework [M].International Organization for Standardization.2006.
    [24] Guidelines for Life-Cycle Assessment [J]. Environmental Science and Pollution Research,1994,1(1):55-55.
    [25] Boesch M E, Hellweg S. Identifying Improvement Potentials in Cement Production withLife Cycle Assessment [J]. Environmental Science&Technology,2010,44(23):9143-9149.
    [26] Clarens A F, Zimmerman J B, Keoleian G A, et al. Comparison of Life Cycle Emissions andEnergy Consumption for Environmentally Adapted Metalworking Fluid Systems [J].Environmental Science&Technology,2008,42(22):8534-8540.
    [27] Eckelman M I, Chertow M R. Quantifying Life Cycle Environmental Benefits from theReuse of Industrial Materials in Pennsylvania [J]. Environmental Science&Technology,2009,43(7):2550-2556.
    [28] Heller M C, Keoleian G A. Life Cycle Energy and Greenhouse Gas Analysis of aLarge-Scale Vertically Integrated Organic Dairy in the United States [J]. EnvironmentalScience&Technology,2011,45(5):1903-1910.
    [29] Jaramillo P, Griffin W M, Matthews H S. Comparative life-cycle air emissions of coal,domestic natural gas, LNG, and SNG for electricity generation [J]. Environmental Science&Technology,2007,41(17):6290-6296.
    [30] Rule B M, Worth Z J, Boyle C A. Comparison of Life Cycle Carbon Dioxide Emissions andEmbodied Energy in Four Renewable Electricity Generation Technologies in New Zealand [J].Environmental Science&Technology,2009,43(16):6406-6413.
    [31] Wiedmann T O, Suh S, Feng K, et al. Application of Hybrid Life Cycle Approaches toEmerging Energy Technologies-The Case of Wind Power in the UK [J]. EnvironmentalScience&Technology,2011,45(13):5900-5907.
    [32] Zhang Y, McKechnie J, Cormier D, et al. Life Cycle Emissions and Cost of ProducingElectricity from Coal, Natural Gas, and Wood Pellets in Ontario, Canada [J]. EnvironmentalScience&Technology,2010,44(1):538-544.
    [33] Jaramillo P, Griffin W M, McCoy S T. Life Cycle Inventory of CO(2) in an Enhanced OilRecovery System [J]. Environmental Science&Technology,2009,43(21):8027-8032.
    [34] Kaplan P O, Ranjithan S R, Barlaz M A. Use of Life-Cycle Analysis To Support SolidWaste Management Planning for Delaware [J]. Environmental Science&Technology,2009,43(5):1264-1270.
    [35] Kim H C, Keoleian G A, Grande D E, et al. Life cycle optimization of automobilereplacement: Model and application [J]. Environmental Science&Technology,2003,37(23):5407-5413.
    [36] Lloyd S M, Lave L B. Life cycle economic and environmental implications of usingnanocomposites in automobiles [J]. Environmental Science&Technology,2003,37(15):3458-3466.
    [37] Maclean H L, Lave L B. A life-cycle model of an automobile [J]. Environmental Science&Technology,1998,32(13):322A-330A.
    [38] Maclean H L, Lave L B. Life cycle assessment of automobile/fuel options [J].Environmental Science&Technology,2003,37(23):5445-5452.
    [39] Samaras C, Meisterling K. Life cycle assessment of greenhouse gas emissions from plug-inhybrid vehicles: Implications for policy [J]. Environmental Science&Technology,2008,42(9):3170-3176.
    [40] Lankey R L, McMichael F C. Life-cycle methods for comparing primary and rechargeablebatteries [J]. Environmental Science&Technology,2000,34(11):2299-2304.
    [41] Majeau-Bettez G, Hawkins T R, Stromman A H. Life Cycle Environmental Assessment ofLithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery ElectricVehicles [J]. Environmental Science&Technology,2011,45(10):4548-4554.
    [42] Steele N L C, Allen D T. Life-cycle assessment-An abridged life-cycle assessment ofelectric vehicle batteries [J]. Environmental Science&Technology,1998,32(1):40A-46A.
    [43] Mattila T J, Pakarinen S, Sokka L. Quantifying the Total Environmental Impacts of anIndustrial Symbiosis-a Comparison of Process-, Hybrid and Input-Output Life CycleAssessment [J]. Environmental Science&Technology,2010,44(11):4309-4314.
    [44] McMillan C A, Keoleian G A. Not All Primary Aluminum Is Created Equal: Life CycleGreenhouse Gas Emissions from1990to2005[J]. Environmental Science&Technology,2009,43(5):1571-1577.
    [45] Miller S A, Landis A E, Theis T L, et al. A comparative life cycle assessment of petroleumand soybean-based lubricants [J]. Environmental Science&Technology,2007,41(11):4143-4149.
    [46] Sparrevik M, Saloranta T, Cornelissen G, et al. Use of Life Cycle Assessments To Evaluatethe Environmental Footprint of Contaminated Sediment Remediation [J]. EnvironmentalScience&Technology,2011,45(10):4235-4241.
    [47] Venkatesh A, Jaramillo P, Griffin W M, et al. Uncertainty in Life Cycle Greenhouse GasEmissions from United States Natural Gas End-Uses and its Effects on Policy [J].Environmental Science&Technology,2011,45(19):8182-8189.
    [48] Stromman A H, Solli C, Hertwich E G. Hybrid life-cycle assessment of natural gas basedfuel chains for transportation [J]. Environmental Science&Technology,2006,40(8):2797-2804.
    [49] Walser T, Demou E, Lang D J, et al. Prospective Environmental Life Cycle Assessment ofNanosilver T-Shirts [J]. Environmental Science&Technology,2011,45(10):4570-4578.
    [50] Yao M A, Higgs T G, Cullen M J, et al. Comparative Assessment of Life Cycle AssessmentMethods Used for Personal Computers [J]. Environmental Science&Technology,2010,44(19):7335-7346.
    [51] Di X, Nie Z, Yuan B, et al. Life cycle inventory for electricity generation in China [J].International Journal of Life Cycle Assessment,2007,12(4):217-224.
    [52] Ou X, Yan X, Zhang X. Life-cycle energy consumption and greenhouse gas emissions forelectricity generation and supply in China [J]. Applied Energy,2011,88(1):289-297.
    [53] Yang J, Liu B. Life cycle inventory of steel products in China [J]. Acta ScienticCircumstantance,2002,22(4):519-522.
    [54] Gao F, Nie Z, Wang Z, et al. Life cycle assessment of primary magnesium production usingthe Pidgeon process in China [J]. International Journal of Life Cycle Assessment,2009,14(5):480-489.
    [55] Jiang R, Wang H, Zhang H, et al. Life cycle assessment of cement technologies in China andrecommendations [J]. Acta Scientiae Circumstantiae,2010,30(11):2361-2368.
    [56] Cui Z, Hou Y, Hong J, et al. Life cycle assessment of coated white board: a case study inChina [J]. Journal of Cleaner Production,2011,19(13):1506-1512.
    [57] Ren H, Yang Y, Cao L. Life Cycle Assessment of Beer Production in China [J].Transactions of the Chinese Society of Agricultural Machinery,2006,37(2):80.
    [58] Chang Y, Wang Y. Study on Prospects of Building Life-cycle Management in China
    [M]//WANG Y W, XIA K W, SHEN Q P. Proceedings of2008International Conference onConstruction&Real Estate Management.2008:10-14.
    [59] Gu L, Lin B, Gu D, et al. An endpoint damage oriented model for life cycle environmentalimpact assessment of buildings in China [J]. Chinese Science Bulletin,2008,53(23):3762-3769.
    [60] Lei S-h, Chang Y, Zhang X. Life-cycle energy assessment of urban residential buildings inChina [J]. Proceedings of the2010IEEE International Conference on Advanced ManagementScience (ICAMS2010),2010.
    [61] Zhang C, Han W J, Jing X D, et al. Life cycle economic analysis of fuel ethanol derivedfrom cassava in southwest China [J]. Renewable&Sustainable Energy Reviews,2003,7(4):353-366.
    [62] Hu Z Y, Fang F, Ben D F, et al. Net energy, CO2emission, and life-cycle cost assessment ofcassava-based ethanol as an alternative automotive fuel in China [J]. Applied Energy,2004,78(3):247-256.
    [63] Zhang L, Huang Z. Life cycle study of coal-based dimethyl ether as vehicle fuel for urbanbus in China [J]. Energy,2007,32(10):1896-1904.
    [64] Hu Z, Tana P, Yan X, et al. Life cycle energy, environment and economic assessment ofsoybean-based biodiesel as an alternative automotive fuel in China [J]. Energy,2008,33(11):1654-1658.
    [65] Leng R, Wang C, Zhang C, et al. Life cycle inventory and energy analysis of cassava-basedFuel ethanol in China [J]. Journal of Cleaner Production,2008,16(3):374-384.
    [66] Yan X, Crookes R J. Life cycle analysis of energy use and greenhouse gas emissions forroad transportation fuels in China [J]. Renewable&Sustainable Energy Reviews,2009,13(9):2505-2514.
    [67] Yu S, Tao J. Simulation-based life cycle assessment of energy efficiency of biomass-basedethanol fuel from different feedstocks in China [J]. Energy,2009,34(4):476-484.
    [68] Yu S, Tao J. Simulation based life cycle assessment of airborne emissions of biomass-basedethanol products from different feedstock planting areas in China [J]. Journal of CleanerProduction,2009,17(5):501-506.
    [69] Gao H, Hu S, Li Y, et al. Life-cycle energy and economic analysis of sweet sorghum ethanolin China [J]. Journal of Tsinghua University (Science and Technology),2010,50(11):1858-1863.
    [70] Guo R, Hanaki K. Potential and life cycle assessment of biodiesel production in China [J].Journal of Renewable and Sustainable Energy,2010,2(3):033107.
    [71] Hu Z Y, Pu G Q, Fang F, et al. Economics, environment, and energy life cycle assessment ofautomobiles fueled by bio-ethanol blends in China [J]. Renewable Energy,2004,29(14):2183-2192.
    [72] Zhang L, Huang Z. Life cycle study of coal-based dimethyl ether as vehicle fuel for urbanbus in China [J]. Energy,2007,32(10):1896-1904.
    [73] Ou X, Yan X, Zhang X. Using coal for transportation in China: Life cycle GHG ofcoal-based fuel and electric vehicle, and policy implications [J]. International Journal ofGreenhouse Gas Control,2010,4(5):878-887.
    [74] Ou X, Zhang X, Chang S. Scenario analysis on alternative fuel/vehicle for China's futureroad transport: Life-cycle energy demand and GHG emissions [J]. Energy Policy,2010,38(8):3943-3956.
    [75] Ou X, Zhang X, Chang S. Alternative fuel buses currently in use in China: Life-cycle fossilenergy use, GHG emissions and policy recommendations [J]. Energy Policy,2010,38(1):406-418.
    [76] Ou X-m, Zhang X-l, Qin Y-n, et al. Life cycle analysis of electric vehicle charged byadvanced technologies coal-power in future China [J]. Journal of China Coal Society,2010,35(1):169-172.
    [77] Wang M, Wu W, Liu W, et al. Life cycle assessment of the winter wheat-summer maizeproduction system on the North China Plain [J]. International Journal of SustainableDevelopment and World Ecology,2007,14(4):400-407.
    [78] Wang M, Xia X, Zhang Q, et al. Life cycle assessment of a rice production system in Taihuregion, China [J]. International Journal of Sustainable Development and World Ecology,2010,17(2):157-161.
    [79] Li Z, Wang X, Wei J, et al. Life cycle assessment of fertilization in corn production indifferent regions of China [J]. Acta Scientiae Circumstantiae,2010,30(9):1912-1920.
    [80] Lu W, Zhang T. Life-Cycle Implications of Using Crop Residues for Various EnergyDemands in China [J]. Environmental Science&Technology,2010,44(10):4026-4032.
    [81] Hong R J, Wang G F, Guo R Z, et al. Life cycle assessment of BMT based integratedmunicipal solid waste management: Case study in Pudong, China [J]. Resources Conservationand Recycling,2006,49(2):129-146.
    [82] Zhao W, van der Voet E, Zhang Y, et al. Life cycle assessment of municipal solid wastemanagement with regard to greenhouse gas emissions: Case study of Tianjin, China [J].Science of the Total Environment,2009,407(5):1517-1526.
    [83] Zhao Y, Wang H-T, Lu W-J, et al. Life-cycle assessment of the municipal solid wastemanagement system in Hangzhou, China (EASEWASTE)[J]. Waste Management&Research,2009,27(4):399-406.
    [84] Chen D, Christensen T H. Life-cycle assessment (EASEWASTE) of two municipal solidwaste incineration technologies in China [J]. Waste Management&Research,2010,28(6):508-519.
    [85] Hong J, Li X, Cui Z. Life cycle assessment of four municipal solid waste managementscenarios in China [J]. Waste Management,2010,30(11):2362-2369.
    [86] Meng F, Fan Q, Zhao Q. Life cycle assessment of municipal sewage treatment process: Acase study from Harbin, China [J].20104th International Conference on Bioinformatics andBiomedical Engineering (iCBBE2010),2010.
    [87] Zhang Q H, Wang X C, Xiong J Q, et al. Application of life cycle assessment for anevaluation of wastewater treatment and reuse project-Case study of Xi'an, China [J].Bioresource Technology,2010,101(5):1421-1425.
    [88] Pan T, Zhu X-D, Ye Y-P. Estimate of life-cycle greenhouse gas emissions from a verticalsubsurface flow constructed wetland and conventional wastewater treatment plants: A casestudy in China [J]. Ecological Engineering,2011,37(2):248-254.
    [89] Zhang Y. The application of life cycle assessment in China recycling resource management[M].2011Asia-Pacific Power and Energy Engineering Conference (APPEEC2011). Wuhan,China; IEEE.2011.
    [90] Bringezu S, Schütz H. The Material Requirement of the European Union. Technocial ReportNo55[M]. Copenhagen: European Environment Agency,2001.
    [91] Bringezu S, Schütz H. Material use indicators for the European Union,1980-1997,Economy-wide material flow accounts and balances and derived indicators of resource use[M]. Eurostat Working Papers2/2001/B/2: Eurostat,2001.
    [92] Bringezu S, Schütz H. Total Material Requirement of the European Union. Technical Part.Technical Report No56[M]. Copenhagen: European Environment Agency,2001.
    [93] Bringezu S, Schutz H, Steger S, et al. International comparison of resource use and itsrelation to economic growth-The development of total material requirement, direct materialinputs and hidden flows and the structure of TMR [J]. Ecological Economics,2004,51(1-2):97-124.
    [94] Bringezu S. Industrial ecology: material flow analyses for sustainable materials and resourcemanagement in Germany and Europe [M]//AYRES R U, AYRES, L.(EDS.). Handbook ofIndustrial Ecology. Cheltenham; Edward Elgar Publishers.2002:288-300.
    [95] Tjahjadi B, Schafer D, Radermacher W, et al. Material and energy flow accounting inGermany-database for applying the national accounting matrix including environmentalaccounting concept [J]. Structural Change and Economic Dynamics,1999,10(1):73-77.
    [96] Bringezu S, Schütz H. Total Material Resource Flows of the United Kingdom [M].Wuppertal: Wuppertal Institute for Climate, Environment and Energy,2001.
    [97] Schandl H, Schulz N. Using material flow accounting to operationalise the concept ofsociety's metabolism. A preliminary MFA for the United Kingdom for the period of1937-1997. ISER Working Papers.2000-3[M]. Colchester: University of Essex,2000.
    [98] Schandl H, Schulz N. Changes in the United Kingdom's natural relations in terms ofsociety's metabolism and land-use from1850to the present day [J]. Ecological Economics,2002,41(2):203-221.
    [99] Sheerin C. UK Material Flow Accounting [J]. Economic Trends,2002,583:53-61.
    [100] Delahaye R, Nootenboom L. Material flow accounts in the Netherlands, time series1996-2006[M]. Den Haag, Netherlands: Division of Macro-economic Statistics andDissemination, National Accounts Department, Statistics Netherlands,2009.
    [101] Delahaye R, Nootenboom L. Economy-wide material flow accounts in the Netherlands [M].Den Haag, Netherlands: Division of Macro-economic Statistics and Dissemination, NationalAccounts Department, Statistics Netherlands,2008.
    [102] Femia A. A material flow account for Italy1988[M]. Luxembourg: Eurostat. EurostatWorking Papers2/2000/B/8,2000.
    [103] Ottilia Marco G L E P M. Materials Flow Analysis of the Italian Economy [J]. Journal ofIndustrial Ecology,2000,4(2):55-70.
    [104] Barbiero G, Camponeschi S, Femia A, et al.1980-1998Material-input-based indicators timeseries and1997material balance of the Italian economy [M]. ISTAT, Rome,2003.
    [105] Eurostat. Material Flow Accounts-Material Balance and Indicators, Austria1960-1998[M].Luxembourg: Eurostat. Working Papers2/2000/B/7,2000.
    [106] Gerhold S, Petrovic B. Material Flow Accounts, material balance and indicators, Austria1960-1997[M]. Luxembourg: Eurostat. Working Papers2/2000/B/6,2000.
    [107] Statistics-Denmark. Economy-wide Material Flow Accounts for Denmark1993-2002[M].Statistics Denmark,2005.
    [108] Pedersen O G. Physical Input-Output Tables for Denmark: Products and Materials1990; AirEmissions1990-92[M]. Kobenhavn: Statistics Denmark,1999.
    [109] R rmose P, Olsen T. Structural Decomposition Analysis of Air Emissions in Denmark1980-2002[M].15th International Conference on Input-Output Techniques. Beijing, China.2005.
    [110] Mulalic I. Material Flows and Physical Input-Output Tables-PIOT for Denmark2002basedon MFA [M]. Statistics Denmark,2007.
    [111] Isacsson A, al e. Material Flow Accounts, DMI and DMC for Sweden1987-1997[M].Luxembourg: Eurostat Working Papers2/2000/B/2,2000.
    [112] Hammer M, Hubacek K. Material Flows and Economic Development-Material FlowAnalysis of the Hungarian Economy [M]. Laxenburg: International Institute for AppliedSystem Analysis,2002.
    [113] Finland S. Finland's Natural Resources and the Environment1999[M]. Helsinki,1999.
    [114] Juutinen A, M enp I. Time Series for the Total Material Requirement of the FinnishEconomy. Summary [M]. Interim Report15August1999. Oulu: University of Oulu: ThuleInstitute,1999.
    [115] M enp I, al e. The total use of natural resources in Finland (in Finnish)[M]. Helsinki:Ministry of the Environment, Finnish Environment,2000.
    [116] Muukkonen J. Material Flow Accounts, TMR, DMI and Material Balances, Finland1980-1997[M]. Luxembourg: Eurostat,2000.
    [117] cásny M, Kovanda J, Hák T. Material flow accounts, balances and derived indicators forthe Czech Republic during the1990s: results and recommendations for methodologicalimprovements [J]. Ecological Economics,2003,45(1):41-57.
    [118] Kovanda J, Hak T, Janacek J. Economy-wide material flow indicators in the Czech Republic:trends, decoupling analysis and uncertainties [J]. International Journal of Environment andPollution,2008,35(1):25-41.
    [119] Kovanda J, Weinzettel J, Hak T. Analysis of regional material flows: The case of the CzechRepublic [J]. Resources Conservation and Recycling,2009,53(5):243-254.
    [120] el Mahdi A. Material flow account: The case of Egypt [M]. Cairo: Paper presented at theMaterial Flow Account Workshop at Cairo University,1999.
    [121] Rogich D, Matos G R. Material flow accounts: the United States and the world [M]//AYRESR U, AYRES L. Handbook of Industrial Ecology. Cheltenham; Edwar Elgar Publishers.2002:260-287.
    [122] Schandl H, Turner G M. The Dematerialization Potential of the Australian Economy [J].Journal of Industrial Ecology,2009,13(6):863-880.
    [123] Wood R, Lenzen M, Foran B. A Material History of Australia [J]. Journal of IndustrialEcology,2009,13(6):847-862.
    [124] Krausmann F, Gingrich S, Nourbakhch-Sabet R. The Metabolic Transition in Japan [J].Journal of Industrial Ecology,2011,15(6):877-892.
    [125] MEGJ. Material Flow in Japan2006[M]. Tokyo, Japan: Ministry of Environment,Government of Japan,2009.
    [126] Giljum S. Trade, Materials Flows, and Economic Development in the South: The Exampleof Chile [J]. Journal of Industrial Ecology,2004,8(1-2):241-261.
    [127] SORS. Material Flow Accounts–DMI, DMC and PTB, Slovenia,2009[M]. Ljubljana, theRepublic of Slovenia: Statistical Office of the Republic of Slovenia,2010.
    [128]陈效逑,乔立佳.中国经济—环境系统的物质流分析[J].自然资源学报,2000,01:17-23.
    [129] Xu M, Zhang T Z. Material flows and economic growth in developing China [J]. Journal ofIndustrial Ecology,2007,11(1):121-140.
    [130]段宁,李艳萍,孙启宏,等.中国经济系统物质流趋势成因分析[J].中国环境科学,2008,01:68-72.
    [131] Schandl H, West J. Material Flows and Material Productivity in China, Australia, and Japan[J]. Journal of Industrial Ecology,2012,16(3):352-364.
    [132]李刚.基于可持续发展的国家物质流分析[J].中国工业经济,2004,11:11-18.
    [133] Wolman A. Metabolism of cities [J]. Scientific American,1965,213(3):179-190.
    [134] Tarr J A. The metabolism of the industrial city-The case of Pittsburgh [J]. Journal of UrbanHistory,2002,28(5):511-545.
    [135] Sahely H R, Dudding S, Kennedy C A. Estimating the urban metabolism of Canadian cities:Greater Toronto Area case study [J]. Can J Civ Eng,2003,30(2):468-483.
    [136] Tachibana J, Hirota K, Goto N, et al. A method for regional-scale material flow anddecoupling analysis: A demonstration case study of Aichi prefecture, Japan [J]. ResourcesConservation and Recycling,2008,52(12):1382-1390.
    [137] Browne D, O'Regan B, Moles R. Assessment of total urban metabolism and metabolicinefficiency in an Irish city-region [J]. Waste Management,2009,29(10):2765-2771.
    [138] Niza S, Rosado L, Ferrao P. Urban Metabolism: Methodological Advances in UrbanMaterial Flow Accounting Based on the Lisbon Case Study [J]. Journal of Industrial Ecology,2009,13(3):384-405.
    [139] Barles S. Urban Metabolism of Paris and Its Region [J]. Journal of Industrial Ecology,2009,13(6):898-913.
    [140] Barrett J, Vallack H, Jones A, et al. A Material Flow Analysis and Ecological Footprint ofYork [M]. Stockholm, Sweden: Stockholm Environment Institute,2002.
    [141] Kennedy C, Steinberger J, Gasson B, et al. Greenhouse Gas Emissions from Global Cities[J]. Environmental Science&Technology,2009,43(19):7297-7302.
    [142] Sugar L, Kennedy C, Leman E. Greenhouse Gas Emissions from Chinese Cities [J]. Journalof Industrial Ecology,2012,16(4):552-563.
    [143] Newcombe K, Kalma J D, Aston A R. Metabolism of a city-Case of Hong Kong [J].AMBIO,1978,7(1):3-15.
    [144]徐一剑,张天柱,石磊,等.贵阳市物质流分析[J].清华大学学报(自然科学版),2004,12):1688-1691+1699.
    [145]李名升,佟连军.基于能值和物质流的吉林省生态效率研究[J].生态学报,2009,29(11):6239-6247.
    [146] Xu M, Jia X P, Shi L, et al. Societal metabolism in Northeast China: Case study of LiaoningProvince [J]. Resources Conservation and Recycling,2008,52(8-9):1082-1086.
    [147]李晓君.基于物质流方法对山东省循环经济发展的研究[D].青岛;青岛大学,2008.
    [148]王远,田珺,张蓓,等.江苏省物质流账户构建与分析[J].中国环境科学学会2006年学术年会优秀论文集(上卷),2006,1052-1057.
    [149]沈怀军.安徽省环境经济系统的物质流分析[D].合肥;合肥工业大学,2007.
    [150]张音波,陈新庚,彭晓春,等.广东省环境经济系统的物质流分析[J].环境科学学报,2008,05:1021-1031.
    [151]郭培坤,王远.福建省经济系统物质流分析研究[J].四川环境,2010,05:87-92+102.
    [152]张颖,单永娟,韩雪梅.北京经济系统物质流投入产出表的编制及其分析[J].自然资源学报,2009,03:514-522.
    [153]单永娟.北京地区经济系统物质流分析的应用研究[D].北京;北京林业大学,2007.
    [154]于术桐,黄贤金,谭丹.通州市快速工业化县域生态经济系统物质代谢演变[J].生态学杂志,2008,27(09):1620-1624.
    [155]黄晓芬.上海市物质流分析[J].南华大学学报(社会科学版),2010,04:37-40.
    [156]刘伟,鞠美庭,于敬磊,等.天津市经济—环境系统的物质流分析[J].城市环境与城市生态,2006,06:8-11.
    [157]刘伟,鞠美庭,楚春礼,等.基于物质流分析的天津市资源生产力[J].城市环境与城市生态,2009,01:29-32+37.
    [158] Chen X, Tiyip T, Lu G H. The analysis of material flow index at Xinjiang, China [J].Remote Sensing and Modeling of Ecosystems for Sustainability III,2006,6298(29825-29825.
    [159]钱翌,杨立杰,段克.青岛市环境-经济系统的物质流分析[J].青岛科技大学学报(社会科学版),2009,01:70-74.
    [160]魏婷,朱晓东.厦门市生态经济系统物质流分析[J].生态学报,2009,07:3800-3810.
    [161]高雪松,邓良基,张世熔,等.成都市环境经济系统的物质流分析[J].生态经济(学术版),2010,02:18-23+31.
    [162]楼俞,石磊.邯郸市物质流分析[J].环境科学研究,2008,04:201-204.
    [163]徐一剑,张天柱.物质投入产出表在义马市物质流分析中的应用[J].中国环境科学,2006,06:756-760.
    [164]黄和平,毕军.基于物质流分析的区域循环经济评价——以常州市武进区为例[J].资源科学,2006,06:20-27.
    [165] Liu X B, Tanaka M, Matsui Y. Generation amount prediction and material flow analysis ofelectronic waste: a case study in Beijing, China [J]. Waste Management&Research,2006,24(5):434-445.
    [166] Zhang Z X, Yu C X, Deng L, et al. Material flow and environmental impact analysis offossil fuels in the province of Hubei, China [J]. Fresenius Environmental Bulletin,2007,16:1207-1215.
    [167] Jing C, Zhigang J. Changing of energy consumption patterns from rural households to urbanhouseholds in China: an example from Shaanxi Province, China [J]. Renewable andSustainable Energy Reviews,2008,1667-1680.
    [168] Niu S W, Li Y X, Ding Y X, et al. Energy demand for rural household heating to suitablelevels in the Loess Hilly Region, Gansu Province, China [J]. Energy,2010,35(5):2070-2078.
    [169] Ehrlich P R, Holdren J P. Impact of Population Growth [J]. Science,1971,171(3977):1212-1217.
    [170] Holdren J P, Ehrlich P R. Human Population and the Global Environment: Populationgrowth, rising per capita material consumption, and disruptive technologies have madecivilization a global ecological force [J]. American Scientist,1974,62(3):282-292.
    [171] Daily G C, Ehrlich P R. Population, Sustainability, and Earth's Carrying Capacity [J].BioScience,1992,42(10):761-771.
    [172] Munoz P, Hubacek K. Material implication of Chile's economic growth: Combining materialflow accounting (MFA) and structural decomposition analysis (SDA)[J]. EcologicalEconomics,2008,65(1):136-144.
    [173] Haan M D. A Structural Decomposition Analysis of Pollution in the Netherlands [J].Economic Systems Research,2001,13(2):181-196.
    [174] Mukhopadhyay K. A structural decomposition analysis of air pollution from fossil fuelcombustion in India [J]. International Journal of Environment and Pollution,2002,18(5):486-497.
    [175] R rmose P, Olsen T. Structural Decomposition Analysis of Air Emissions in Denmark1980-2002[M].15th International Conference on Input-Output Techniques. Beijing, China.2005.
    [176] He J. What is the role of openness for China's aggregate industrial SO(2) emission?: Astructural analysis based on the Divisia decomposition method [J]. Ecological Economics,2010,69(4):868-886.
    [177] Sharma S S. Determinants of carbon dioxide emissions: Empirical evidence from69countries [J]. Applied Energy,2011,88(1):376-382.
    [178] Alcantara V, Duarte R. Comparison of energy intensities in European Union countries.Results of a structural decomposition analysis [J]. Energy Policy,2004,32(2):177-189.
    [179] Bhattacharyya S C, Ussanarassamee A. Changes in energy intensities of Thai industrybetween1981and2000: a decomposition analysis [J]. Energy Policy,2005,33(8):995-1002.
    [180] Ediger V S, Huvaz O. Examining the sectoral energy use in Turkish economy (1980-2000)with the help of decomposition analysis [J]. Energy Conversion and Management,2006,47(6):732-745.
    [181] Mairet N, Decellas F. Determinants of energy demand in the French service sector: Adecomposition analysis [J]. Energy Policy,2009,37(7):2734-2744.
    [182] Baiocchi G, Minx J, Hubacek K. The Impact of Social Factors and Consumer Behavior onCarbon Dioxide Emissions in the United Kingdom [J]. Journal of Industrial Ecology,2010,14(1):50-72.
    [183] Casler S D, Rose A. Carbon dioxide emissions in the US economy-A structuraldecomposition analysis [J]. Environmental&Resource Economics,1998,11(3-4):349-363.
    [184] Diakoulaki D, Mavrotas G, Orkopoulos D, et al. A bottom-up decomposition analysis ofenergy-related CO2emissions in Greece [J]. Energy,2006,31(14):2638-2651.
    [185] Hatzigeorgiou E, Polatidis H, Haralambopoulos D. CO2emissions in Greece for1990-2002:A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Indexand Logarithmic Mean Divisia Index techniques [J]. Energy,2008,33(3):492-499.
    [186] Hatzigeorgiou E, Polatidis H, Haralambopoulos D. Energy CO2Emissions for1990-2020: ADecomposition Analysis for EU-25and Greece [J]. Energy Sources Part a-RecoveryUtilization and Environmental Effects,2010,32(20):1908-1917.
    [187] Lim H-J, Yoo S-H, Kwak S-J. Industrial CO(2) emissions from energy use in Korea: Astructural decomposition analysis [J]. Energy Policy,2009,37(2):686-698.
    [188] Oh I, Wehrmeyer W, Mulugetta Y. Decomposition analysis and mitigation strategies ofCO(2) emissions from energy consumption in South Korea [J]. Energy Policy,2010,38(1):364-377.
    [189] Okushima S, Tamura M. Multiple calibration decomposition analysis: Energy use andcarbon dioxide emissions in the Japanese economy,1970-1995[J]. Energy Policy,2007,35(10):5156-5170.
    [190] Paul S, Bhattacharya R N. CO2emission from energy use in India: a decomposition analysis[J]. Energy Policy,2004,32(5):585-593.
    [191] Tunc G I, Turut-Asik S, Akbostanci E. A decomposition analysis of CO(2) emissions fromenergy use: Turkish case [J]. Energy Policy,2009,37(11):4689-4699.
    [192] Wood R. Structural decomposition analysis of Australia's greenhouse gas emissions [J].Energy Policy,2009,37(11):4943-4948.
    [193] Liao H, Wei Y M. China's energy consumption: A perspective from Divisia aggregationapproach [J]. Energy,2010,35(1):28-34.
    [194] Zhao X L, Ma C B, Hong D Y. Why did China's energy intensity increase during1998-2006:Decomposition and policy analysis [J]. Energy Policy,2010,38(3):1379-1388.
    [195] Chang T-P, Hu J-L. Total-factor energy productivity growth, technical progress, andefficiency change: An empirical study of China [J]. Applied Energy,2010,87(10):3262-3270.
    [196] Zhang Z X. Why did the energy intensity fall in China's industrial sector in the1990s? Therelative importance of structural change and intensity change [J]. Energy Economics,2003,25(6):625-638.
    [197] Fan Y, Liao H, Wei Y M. Can market oriented economic reforms contribute to energyefficiency improvement? Evidence from China [J]. Energy Policy,2007,35(4):2287-2295.
    [198] Hang L M, Tu M Z. The impacts of energy prices on energy intensity: Evidence from China[J]. Energy Policy,2007,35(5):2978-2988.
    [199] Liao H, Fan Y, Wei Y M. What induced China's energy intensity to fluctuate:1997-2006?[J]. Energy Policy,2007,35:4640-4649.
    [200] Wei Y M, Liu L C, Fan Y, et al. The impact of lifestyle on energy use and CO2emission:An empirical analysis of China's residents [J]. Energy Policy,2007,35(1):247-257.
    [201] Duan J, Yan Y, Zheng B F, et al. Analysis of the relationship between urbanisation andenergy consumption in China [J]. International Journal of Sustainable Development and WorldEcology,2008,15(4):309-317.
    [202] Ma C, Stern D I. China's changing energy intensity trend: A decomposition analysis [J].Energy Economics,2008,30(3):1037-1053.
    [203] Chai J, Guo J E, Wang S Y, et al. Why does energy intensity fluctuate in China?[J]. EnergyPolicy,2009,37(12):5717-5731.
    [204] Feng T W, Sun L Y, Zhang Y. The relationship between energy consumption structure,economic structure and energy intensity in China [J]. Energy Policy,2009,37(12):5475-5483.
    [205] Liu J H, Tu G P, Chen H. The factor decomposition analysis of secondary industry energyintensity in China [J].200916th International Conference on Industrial Engineering andEngineering Management E&EM2009,2009,2161-2168.
    [206] Liu Y. Exploring the relationship between urbanization and energy consumption in Chinausing ARDL (autoregressive distributed lag) and FDM (factor decomposition model)[J].Energy,2009,1846-1854.
    [207] Zhang X P, Cheng X M. Energy consumption, carbon emissions, and economic growth inChina [J]. Ecological Economics,2009,68(10):2706-2712.
    [208] Chang C C. A multivariate causality test of carbon dioxide emissions, energy consumptionand economic growth in China [J]. Applied Energy,2010,87(11):3533-3537.
    [209] Chang T P, Hu J L. Total-factor energy productivity growth, technical progress, andefficiency change: An empirical study of China [J]. Applied Energy,2010,87(10):3262-3270.
    [210] Han M L, Wang G S. Composition Factors Analysis of China's Energy Intensity Altering [J].Ebm2010: International Conference on Engineering and Business Management, Vols1-8,2010,3408-3413.
    [211] Hua L, Yi-Ming W. China's energy consumption: a perspective from Divisia aggregationapproach [J]. Energy,2010,28-34.
    [212] Huang H, Liu Z L, Liu H B. The Coordination Analysis of the Energy Consumption,Economy Growth, and Environment Protection in China [J]. Ebm2010: InternationalConference on Engineering and Business Management, Vols1-8,2010,5596-5599.
    [213] Li Z. Quantitative analysis of sustainable energy strategies in China [J]. Energy Policy,2010,2149-2160.
    [214] Ma C. Account for sector heterogeneity in China's energy consumption: Sector price indicesvs. GDP deflator [J]. Energy Economics,2010,32(1):24-29.
    [215] Peng S, Sun Z. An econometric study of CO2emissions, energy consumption and economicgrowth in China [J].2010International Conference on Mechanic Automation and ControlEngineering (MACE),2010.
    [216] Shao H M, Gao F Y. An Inquiry into the Impact of the Population Growth on the EnergyConsumption in China [J]. Advance in Resources&Environmental Economics Research,2010,144-150.
    [217] Wang D, Nie R, Zhao Y Y. Change of Energy Consumption and the Main Factors in EastChina-An Empirical Analysis Based on Decomposition Model [J]. Ebm2010: InternationalConference on Engineering and Business Management, Vols1-8,2010,3293-3296.
    [218] Yan Q W, Chen H. A Study on Causal Relations between Energy Consumption andEconomic Growth in China-Based on the Time Series Data [J]. Advance in Resources&Environmental Economics Research,2010,129-138.
    [219] Yuan C, Liu S, Wu J. The relationship among energy prices and energy consumption inChina [J]. Energy Policy,2010,197-207.
    [220] Feng Z H, Zou L L, Wei Y M. The impact of household consumption on energy use andCO2emissions in China [J]. Energy,2011,36(1):656-670.
    [221] Pao H T, Tsai C M. Multivariate Granger causality between CO2emissions, energyconsumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidencefrom a panel of BRIC (Brazil, Russian Federation, India, and China) countries [J]. Energy,2011,36(1):685-693.
    [222] Chang C-C. A multivariate causality test of carbon dioxide emissions, energy consumptionand economic growth in China [J]. Applied Energy,2010,87(11):3533-3537.
    [223] Liu C, Yang Y. Analysis of China's Energy Consumption: Results of a structuraldecomposition analysis [J]. Proceedings of the2010Asia-Pacific Power and EnergyEngineering Conference (APPEEC2010),2010.
    [224] Zhang M, Li H, Zhou M, et al. Decomposition analysis of energy consumption in Chinesetransportation sector [J]. Applied Energy,2011,88(6):2279-2285.
    [225] Feng K S, Hubacek K, Guan D B. Lifestyles, technology and CO2emissions in China: Aregional comparative analysis [J]. Ecological Economics,2009,69(1):145-154.
    [226] Li M. Decomposing the change of CO2emissions in China A distance function approach [J].Ecological Economics,2010,70(1):77-85.
    [227] Lu C Y, Zhang X L, He J K. A CGE analysis to study the impacts of energy investment oneconomic growth and carbon dioxide emission: A case of Shaanxi Province in western China[J]. Energy,2010,35(11):4319-4327.
    [228] Wang C, Chen J, Zou J. Decomposition of energy-related CO2emission in China:1957-2000[J]. Energy,2005,30(1):73-83.
    [229] Zha D L, Zhou D Q, Zhou P. Driving forces of residential CO2emissions in urban and ruralChina: An index decomposition analysis [J]. Energy Policy,2010,38(7):3377-3383.
    [230] Zhang M, Mu H L, Ning Y D. Accounting for energy-related CO2emission in China,1991-2006[J]. Energy Policy,2009,37(3):767-773.
    [231] Zhang M, Mu H L, Ning Y D, et al. Decomposition of energy-related CO2emission over1991-2006in China [J]. Ecological Economics,2009,68(7):2122-2128.
    [232] Zhang Y. Structural decomposition analysis of sources of decarbonizing economicdevelopment in China;1992-2006[J]. Ecological Economics,2009,68(8-9):2399-2405.
    [233] Peters G P, Weber C L, Guan D, et al. China's Growing CO2Emissions: A Race betweenIncreasing Consumption and Efficiency Gains [J]. Environmental Science&Technology,2007,41(17):5939-5944.
    [234] Chong W H B, Guan D, Guthrie P. Comparative Analysis of Carbonization Drivers inChina's Megacities [J]. Journal of Industrial Ecology,2012,16(4):564-575.
    [235] Feng K, Siu Y L, Guan D, et al. Analyzing Drivers of Regional Carbon Dioxide Emissionsfor China A Structural Decomposition Analysis [J]. Journal of Industrial Ecology,2012,16(4):600-611.
    [236] Liu Z, Geng Y, Lindner S, et al. Uncovering China’s greenhouse gas emission from regionaland sectoral perspectives [J]. Energy,2012,45(1):1059-1068.
    [237] Liu Z, Liang S, Geng Y, et al. Features, trajectories and driving forces for energy-relatedGHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai andChongqing [J]. Energy,2012,37(1):245-254.
    [238] Dong Y L, Ishikawa M, Liu X B, et al. An analysis of the driving forces of CO2emissionsembodied in Japan-China trade [J]. Energy Policy,2010,38(11):6784-6792.
    [239] Xu M, Li R, Crittenden J C, et al. CO2emissions embodied in China's exports from2002to2008: A structural decomposition analysis [J]. Energy Policy,2011,39(11):7381-7388.
    [240] Tilanus C B, Rey G. Input-Output Volume and Value Predictions for the Netherlands,1948-1958[J]. International Economic Review,1964,5(1):34-45.
    [241] Tilanus C B, Harkena R. Input-Output Predictions of Primary Demand, The Netherlands,1948-1958[J]. The Review of Economics and Statistics,1966,48(1):94-97.
    [242] Sawyer J A. Forecasting with Input–Output Matrices: Are the Coefficients Stationary?[J].Economic Systems Research,1992,4(4):325-348.
    [243] Rey G, Tilanus C B. Input-Output Forecasts for the Netherlands,1949-1958[J].Econometrica,1963,31(3):454-463.
    [244] Klafszky E. A Theoretical Prediction of the Input-Output Table [M].5th Conference onOptimization Techniques, Part1. Springer-Verlag.1973:484-492.
    [245] Bezdek R H, Wendling R M. Current-and Constant-Dollar Input-Output Forecasts for the U.S. Economy [J]. Journal of the American Statistical Association,1976,71(355):543-551.
    [246] Beerens G A C, Tilanus C B. Alternative input-output predictions for the Netherlands,1948–1958[J]. Statistica Neerlandica,1966,20(1):19-29.
    [247] Xu M, Zhang T, Allenby B. How much will China weigh? Perspectives from consumptionstructure and technology development [J]. Environmental Science&Technology,2008,42(11):4022-4028.
    [248] Bezdez R H, Shapiro A K. Empirical tests of input-output forecasts [J]. Socio-EconomicPlanning Sciences,1978,12(1):29-36.
    [249] Xu M. Development of the Physical Input Monetary Output Model for UnderstandingMaterial Flows within Ecological-Economic Systems [J]. Journal of Resources and Ecology,2010,02:123-134.
    [250] Weisz H, Duchin F. Physical and monetary input-output analysis: What makes the difference?[J]. Ecological Economics,2006,57(3):534-541.
    [251] Giljum S, Hubacek K. Conceptual Foundations and Applications of Physical Input-OutputTables [M]//SUH S. Handbook of Input-Output Economics in Industrial Ecology. Dordrecht;Springer Netherlands.2009:61-75.
    [252] Hoekstra R, van den Bergh J. Constructing physical input-output tables for environmentalmodeling and accounting: Framework and illustrations [J]. Ecological Economics,2006,59(3):375-393.
    [253] Hubacek K, Giljum S. Applying physical input-output analysis to estimate landappropriation (ecological footprints) of international trade activities [J]. Ecological Economics,2003,44(1):137-151.
    [254]徐一剑.区域经济系统的物质代谢分析模型及其应用[D].北京;清华大学,2007.
    [255] Xu Y, Zhang T. A new approach to modeling waste in physical input-output analysis [J].Ecological Economics,2009,68(10):2475-2478.
    [256] Yang N, Chen D, Hu S, et al. Evaluation of the Tire Industry of China based on PhysicalInput-Output Analysis [J]. Journal of Industrial Ecology,2010,14(3):457-466.
    [257] Penela A C, Villasante C S. Applying physical input-output tables of energy to estimate theenergy ecological footprint (EEF) of Galicia (NW Spain)[J]. Energy Policy,2008,36(3):1148-1163.
    [258] Dietzenbacher E, Los B. Structural Decomposition Techniques: Sense and Sensitivity [J].Economic Systems Research,1998,10(4):307-323.
    [259] Hoekstra R, Bergh J C J M v d. Structural Decomposition Analysis of Physical Flows in theEconomy [J]. Environmental and Resource Economics,2002,23:357-378.
    [260] Ang B W, Liu N. Energy decomposition analysis: IEA model versus other methods [J].Energy Policy,2007,35(3):1426-1432.
    [261] Ang B W, Liu N. Handling zero values in the logarithmic mean Divisia index decompositionapproach [J]. Energy Policy,2007,35(1):238-246.
    [262] Ang B W, Liu N. Negative-value problems of the logarithmic mean Divisia indexdecomposition approach [J]. Energy Policy,2007,35(1):739-742.
    [263] Ang B W, Zhang F Q, Choi K H. Factorizing changes in energy and environmentalindicators through decomposition [J]. Energy,1998,23(6):489-495.
    [264] Ang B W, Zhang F Q. A survey of index decomposition analysis in energy andenvironmental studies [J]. Energy,2000,25(12):1149-1176.
    [265] Ang B W, Liu F L, Chew E P. Perfect decomposition techniques in energy andenvironmental analysis [J]. Energy Policy,2003,31(14):1561-1566.
    [266] Ang B W, Liu F L. A new energy decomposition method: perfect in decomposition andconsistent in aggregation [J]. Energy,2001,26(6):537-548.
    [267] Ang B W, Choi K H. Decomposition of aggregate energy and gas emission intensities forindustry: A refined Divisia index method [J]. Energy Journal,1997,18(3):59-73.
    [268] Ang B W. Decomposition analysis for policymaking in energy: which is the preferredmethod?[J]. Energy Policy,2004,32(9):1131-1139.
    [269] Guan D, Hubacek K, Weber C L, et al. The drivers of Chinese CO2emissions from1980to2030[J]. Global Environmental Change-Human and Policy Dimensions,2008,18(4):626-634.
    [270] Guan D, Peters G P, Weber C L, et al. Journey to world top emitter: An analysis of thedriving forces of China's recent CO2emissions surge [J]. Geophysical Research Letters,2009,36:L04709.
    [271] Ayres R U, van den Bergh J C J M. A theory of economic growth with material/energyresources and dematerialization: Interaction of three growth mechanisms [J]. EcologicalEconomics,2005,55(1):96-118.
    [272] Cleveland C J, Ruth M. Indicators of Dematerialization and the Materials Intensity of Use[J]. Journal of Industrial Ecology,1998,2(3):15-50.
    [273] EEA. Environmental Terminology and Discovery Service (ETDS): DPSIR [M]. CopenhagenK, Denmark; European Environment Agency.2012,http://glossary.eea.europa.eu/EEAGlossary/D/DPSIR.
    [274] EEA. What is the 'DPSIR' methodology used in SOER2010?[M]. Copenhagen K, Denmark;European Environment Agency.2012,http://www.eea.europa.eu/soer/frequently-asked-questions-about-soer-2010/what-is-the-dpsir-methodology.
    [275] EEA. The DPSIR framework used by the EEA [M]. Copenhagen K, Denmark; EuropeanEnvironment Agency.2007,http://ia2dec.ew.eea.europa.eu/knowledge_base/Frameworks/doc101182.
    [276] Kristensen P. The DPSIR Framework [M]. The27-29September2004workshop on acomprehensive/detailed assessment of the vulnerability of water resources to environmentalchange in Africa using river basin approach. UNEP Headquarters, Nairobi, Kenya.2004.
    [277] Schoer K. Classifications of Material Flows for SEEA-MFA [M]. The13th Meeting of theLondon Group on Environmental Accounting. Brussels, Belgium.2008.
    [278] Schoer K, Gravg rd O, Femia A. The structure of the SEEA-MFA manual [M]. The12thMeeting of the London Group on Environmental Accounting.2007.
    [279] UNSD. SEEA-MFA: DRAFTING PROCESS [M]. Fourth Meeting of the UN Committee ofExperts on Environmental-Economic Accounting. New York, USA; Statistics Division of theUnited Nations.2009.
    [280] Miller R E, Blair P D. Input-Output Analysis: Foundations and Extensions (2nd Edition)[M].Cambridge University Press,2009.
    [281] Suh S. Developing a sectoral environmental database for input–output analysis: thecomprehensive environmental data archive of the US [J]. Economic Systems Research,2005,17(4):449-469.
    [282] Yang Y, Suh S. Environmental Impacts of Products in China [J]. Environmental Science&Technology,2011,45(9):4102-4109.
    [283] Allen F W, Halloran P A, Leith A H, et al. Using Material Flow Analysis for SustainableMaterials Management [J]. Journal of Industrial Ecology,2009,13(5):662-665.
    [284] Weidema B P, Suh S, Notten P. Setting Priorities within Product-Oriented EnvironmentalPolicy [J]. Journal of Industrial Ecology,2006,10(3):73-87.
    [285] Xu Y, Zhang T. Regional metabolism analysis model based on three dimensional PIOT andits preliminary application [M]. The2008International Input-Output Meeting: Input-Output&Environment. Seville, Spain.2008.
    [286]张金水.可计算非线性动态投入产出模型[M].北京:清华大学出版社,2000.
    [287]中华人民共和国国家统计局.中国能源统计年鉴2008[M].北京:中国统计出版社,2008.
    [288]中华人民共和国环境保护部.2007中国环境统计年报[M].北京:中国环境科学出版社,2008.
    [289]杨明森.中国环境年鉴2008[M].北京;中国环境年鉴社.2008.
    [290]中国农业年鉴编辑委员会.中国农业年鉴2008[M].北京:中国农业出版社,2008.
    [291]中国矿业年鉴编辑部.中国矿业年鉴2008[M].北京:地震出版社,2009.
    [292]中华人民共和国国家统计局.中国统计年鉴2008[M].北京:中国统计出版社,2008.
    [293]中华人民共和国环境保护部,中华人民共和国国家统计局,中华人民共和国农业部.第一次全国污染源普查公报[M].北京:中华人民共和国环境保护部,中华人民共和国国家统计局,中华人民共和国农业部,2010.
    [294] IPCC.2006IPCC Guidelines for National Greenhouse Gas Inventories [M].Intergovernmental Panel on Climate Change,2006.
    [295] Tian H Z, Wang Y, Xue Z G, et al. Trend and characteristics of atmospheric emissions of Hg,As, and Se from coal combustion in China,1980-2007[J]. Atmospheric Chemistry andPhysics,2010,10(23):11905-11919.
    [296] Streets D G, Hao J M, Wu Y, et al. Anthropogenic mercury emissions in China [J].Atmospheric Environment,2005,39(40):7789-7806.
    [297]中国环境与发展国际合作委员会.中国汞管理政策[M].北京;中国环境与发展国际合作委员会.2012.
    [298]卢伟.废弃物循环利用系统物质代谢分析模型及其应用[D].北京;清华大学,2010.
    [299]中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究:综合卷[M].北京:科学出版社,2011.
    [300]中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究:可再生能源卷[M].北京:科学出版社,2011.
    [301]中国物资再生协会.中国再生资源综合利用年鉴2009[M].北京:经济日报出版社,2010.
    [302]2050中国能源和碳排放研究课题组.2050中国能源和碳排放报告[M].北京:科学出版社,2010.
    [303]中华人民共和国国家统计局.中国统计年鉴2009[M].北京:中国统计出版社,2009.
    [304]中华人民共和国国家统计局.2007中国投入产出表[M].北京;中国统计出版社.2009.
    [305] Liang S, Zhang T, Xu Y. Comparisons of four categories of waste recycling in China’s paperindustry based on physical input–output life-cycle assessment model [J]. Waste Management,2012,32(3):603–612.
    [306]王莹,陈远生,翁建武,等.北京市城市公共生活用水特征分析[J].给水排水,2008,34(11):138-143.
    [307] Minx J C, Baiocchi G, Peters G P, et al. A “Carbonizing Dragon”: China’s Fast GrowingCO2Emissions Revisited [J]. Environmental Science&Technology,2011,45(21):9144-9153.
    [308]孙树义.中国工业经济年鉴2008[M].北京;中国财政经济出版社.2009.
    [309] UN. United Nations Commodity Trade Statistics Database (comtrade.un.org/db)[M]. NewYork, USA; United Nations.2010.
    [310] Hao J M, Tian H Z, Lu Y Q. Emission inventories of NOx from commercial energyconsumption in China,1995-1998[J]. Environmental Science&Technology,2002,36(4):552-560.
    [311]中华人民共和国工业和信息化部.再生资源综合利用先进适用技术目录(第一批)[M].北京;中华人民共和国工业和信息化部.2012.
    [312]邢爱华,马捷,张英皓,等.生物柴油环境影响的全生命周期评价[J].清华大学学报(自然科学版),2010,50(6):917-922.
    [313]邢爱华,马捷,张英皓,等.生物柴油全生命周期经济性评价[J].清华大学学报(自然科学版),2010,50(6):923-927.
    [314]邢爱华,马捷,张英皓,等.生物柴油全生命周期资源和能源消耗分析[J].过程工程学报,2010,10(2):314-320.
    [315]张治山.玉米燃料乙醇生命周期系统的热力学分析[D].天津;天津大学,2005.
    [316] Ou X, Zhang X, Chang S, et al. Energy consumption and GHG emissions of six biofuelpathways by LCA in (the) People’s Republic of China [J]. Applied Energy,2009,86,Supplement1:S197-S208.
    [317]中华人民共和国国家统计局.中国统计年鉴1991-2010[M].北京:中国统计出版社,1991-2010.
    [318] Lenzen M. The Eora MRIO Database [M]. Sydney, Australia.2012.
    [319]中国农业年鉴编辑委员会.中国农业年鉴2011[M].北京:中国农业出版社,2011.
    [320]中国矿业年鉴编辑部.中国矿业年鉴2011[M].北京:地震出版社,2012.
    [321]中华人民共和国国家统计局,中华人民共和国环境保护部.中国环境统计年鉴2011[M].北京;中国统计出版社.2011.
    [322]齐晔.2010中国低碳发展报告[M].北京:科学出版社,2011.
    [323]中华人民共和国环境保护部.2010中国环境统计年报[M].北京:中国环境科学出版社,2011.
    [324]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.综合能耗计算通则GB/T2589-2008[M].北京;中国标准出版社.2008.
    [325]2050中国能源和碳排放研究课题组.中国2050年低碳发展之路:能源需求暨碳排放情景分析[M].北京:科学出版社,2010.
    [326]中国科学院矿产资源领域战略研究组.中国至2050年矿产资源科技发展路线图[M].北京:科学出版社,2009.
    [327]中国科学院农业领域战略研究组.中国至2050年农业科技发展路线图[M].北京:科学出版社,2009.
    [328]中国科学院生态与环境领域战略研究.中国至2050年生态与环境科技发展路线图[M].北京:科学出版社,2009.
    [329]中国科学院水资源领域战略研究组.中国至2050年水资源领域科技发展路线图[M].北京:科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700